服务热线: 0510-88155119
13301510675@163.com
Language
项目案例 Case
Case 光谱共聚焦

基于国产泓川 LTC3000 光谱共焦传感器的手机相机镜头外观扫描测量案例

日期: 2025-08-30
浏览次数: 5

一、案例背景与核心测试需求

手机相机镜头模组(以某型号 5P 光学镜头为例)的多镜片安装精度直接决定成像质量 —— 镜片间高度差过大会导致光路偏移,引发画面模糊、畸变;安装深度偏差超出阈值会改变焦距,影响自动对焦性能;镜筒与镜片的配合缝隙过大则易进灰、产生杂散光,甚至导致镜片松动。本案例针对该 5P 镜头模组的外观关键参数展开测量,具体需求如下:

  1. 镜片间高度差

    :相邻镜片(如 1# 镜片与 2# 镜片、4#     镜片与 5# 镜片)的表面高度差≤5μm,全镜片组高度差累计偏差≤10μm
  2. 镜片安装深度

    :镜筒基准面到各镜片表面的距离(设计值:1# 镜片 120μm3# 镜片 350μm5# 镜片     600μm),实际偏差需≤±3μm
  3. 配合缝隙

    :镜筒内壁与镜片边缘的径向间隙需控制在 20~50μm,且圆周方向均匀性误差≤5μm
  4. 设备适配性

    :镜头模组尺寸仅 φ8mm×12mm(镜筒外径 φ8mm),需传感器体积小巧(避免空间干涉),同时兼容透明材料(光学玻璃镜片,透光率 98%)与非透明材料(工程塑胶镜筒,反射率约 25%);
  5. 产线效率

    :单次测量时间≤10 秒(量产需求),重复测量精度≤0.5μm(避免误判)。
基于国产泓川 LTC3000 光谱共焦传感器的手机相机镜头外观扫描测量案例


经选型验证,国产泓川 LTC3000 光谱共焦传感器(外径 φ8mm、长度 38.7mm,静态重复精度 0.1μm,线性误差 <±0.6μm)完美匹配狭小空间安装需求,搭配 LT-CPS 高速控制器(Max.32kHz 采样频率)可兼顾精度与效率,成为核心测量设备。



二、测试设备与系统搭建

1. 核心设备清单

设备名称

型号 / 规格

作用说明

光谱共焦传感器

LTC3000(泓川科技)

核心测量单元,输出距离数据(量程 ±1500μm,覆盖镜片深度与缝隙范围)

高速控制器

LT-CPS(激光光源版)

32kHz 最高采样频率,同步控制传感器与运动平台,支持 EtherCAT 工业通信

高精度运动平台

XY 轴行程 20mm×20mm轴行程 10mm

带动样品实现环形 / 螺旋扫描,XY  轴重复定位精度 ±1μm ±0.3μm

真空样品固定台

吸附面积 φ10mm,吸附力  0.3MPa

无应力固定镜头模组,避免镜筒变形导致的测量偏差

光学定位辅助模块

显微视觉系统(放大倍率 200×

辅助校准传感器光斑与镜头中心对齐,定位精度 ±0.5μm

环境控制单元

温度 23±2℃,湿度  35%~55%,无气流干扰

降低环境温湿度对 LTC3000 温度特性(<0.05% F.S./℃)的影响

2. 系统搭建逻辑

LTC3000 通过 FC/PC 光纤连接 LT-CPS 控制器,控制器与运动平台、视觉模块通过 EtherCAT 总线实现毫秒级同步;镜头模组通过真空台吸附在运动平台中心,LTC3000 固定于 Z 轴微调支架(初始距离按 “测量中心距离 7mm” 校准),确保光斑垂直入射镜头中心(测量角度 <±3°,远低于 LTC3000  ±14° 允许范围),避免角度偏差导致的距离计算误差。

三、测量原理与技术适配性

1. 光谱共焦核心原理(针对镜头模组特性)

LTC3000 通过 “白光色散 + 共焦滤波” 实现多材料精准测量:

  • 白光经色散透镜分解为不同波长单色光,其中短波长(蓝光)聚焦于近距表面(如 1# 镜片表面),长波长(红光)聚焦于远距表面(如 5# 镜片表面或镜筒底部);
  • 反射光经共焦小孔滤波后,仅 “聚焦点波长” 被光谱仪捕捉     ——透明镜片会产生 “表面反射峰(短波长)”  “底面反射峰(长波长)非透明镜筒仅产生 “表面反射峰(单一波长)
  • LT-CPS 

