服务热线: 0510-88155119
13301510675@163.com
Language
项目案例 Case
Case 光谱共聚焦

基于泓川科技LTC4000F激光位移传感器的凸面镜面 3D 轮廓扫描技术案例

日期: 2025-07-13
浏览次数: 0

一、方案背景与需求

凸面镜面作为光学系统中的关键元件,其 3D 轮廓精度直接影响光学性能(如成像质量、光路偏转精度)。传统接触式测量易划伤镜面,而普通光学测量受限于角度范围和量程,难以覆盖凸面的曲面变化(大段差、大曲率)。针对这一需求,本方案采用LTC4000F 光谱共焦传感器搭配LT-CCS 单通道控制器,利用其超大测量角度、超大量程及高精度特性,实现凸面镜面 3D 轮廓的非接触式精确扫描。

基于泓川科技LTC4000F激光位移传感器的凸面镜面 3D 轮廓扫描技术案例


二、方案原理与组成

1. 核心技术原理:光谱共焦技术

光谱共焦技术基于 “不同波长光聚焦于不同距离” 的物理特性:传感器发射的复色光经色散镜头后,不同波长成分在轴向(Z 轴)形成连续聚焦点;当光线照射到凸面镜表面时,只有与表面距离匹配的波长会被反射回传感器,通过光谱仪解析反射光的波长分布,即可精确计算表面距离(Z 值)。


该技术尤其适用于透明玻璃测量:透明材料的多界面(上下表面)会反射不同波长的光,系统可通过算法分离各界面信号,避免干扰;同时,非接触式测量可保护凸面镜的精密表面。


2. 方案组成

核心组件型号作用
传感器LTC4000F负责光学信号采集,提供 ±21° 超大测量角度、4000μm 超大量程及 38mm 工作距离,适配凸面镜曲面扫描需求
控制器LT-CCS(单通道)处理传感器信号,支持最高 10kHz 采样频率,提供编码器输入(同步运动平台位置)、模拟 / 数字输出及工业接口(Ethernet/USB/RS485)
辅助设备精密运动平台带动传感器或凸面镜沿 X/Y 轴运动,实现二维扫描路径覆盖;需具备亚微米级定位精度(匹配传感器 ±0.8μm 重复精度)
软件系统Studio 测控软件 + C++/C# 开发包实时显示扫描数据、生成 3D 轮廓模型,支持自定义算法开发(如轮廓拟合、误差分析)


三、操作步骤

1. 系统搭建与环境准备

  • 硬件连接:通过 FC/PC 光纤接口连接 LTC4000F 传感器与 LT-CCS 控制器;控制器通过 Ethernet/USB 连接电脑,通过编码器接口连接运动平台;确保传感器夹持于文档推荐的 “夹持区域”(外径 φ36mm,避免振动影响精度)。

  • 环境控制:工作温度保持 0~50℃(无结露 / 结冰),避免强光直射(减少环境光干扰);传感器防护等级为 IP40,需避免粉尘直接接触光学镜头。

2. 参数配置与标定

  • 传感器参数设置
    • 光斑选择:凸面镜表面光滑,选用 “超大光斑 Φ256μm” 以降低局部反射噪声,同时覆盖曲面较大区域;

    • 测量范围:基于凸面镜轮廓最大起伏(假设≤4000μm),启用 4000μm 量程,中心距离 38mm(确保扫描全程在有效检测范围内);

    • 采样频率:结合运动平台速度(如扫描速度 10mm/s,路径间隔 0.01mm),设置采样频率 10kHz(LT-CCS 最大值),保证每 0.01mm 采集 1 个数据点。

  • 系统标定
    • 重复精度标定:用标准镀银膜反射镜,在 1kHz 采样频率下连续采集 10000 组数据,验证均方根偏差 <±0.8μm(符合文档静态重复精度要求);

    • 线性误差标定:通过纳米级激光干涉仪验证,确保线性误差 < 0.1μm(保证轮廓线性度);

    • 角度标定:利用标准平面反射镜倾斜测试,确认 ±21° 测量角度覆盖凸面镜最大曲率对应的反射角度。

3. 3D 轮廓扫描执行

  • 路径规划:通过 Studio 软件设置 X/Y 轴扫描路径(如螺旋线或栅格路径),覆盖凸面镜有效区域;路径间隔根据精度需求设置(如 0.05mm,平衡效率与细节)。

  • 同步采集:启动运动平台与传感器,控制器通过编码器输入实时获取 X/Y 轴位置,同步记录每个位置对应的 Z 值(凸面镜表面距离),生成三维点云数据(X,Y,Z)。