    控制器通过预校准的 “波长 - 距离” 曲线(纳米级激光干涉仪标定,线性误差 <±0.6μm),将波长信号转换为精确距离值,分辨率达 0.02μm

2. 镜头模组多参数测量适配性

测量参数

材料类型

反射信号特征

测量逻辑

镜片高度差

透明光学玻璃

相邻镜片各有 “双反射峰,表面峰波长不同

计算同一径向位置下,相邻镜片表面峰的距离差值

镜片安装深度

透明玻璃 + 非透明镜筒

镜筒基准面(单峰)镜片表面(双峰中短波长峰)

镜筒基准面距离 - 镜片表面距离  = 安装深度

配合缝隙

透明玻璃 + 非透明镜筒

镜筒内壁(单峰)镜片边缘(双峰)

定位两者边缘坐标,计算径向距离差


四、详细扫描步骤(兼顾精度与产线效率)

1. 测试前校准(关键基准统一)

1)传感器线性校准

用纳米级激光干涉仪(精度 ±0.05μm)在 LTC3000 量程 ±1500μm 内取 30 个校准点,拟合 “波长 - 距离” 曲线,确保全量程内线性误差 <±0.6μm—— 针对镜头常用的 “0~1000μm 深度范围,误差进一步控制在 ±0.3μm 内。

2)光斑与镜头中心对齐

  1. 通过显微视觉模块观察镜头模组,标记镜筒内壁圆心(X0,Y0);
  2. 移动 XY 轴使 LTC3000 光斑中心与(X0,Y0)重合,记录坐标;
  3. 采集镜筒基准面距离值 H0=7.000mmLTC3000 中心距离),作为后续深度计算基准。

3)样品基准校准

采集镜筒顶部基准面 5 个点(圆周均匀分布)的距离平均值,设为 H_base=6.998mm(因镜筒加工误差,略低于中心距离 7mm),用于消除样品安装偏心导致的基准偏差。

2. 扫描路径规划(圆形镜头高效覆盖)

采用 “环形扫描 + 径向加密” 策略,避免冗余采样,单次扫描时间控制在 8 秒内:

  • 扫描范围

    :径向(R0~4mm(覆盖 φ8mm     镜筒全范围),圆周(θ0~360°
  • 扫描步距

    :径向步距 10μm光斑直径     20μm,避免漏扫),圆周步距 1°360 个采样环);
  • 采样频率

    :设置为 25kHz(低于 LT-CPS  32kHz 上限,平衡数据稳定性与效率);
  • 总采样点

    360 个环 × 400 个径向点(4mm/10μm= 144,000 个点,扫描时间 = 144,000 / 25,000 ≈ 5.76 秒。

3. 数据采集流程

  1. 运动平台从(X0,Y0)出发,按 “径向递增 10μm→圆周旋转 1°” 的环形路径移动;
  2. 每移动一个步距,LT-CPS 触发 LTC3000 采集 1 组数据,包含 “反射峰数量、峰波长、峰强度、当前坐标(R,θ
  3. 若为 “双反射峰(强度比 1:0.9,判定为透明镜片区域,记录表面峰波长 λ_s;若为 “单反射峰(强度 > 0.8V,判定为非透明镜筒区域,记录峰波长 λ_t
  4. 扫描结束后,将 “坐标(R,θ波长(λ” 数据转换为 “坐标(R,θ距离(H” 矩阵,存储为 CSV 格式。


五、核心测量算法设计(针对三大参数)

1. 数据预处理(降噪与去干扰)

1)降噪算法

采用 “5 点环形移动平均滤波”—— 对每个采样点(R,θ),用其相邻的(R-10μm,θ)、(R+10μm,θ)、(R,θ-1°)、(R,θ+1°)、(R,θ个点的距离平均值替代,消除产线微小振动导致的噪声(滤波前数据标准差 0.15μm,滤波后降至 0.04μm,接近 LTC3000 静态重复精度 0.1μm)。

2)异常值剔除

基于 3σ 准则,剔除距离值超出 “基准范围 ±10μm” 的异常点(多为镜头表面灰尘干扰,占比 < 0.05%),并用 “径向线性插值” 补全数据,避免缝隙测量空洞。

2. 三大核心参数计算算法

1)镜片间高度差算法

  1. 提取同一径向位置(如 R=1mm)、不同镜片层的表面距离值:设 1# 镜片表面距离为 H12# 镜片为 H25# 镜片为 H5
  2. 计算相邻镜片高度差:ΔH1-2=|H1-H2|ΔH2-3=|H2-H3|ΔH4-5=|H4-H5|
  3. 判定标准:所有 ΔH≤5μm,且累计偏差 ΔH_total=|H1-H5|≤10μm

2)镜片安装深度算法

  1. 提取镜筒基准面距离 H_base(非透明区域,单峰对应的距离);
  2. 计算各镜片安装深度:D1=H_base - H11# 镜片),D2=H1 - H22# 镜片,镜筒未覆盖,以 1# 镜片为基准),D5=H4     - H55# 镜片);
  3. 计算深度偏差:ΔD1=|D1 - D1 设计值 |D1 设计值 = 120μm),ΔD3=|D3 - 350μm|ΔD5=|D5 - 600μm|
  4. 判定标准:所有 ΔD≤3μm

3)配合缝隙算法(改进Canny 边缘检测)

  1. 对径向数据(固定 θ 0  4mm)进行梯度计算:G_R = [H (R+10μm,θ) - H     (R-10μm,θ)] / 20μm
  2. 设定梯度阈值 G_th=8μm/mm(镜筒与镜片边缘处梯度突变),当 G_R >     G_th 时,判定为 “镜片边缘R1);当 G_R < -G_th 时,判定为 “镜筒内壁边缘R2);
  3. 计算配合缝隙宽度:W=R2 - R1
  4. 圆周均匀性误差:σ_W=√[Σ(W_θ - W_avg)² / 360]W_θ 为每个 θ 角的缝隙宽度,W_avg 为平均值);
  5. 判定标准:20μm≤W_avg≤50μm,且 σ_W≤5μm
基于国产泓川 LTC3000 光谱共焦传感器的手机相机镜头外观扫描测量案例


六、测试结果与数据分析(组样品,编号 L1~L3

1. 基础测量结果(设计指标:ΔH≤5μmΔD≤3μm20≤W≤50μmσ_W≤5μm

样品编号

镜片最大高度差 ΔH_maxμm

镜片最大深度偏差 ΔD_maxμm

配合缝隙平均值 W_avgμm

缝隙均匀性误差 σ_Wμm

合格判定

L1

4.2

2.1

38.5

3.2

合格

L2

3.8

1.7

42.3

2.8

合格

L3

5.1(超差)

2.9

35.7

4.1

不合格

2. 关键性能验证

1)重复精度验证

 L1 样品同一位置重复扫描 5 次,核心参数结果如下:

  • ΔH_max

    4.2→4.1→4.3→4.2→4.2μm,平均值 = 4.2μm,标准差 = 0.08μm
  • ΔD_max

    2.1→2.0→2.2→2.1→2.1μm,平均值 = 2.1μm,标准差 = 0.07μm
  • 结果表明:重复精度远优于需求的≤0.5μm,满足量产一致性要求。

2)透明 / 非透明测量一致性

选取 L2 样品中 “镜片区域(透明)”  “镜筒区域(非透明)”  200 个点,测量距离值标准差:

  • 透明镜片区域:标准差 = 0.09μm
  • 非透明镜筒区域:标准差 = 0.07μm
    两者差异 < 0.03μm,证明     LTC3000 对两种材料的测量稳定性一致,无系统偏差。

3)小尺寸传感器优势验证

对比 LTC3000φ8mm)与某竞品传感器(φ12mm)的安装适配性:

  • LTC3000

    :可深入镜头模组周边元器件(如马达、排线)间隙(最小间隙 5mm),无干涉;
  • 竞品传感器:因直径过大,需调整样品摆放角度,导致测量效率下降 30%,且易产生角度偏差;
    验证了 LTC3000 小尺寸设计对手机微型模组的适配性。

3. 结果可视化输出

LT-CPS 配套 Studio 软件生成 3 类核心报告:

  1. 2D 环形灰度图

    :用灰度值表示距离(亮区为高,暗区为低),直观显示镜片高度差与缝隙分布(L3 样品的 ΔH_max=5.1μm 处呈明显亮斑,标记为超差区域);
  2. 3D 镜头地形图

    :还原镜筒、镜片的三维形貌,清晰呈现镜片安装倾斜(如     L3 样品 1# 镜片存在 0.5° 倾斜,导致 ΔH 超差);
  3. 参数统计报告

    :输出每 1° 圆周的缝隙宽度、每片镜片的深度偏差,自动标记超差项(如 L3 样品的 ΔH_max=5.1μm,标注 “高度差超差)。

七、案例总结

本案例通过国产泓川 LTC3000 光谱共焦传感器的小尺寸(φ8×38.7mm)、高精度(0.1μm 重复精度)、多材料兼容性 LT-CPS 控制器的高速采样(32kHz,成功实现手机相机镜头模组 “高度差 - 深度 - 缝隙” 的一体化测量,核心价值如下:

  1. 精度达标

    :测量误差 <±0.6μm,重复精度 < 0.1μm,可精准识别 5μm 级的高度差超差;
  2. 效率适配

    :单次扫描耗时≤8 秒,满足量产线 “每小时检测 450 ” 的效率需求;
  3. 环境适应

    IP67 防护等级可应对产线粉尘、少量油污环境,传感器寿命达 20000 小时以上;
  4. 国产化优势

    :相比进口同类产品,成本降低 40%,且技术支持响应时间缩短至 24 小时内。

后续可优化方向:结合 AI 算法实现超差原因自动诊断(如 L3 样品高度差超差源于镜片倾斜,AI 可自动识别倾斜角度并反馈至组装工序),进一步提升产线智能化水平。


Case / 相关推荐
2025 - 08 - 30
点击次数: 5
一、案例背景与核心测试需求手机相机镜头模组(以某型号 5P 光学镜头为例)的多镜片安装精度直接决定成像质量 —— 镜片间高度差过大会导致光路偏移,引发画面模糊、畸变;安装深度偏差超出阈值会改变焦距,影响自动对焦性能;镜筒与镜片的配合缝隙过大则易进灰、产生杂散光,甚至导致镜片松动。本案例针对该 5P 镜头模组的外观关键参数展开测量,具体需求如下:镜片间高度差:相邻镜片(如 1# 镜片与 2# 镜片、...
2025 - 08 - 06
点击次数: 9
一、多晶硅太阳能电池厚度:发电效率与柔性的平衡艺术多晶硅太阳能电池作为光伏市场的主流产品,其厚度是影响性能的核心参数 —— 既需满足高效发电,又要适应柔性场景的需求,这种 "平衡" 背后是材料特性与工程技术的深度耦合。1. 厚度与发电效率:并非越厚越好的 "倒 U 型" 关系多晶硅太阳能电池的发电效率依赖于光吸收能力与载流子收集效率的协同。当厚度较小时(如<...
2025 - 07 - 13
点击次数: 26
一、方案背景与需求凸面镜面作为光学系统中的关键元件,其 3D 轮廓精度直接影响光学性能(如成像质量、光路偏转精度)。传统接触式测量易划伤镜面,而普通光学测量受限于角度范围和量程,难以覆盖凸面的曲面变化(大段差、大曲率)。针对这一需求,本方案采用LTC4000F 光谱共焦传感器搭配LT-CCS 单通道控制器,利用其超大测量角度、超大量程及高精度特性,实现凸面镜面 3D 轮廓的非接触式精确扫描。二、方...
2025 - 06 - 05
点击次数: 12
一、行业挑战与泓川科技解决方案在医用玻璃瓶生产领域,透明 / 茶色瓶底的倾斜度检测一直是技术难点:传统接触式传感器(如电感式)因物理接触易划伤瓶底,且采样频率低(≤2kHz),无法满足高速产线需求;激光位移传感器则因光穿透性问题,对透明材料测量失效。泓川科技凭借 LTC7000 系列光谱共焦位移传感器与 LT-CPS/LT-CPS-L 控制器的创新组合,突破了上述瓶颈,为医用玻璃瓶质量管控提供了非...
2025 - 06 - 04
点击次数: 17
一、工艺挑战与技术需求在手机制造领域,油墨涂刷工序需完成 7 次精密涂布,单次涂层厚度控制在微米级(典型值 50-200μm),且要求各层平整度误差≤±5μm。传统接触式测量存在划伤风险,而普通光学传感器因光能利用率低(0.1% F.S/°C),难以满足高速在线全检需求。泓川科技基于LTC400 系列光谱共焦位移传感器与LT-CPS 控制器的组合方案,以0.012μm 静态重复...
2025 - 05 - 21
点击次数: 37
一、玻璃管管壁单边测厚应用场景适用于透明玻璃管(如医用输液管、实验室玻璃器皿)的管壁厚度快速检测,尤其适合小管径、薄壁结构的单边非接触式测量。测试方案设备配置传感器:LTC7000S 激光位移传感器(聚焦光斑 Φ25μm,适合微小尺寸测量)。控制器:LT-CPF 系列控制器(单通道模式,采样频率≥1Hz,满足每秒 1 次数据采集需求)。测量模式:折射率模式(默认 K9 光学玻璃折射率,n=1.51...
About Us
关于泓川科技
专业从事激光位移传感器,激光焊缝跟踪系统研发及销售的科技公司
中国 · 无锡 · 总部地址:无锡新吴区天山路6号
销售热线:0510-88155119 
图文传真:0510-88152650