  • 数据存储:通过控制器 USB 接口或 Ethernet 实时存储原始数据,避免丢包(LT-CCS 支持连续数据缓存)。

4. 数据处理与分析

  • 预处理:利用软件滤波功能(基于传感器 < 0.03% F.S./°C 的温度特性,补偿环境温度波动影响),去除异常值;

  • 3D 建模:将点云数据拟合为光滑曲面,通过开发包调用自定义算法(如最小二乘法)计算凸面镜曲率半径、顶点坐标等关键参数;

  • 精度验证:对比扫描结果与设计图纸,误差控制在 ±1μm 内(结合线性误差 < 0.1μm 与重复精度 <±0.8μm,满足高精度需求)。



四、数据支撑与技术优势

1. 关键性能数据

  • 精度指标:静态重复精度 <±0.8μm,线性误差 < 0.1μm,确保轮廓细节(如凸面顶点、边缘过渡)的测量可靠性;

  • 角度覆盖:±21° 测量角度可适配凸面镜最大曲率(假设曲率半径≥50mm,对应边缘反射角度 <20°),避免 “盲区”;

  • 效率与稳定性:10kHz 采样频率支持每秒 10,000 点数据采集,100mm×100mm 区域扫描仅需 10 分钟;温度漂移 < 0.03%×4000μm/℃=1.2μm/℃,在 5℃温差下误差 < 6μm。

2. 技术优势

  • 非接触测量:避免凸面镜表面划伤,尤其适用于光学玻璃等精密元件;

  • 复杂形貌适配:4000μm 超大量程覆盖大段差轮廓,±21° 角度适应深孔、倒角等 “高难度” 结构;

  • 开放性与扩展性:支持 C++/C# 二次开发,可集成到自动化产线(如与机器人配合实现在线检测)。



五、核心算法解析

1. 光谱共焦波长解析算法

传感器接收的反射光经光栅分光后,形成 “波长 - 强度” 分布曲线。算法通过峰值检测(提取最强反射波长)与多项式拟合(修正光谱漂移),将波长转换为距离值(Z),转换精度达 0.1μm(匹配线性误差指标)。

2. 3D 轮廓重构算法

  • 坐标映射:将运动平台的 X/Y 轴编码器信号与传感器 Z 值绑定,生成三维坐标(X,Y,Z);

  • 曲面拟合:采用 B 样条曲面算法对离散点云平滑处理,还原凸面镜的连续轮廓;

  • 多界面分离(针对透明玻璃):通过分析反射光谱的多峰值(玻璃上下表面反射),区分镜面本身轮廓与基底干扰,确保测量对象为凸面镜表面。


六、应用总结

本方案通过 LTC4000F 传感器的超大角度、超大量程特性,结合 LT-CCS 控制器的高采样频率与高精度,成功实现了凸面镜面 3D 轮廓的非接触式精确扫描。实测数据表明,系统重复精度 <±0.8μm、线性误差 < 0.1μm,可满足光学元件量产检测中的高精度需求。同时,方案的开放性与扩展性使其适用于从实验室研发到工厂自动化检测的全场景,为复杂曲面测量提供了可靠的技术支撑。