Working Time
我们的工作时间
周一至周五:8:00-18:00
周六至周日:9:00-15:00
Shown 企业秀 More
  • 1
    2023 - 03 - 09
    激光位移传感器被广泛应用于各种领域中。其中一个很有用的应用是测量薄膜厚度。这种传感器可以在离表面很近的距离下进行高精度测量,因此非常适合这种应用。本文将介绍激光位移传感器如何用于测量薄膜厚度,包括测量方法、测量原理和市场应用。一、测量方法测量薄膜厚度的基本思路是利用激光位移传感器测量薄膜前后表面的距离差,然后通过几何公式计算出薄膜厚度。在实际操作中,测量方法大致可分为以下几种:1. 手持式测量手持式测量通常用于快速的现场检测。用户只需要将激光位移传感器靠近待测表面,然后通过读取显示屏上的数值判断薄膜厚度是否符合要求。这种方法不需要复杂的设备和步骤,非常易于使用。但是由于人手的震动和误差等因素,手持式测量的精度相对较低,只适用于需求不是特别高的场合。2. 自动化在线测量自动化在线测量一般用于工业生产线上的质量控制。这种方法需要将激光位移传感器与自动化设备相连接,将测量数据传递给计算机进行分析。在这种情况下,测量过程可以完全自动化,精度也可以得到保证。但是相对于手持式测量来说,这种方法需要的设备和技术要求更高,成本也更高。3. 显微镜下测量显微镜下测量常用于对细小薄膜厚度的测量。在这种情况下,用户需要将激光位移传感器与显微镜相结合进行测量。由于显微镜的存在,可以大大增强测量精度。但是相对于其他两种方法,这种方法需要的设备更多,并且技巧要求也更高。二、测量原理激光位移传感器利用的是激光三...
  • 2
    2025 - 01 - 14
    四、光学传感器应用对薄膜涂布生产的影响4.1 提升生产效率4.1.1 实时监测与反馈在薄膜涂布生产的复杂乐章中,光学传感器实时监测与反馈机制宛如精准的指挥棒,引领着生产的节奏。凭借其卓越的高速数据采集能力,光学传感器能够如同闪电般迅速捕捉涂布过程中的关键参数变化。在高速涂布生产线以每分钟数百米的速度运行时,传感器能够在瞬间采集到薄膜厚度、涂布速度、位置偏差等数据,为生产过程的实时监控提供了坚实的数据基础。这些采集到的数据如同及时的情报,被迅速传输至控制系统。控制系统则如同智慧的大脑,对这些数据进行深入分析。一旦发现参数偏离预设的理想范围,控制系统会立即发出指令,如同指挥官下达作战命令,对涂布设备的相关参数进行精准调整。当检测到薄膜厚度略微超出标准时,控制系统会迅速调整涂布头的压力,使涂布量精确减少,确保薄膜厚度回归正常范围。这种实时监测与反馈机制的存在,使得生产过程能够始终保持在最佳状态。它避免了因参数失控而导致的生产中断和产品质量问题,如同为生产线安装了一个智能的 “稳定器”。与传统的生产方式相比,生产调整的时间大幅缩短,从过去的数小时甚至数天,缩短至现在的几分钟甚至几秒钟,极大地提高了生产效率。4.1.2 减少停机时间在薄膜涂布生产的漫长旅程中,设备故障和产品质量问题如同隐藏在道路上的绊脚石,可能导致停机时间的增加,严重影响生产效率。而光学传感器的实时监测功能,就像一位警惕的卫...
  • 3
    2023 - 08 - 21
    摘要:基膜厚度是许多工业领域中重要的参数,特别是在薄膜涂覆和半导体制造等领域。本报告提出了一种基于高精度光谱感测的基膜厚度测量方案,该方案采用非接触测量技术,具有高重复性精度要求和不损伤产品表面的优势。通过详细的方案设计、设备选择和实验验证,展示了如何实现基膜厚度的准确测量,并最终提高生产效率。引言基膜厚度的精确测量对于许多行业来说至关重要。传统测量方法中的接触式测量存在损伤产品表面和对射测量不准确的问题。相比之下,高精度光谱感测技术具有非接触、高重复性和高精度的优势,因此成为了基膜厚度测量的理想方案。方案设计基于高精度光谱感测的基膜厚度测量方案设计如下:2.1 设备选择选择一台高精度光谱感测仪器,具备以下特点:微米级或亚微米级分辨率:满足对基膜厚度的高精度要求。宽波长范围:覆盖整个感兴趣的波长范围。快速采集速度:能够快速获取数据,提高生产效率。稳定性和重复性好:确保测量结果的准确性和可靠性。2.2 光谱感测技术采用反射式光谱感测技术,原理如下:在感测仪器中,发射一个宽光谱的光源,照射到待测样品表面。根据不同厚度的基膜对光的反射率不同,形成一个光谱反射率图像。通过对反射率图像的分析和处理,可以确定基膜的厚度。2.3 实验设计设计实验验证基膜厚度测量方案的准确性和重复性。选择一系列已知厚度的基膜作为标准样品。使用高精度光谱感测仪器对标准样品进行测量,并记录测量结果。重复多次测量,并计...
  • 4
    2023 - 12 - 23
    摘要:圆筒内壁的检测在工业生产中具有重要意义,传统方法存在诸多问题。本文介绍了一种新型的检测系统,该系统结合了改进的激光三角测距法和机器视觉技术,旨在解决传统方法的不足。新方法可以在高温环境下工作,对小径圆筒进行测量,且测量精度高、速度快。通过实验验证,该系统能够实现圆筒内壁的高质量、高速度的在线检测,为现代工业生产提供了有力支持。关键词:圆筒内壁检测;机器视觉;激光三角测距法;在线检测引言圆筒内壁检测是工业生产中的重要环节,其质量直接关系到产品的性能和使用寿命。传统的检测方法存在诸多问题,如检测精度不高、速度慢、无法在线检测等。为了解决这些问题,本文提出了一种新型的检测系统,该系统结合了改进的激光三角测距法和机器视觉技术,旨在实现圆筒内壁的高质量、高速度的在线检测。工作原理本系统采用激光三角测距法作为主要测量手段。激光三角测距法是一种非接触式测量方法,通过激光投射到被测物体表面并反射回来,再通过传感器接收,经过处理后可以得到被测物体的距离和尺寸信息。本系统对传统的激光三角测距法进行了改进,使其能够在高温环境下工作,并对小径圆筒进行测量。同时,本系统还采用了机器视觉技术进行辅助测量和判断。机器视觉技术是通过计算机模拟人类的视觉功能,实现对图像的采集、处理和分析。本系统利用机器视觉技术对圆筒内壁表面进行图像采集和处理,通过算法识别和判断内壁表面的缺陷和尺寸信息。通过将激光三角测距法和...
  • 5
    2025 - 03 - 05
    在工业自动化领域,激光位移传感器是精密测量的核心器件。本文以国产泓川科技的LTP150与基恩士的LK-G150为对比对象,从核心技术参数、功能设计及性价比等维度,解析国产传感器的创新突破与本土化优势。一、核心参数对比:性能旗鼓相当,国产线性度更优精度与稳定性LTP150的线性度为±0.02%F.S.,优于LK-G150的±0.05%F.S.,表明其全量程范围内的测量一致性更佳。重复精度方面,LK-G150(0.5μm)略高于LTP150(1.2μm),但需注意LK-G150数据基于4096次平均化处理,而LTP150在无平均条件下的65536次采样仍保持1.2μm偏差,实际动态场景下稳定性更可靠。采样频率与响应速度LTP150支持50kHz全量程采样,并可扩展至160kHz(量程缩小至20%),远超LK-G150的1kHz上限。高频采样能力使其在高速生产线(如电池极片、半导体晶圆检测)中可捕捉更多细节,避免数据遗漏。环境适应性两者均具备IP67防护与抗振设计,但LTP150可选**-40°C至70°C宽温版本**,覆盖极寒或高温车间环境,而LK-G150仅支持050°C,适用场景受限。以下是 LTP150(泓川科技) 与 LK-G150(基恩士) 激光位移传感器的核心参数对比表格,重点突出国产...
  • 6
    2025 - 01 - 14
    一、引言1.1 研究背景与意义在工业制造、科研等众多领域,精密测量技术如同基石,支撑着产品质量的提升与科学研究的深入。光谱共焦传感器作为精密测量领域的关键技术,正以其独特的优势,在诸多行业中发挥着无可替代的作用。它能精确测量物体的位移、厚度、表面轮廓等参数,为生产过程的精确控制与产品质量的严格把控提供了关键数据支持。基恩士作为传感器领域的佼佼者,其推出的光谱共焦传感器在市场上备受瞩目。基恩士光谱共焦传感器凭借卓越的性能,如高精度、高稳定性、快速响应等,在精密测量领域中脱颖而出。在半导体制造过程中,芯片的生产对精度要求极高,基恩士光谱共焦传感器可精准测量芯片的厚度、线宽等关键参数,保障芯片的性能与质量。在光学元件制造领域,其能够精确测量透镜的曲率、厚度等参数,助力生产出高质量的光学元件。研究基恩士光谱共焦传感器,对于推动精密测量技术的发展具有重要意义。通过深入剖析其原理、结构、性能以及应用案例,能够为相关领域的技术创新提供参考,促进测量技术的不断进步。在实际应用中,有助于用户更合理地选择和使用该传感器,提高生产效率,降低生产成本。在汽车制造中,利用基恩士光谱共焦传感器对零部件进行精密测量,可优化生产流程,减少废品率。 1.2 研究现状在国外,光谱共焦传感器的研究起步较早,技术也相对成熟。法国的STIL公司作为光谱共焦传感器的发明者,一直处于该领域的技术前沿。其研发的光谱共焦...
  • 7
    2025 - 02 - 19
    一、测量原理与技术框架高精度激光位移传感器实现1μm以下精度的核心在于三角测量法的深度优化。如图1所示,当激光束投射到被测表面时,散射光斑经接收透镜在CMOS/CCD阵列上形成位移图像。根据几何关系:\Delta x = \frac{L \cdot \sinθ}{M \cdot \cos(α±θ)}Δx=M⋅cos(α±θ)L⋅sinθ其中L为基距,θ为接收角,M为放大倍数。要实现亚微米分辨率需突破传统三角法的三个技术瓶颈:光斑质量退化、环境噪声干扰、信号处理延迟。二、关键算法突破1. 光斑中心定位算法采用改进型高斯混合模型(GMM)结合小波变换降噪,可有效抑制散斑噪声。研究显示[1],基于Marr小波的边缘检测算法可使定位精度提升至0.12像素(对应0.05μm)。2. 动态补偿算法LTP系列采用专利技术(CN202310456789.1)中的自适应卡尔曼滤波:PYTHONclass AdaptiveKalman:    def update(self, z):        # 实时调整过程噪声协方差Q        se...
  • 8
    2023 - 03 - 20
    介绍工业光电传感器是现代制造业中最常用的检测设备之一,广泛应用于自动化生产线、机械加工、装配、物流搬运等行业。随着国民经济的不断发展,中国的工业光电传感器制造业也不断发展壮大,成为制造业的一支重要力量。本文旨在对中国产的工业光电传感器现状进行描述。发展历史20世纪80年代初期,我国的工业自动化程度比较低,大部分生产线仍采用人力操作,制造业存在高人力成本、低效率、品质难以保证等问题。为了提高制造业的效率和品质,中国开始引入外国的工业自动化设备,其中就包括工业光电传感器。80年代中后期,国内开始试水制造工业光电传感器,并逐步发展壮大。90年代初期,随着国民经济的增长和工业自动化的加速推进,中国的工业光电传感器制造业进入快速发展期。如今,中国的工业光电传感器制造业已经处于全球领先地位,成为世界闻名的光电传感器生产基地之一。产业链分析商业模式中国的工业光电传感器制造业商业模式主要是以生产销售为主,较少采用研发生产销售一体化模式。生产企业主要供应给自动化设备制造商,然后这些自动化设备制造商销售给最终用户,最终用户则使用这些设备来自动化生产线。除此之外,还有一些企业将工业光电传感器产品应用到自己的设备制造中,以提高自己产品的品质和效率,然后再将自己的产品销售给最终用户。在商业模式上,中国的工业光电传感器制造业与欧美等发达国家还存在一定的差距。技术研发中国的工业光电传感器制造业在技术研发方面逐渐...
Message 最新动态
泓川科技国产系列光谱共焦/激光位移传感器/白光干涉测厚产品性能一览 2025 - 09 - 05 高精度测量传感器全系列:赋能精密制造,适配多元检测需求聚焦半导体、光学膜、机械加工等领域的精密检测核心痛点,我们推出全系列高性能测量传感器,覆盖 “测厚、对焦、位移” 三大核心应用场景,以 “高精准、高速度、高适配” 为设计核心,为您的工艺控制与质量检测提供可靠技术支撑。以下为各产品系列的详细介绍:1.LTS-IR 红外干涉测厚传感器:半导体材料测厚专属核心用途:专为硅、碳化硅、砷化镓等半导体材料设计,精准实现晶圆等器件的厚度测量。性能优点:精度卓越:±0.1μm 线性精度 + 2nm 重复精度,确保测量数据稳定可靠;量程适配:覆盖 10μm2mm 测厚范围,满足多数半导体材料检测需求;高效高速:40kHz 采样速度,快速捕捉厚度数据,适配在线检测节奏;灵活适配:宽范围工作距离设计,可灵活匹配不同规格的检测设备与场景。2. 分体式对焦传感器:半导体 / 面板缺陷检测的 “高速对焦助手”核心用途:针对半导体、面板领域的高精度缺陷检测场景,提供高速实时对焦支持,尤其适配显微对焦类检测设备。性能优点:对焦速度快:50kHz 高速对焦,同步匹配缺陷检测的实时性需求;对焦精度高:0.5μm 对焦精度,保障缺陷成像清晰、检测无偏差;设计灵活:分体式结构,可根据检测设备的安装空间与布局灵活调整,降低适配难度。3. LT-R 反射膜厚仪:极薄膜厚检测的 “精密管家”核心用途:专注于极薄膜...
多方面研究泓川科技LTP系列大量程全国产激光位移传感器 2025 - 09 - 02 泓川科技激光位移传感器产品技术报告尊敬的客户: 感谢您对泓川科技激光位移传感器产品的关注与信任。为帮助您全面了解我司产品,现将激光位移传感器相关技术信息从参数指标、设计原理、结构设计等八大核心维度进行详细说明,为您的选型、使用及维护提供专业参考。一、参数指标我司激光位移传感器涵盖 LTP400 系列与 LTP450 系列,各型号核心参数经纳米级高精度激光干涉仪标定验证,确保数据精准可靠,具体参数如下表所示:表 1:LTP400EA参数表参数类别具体参数LTP400EA备注基础测量参数测量中心距离400mm以量程中心位置计算(*1)量程200mm-重复精度(静态)3μm测量标准白色陶瓷样件,50kHz 无平均,取 65536 组数据均方根偏差(*2)线性度±0.03%F.S.(F.S.=200mm)采用纳米级激光干涉仪标定(*3)光源与光斑光源类型-激光功率可定制,部分型号提供 405nm 蓝光版本(*4)光束直径聚焦点光斑 Φ300μm中心位置直径,两端相对变大(*5)电气参数电源电压DC9-36V-功耗约 2.5W-短路保护反向连接保护、过电流保护-输出与通信模拟量输出(选配)电压:0-5V/010V/-1010V;电流:420mA探头可独立提供电压、电流与 RS485 输出(*6)通讯接口RS485 串口、TCP/IP 网口可选配模拟电压 / 电流输出模块(*7)响应...
泓川科技发布 LT-CP 系列 ETHERCAT 总线高光谱共焦控制器,32KHz 高速采样引领工业... 2025 - 08 - 30 泓川科技发布 LT-CP 系列 ETHERCAT 总线高光谱共焦控制器,32KHz 高速采样引领工业高精度测量革新近日,工业高精度测量领域迎来技术突破 —— 泓川科技正式推出LT-CP 系列 ETHERCAT 总线高光谱共焦传感器控制器(含单通道 LT-CPS、双通道 LT-CPD、四通道 LT-CPF 三款型号,含普通光源与高亮激光光源版本)。该系列产品以 “32KHz 高速采样” 与 “ETHERCAT 工业总线” 为核心亮点,填补了行业内 “高频响应 + 实时协同” 兼具的技术空白,为新能源、半导体、汽车制造等高端领域的动态高精度测量需求提供了全新解决方案。一、核心突破:32KHz 高速采样,破解 “多通道降速” 行业痛点光谱共焦技术的核心竞争力在于 “高精度” 与 “响应速度” 的平衡,而 LT-CP 系列在速度维度实现了关键突破 ——单通道模式下最高采样频率达 32KHz,意味着每秒可完成 32000 次精准距离 / 厚度测量,相当于对动态移动的被测物体(如高速传输的电池极片、晶圆)实现 “无遗漏” 的高频捕捉,测量分辨率与动态响应能力远超行业常规 10-20KHz 级别控制器。更具稀缺性的是,该系列打破了 “多通道即降速” 的传统局限:即使在双通道模式(最高 16KHz)、四通道模式(最高 8KHz)下,仍保持高频响应的稳定性。以四通道 LT-CPF 为例,其每通道 8...
Copyright ©2005 - 2013 无锡泓川科技有限公司

1

犀牛云提供企业云服务
Our Link
X
3

SKYPE 设置

4

阿里旺旺设置

等待加载动态数据...

等待加载动态数据...

5

电话号码管理

  • 0510-88155119
6

二维码管理

等待加载动态数据...

等待加载动态数据...

展开