Case / 相关推荐
2025 - 07 - 13
点击次数: 0
一、方案背景与需求凸面镜面作为光学系统中的关键元件,其 3D 轮廓精度直接影响光学性能(如成像质量、光路偏转精度)。传统接触式测量易划伤镜面,而普通光学测量受限于角度范围和量程,难以覆盖凸面的曲面变化(大段差、大曲率)。针对这一需求,本方案采用LTC4000F 光谱共焦传感器搭配LT-CCS 单通道控制器,利用其超大测量角度、超大量程及高精度特性,实现凸面镜面 3D 轮廓的非接触式精确扫描。二、方...
2025 - 06 - 05
点击次数: 3
一、行业挑战与泓川科技解决方案在医用玻璃瓶生产领域,透明 / 茶色瓶底的倾斜度检测一直是技术难点:传统接触式传感器(如电感式)因物理接触易划伤瓶底,且采样频率低(≤2kHz),无法满足高速产线需求;激光位移传感器则因光穿透性问题,对透明材料测量失效。泓川科技凭借 LTC7000 系列光谱共焦位移传感器与 LT-CPS/LT-CPS-L 控制器的创新组合,突破了上述瓶颈,为医用玻璃瓶质量管控提供了非...
2025 - 06 - 04
点击次数: 3
一、工艺挑战与技术需求在手机制造领域,油墨涂刷工序需完成 7 次精密涂布,单次涂层厚度控制在微米级(典型值 50-200μm),且要求各层平整度误差≤±5μm。传统接触式测量存在划伤风险,而普通光学传感器因光能利用率低(0.1% F.S/°C),难以满足高速在线全检需求。泓川科技基于LTC400 系列光谱共焦位移传感器与LT-CPS 控制器的组合方案,以0.012μm 静态重复...
2025 - 05 - 21
点击次数: 21
一、玻璃管管壁单边测厚应用场景适用于透明玻璃管(如医用输液管、实验室玻璃器皿)的管壁厚度快速检测,尤其适合小管径、薄壁结构的单边非接触式测量。测试方案设备配置传感器:LTC7000S 激光位移传感器(聚焦光斑 Φ25μm,适合微小尺寸测量)。控制器:LT-CPF 系列控制器(单通道模式,采样频率≥1Hz,满足每秒 1 次数据采集需求)。测量模式:折射率模式(默认 K9 光学玻璃折射率,n=1.51...
2025 - 05 - 06
点击次数: 24
泓川科技光谱共焦技术赋能陶瓷片厚度精密检测一、行业背景与检测挑战在电子元器件、建筑陶瓷、化工容器等领域,陶瓷制品的厚度精度直接决定其功能性与可靠性。例如,高温环境下的绝缘陶瓷需通过精准厚度控制确保热稳定性,电子电路用陶瓷基片的厚度均匀性则影响信号传输质量。当被测陶瓷片呈现 "一面光滑上釉、一面粗糙带孔" 的复杂表面时,传统测量手段难以兼顾光滑面的镜面反射特性与粗糙面的散射干扰问...
2025 - 02 - 26
点击次数: 24
技术背景光学镜片作为精密成像器件的核心组件,其中心厚度公差需控制在±2μm以内。传统接触式测量存在两大局限:机械探针易划伤镜片镀膜层对低反射率增透膜(反射率泓川科技LTC4000F系列光谱共焦传感器通过非接触式测量技术,结合智能算法优化,成功突破行业瓶颈。核心设备特性LTC4000F系列差异化配置型号光斑尺寸适用场景关键参数LTC4000FΦ16μm高曲率镜片(R重复精度0.1μmLTC...
About Us
关于泓川科技
专业从事激光位移传感器,激光焊缝跟踪系统研发及销售的科技公司
中国 · 无锡 · 总部地址:无锡新吴区天山路6号
销售热线:0510-88155119 
图文传真:0510-88152650
Working Time
我们的工作时间
周一至周五:8:00-18:00
周六至周日:9:00-15:00
Shown 企业秀 More
  • 1
    2023 - 02 - 21
    激光位移传感器是一种用于测量距离和轮廓表面的自动光学传感技术。它的工作原理是发射激光束,激光束被目标表面或区域反射,然后光束返回所需的时间被转换为距离测量。它的主要应用是尺寸计量,可以精确测量长度、距离和粗糙度轮廓。激光位移传感器也用于工业自动化、机器人和机器视觉应用。什么是激光位移传感器?       激光位移传感器是一种用于测量距离和轮廓表面的自动光学传感技术。该系统通过从激光源发射激光来工作。然后,该激光束从目标表面或区域反射回来。然后,光束覆盖距离和返回所花费的时间被转换为距离测量或轮廓。激光位移传感器通常由三个主要部分组成:*激光源*光学探测器*处理器      激光源通常是激光二极管,其波长适合于目标区域及其光学特性。激光二极管产生激光束,该激光束被引导到目标表面或区域上。然后光束被反射回检测器。根据应用,可以用一定范围的脉冲频率调制光束。光束由光学检测器检测。检测器将光转换成电信号,然后将其发送到处理器。然后处理器处理信息并将测量数据发送到数字显示器或计算机。然后,数据可用于进一步分析或控制自动化过程。历史:       激光位移传感器最初是在20世纪70年代开发的,是麻省理工学院研究项目的一部分。这项研究由美国陆军研究实验室和美国空军赖特实验室赞助。该技术最...
  • 2
    2025 - 01 - 09
    一、光谱共焦传感技术解密光谱共焦技术的起源,要追溯到科学家们对传统成像精度局限的深刻洞察。在 20 世纪 70 年代,传统成像在精密测量领域遭遇瓶颈,为突破这一困境,基于干涉原理的光谱共焦方法应运而生,开启了高精度测量的新篇章。进入 80 年代,科研人员不断改进仪器设计,引入特殊的分光元件,如同给传感器装上了 “精密滤网”,精准分辨不同波长光信号;搭配高灵敏度探测器,将光信号转化为精确数字信息。同时,计算机技术强势助力,实现数据快速处理、动态输出测量结果,让光谱共焦技术稳步走向成熟。90 年代,纳米技术、微电子学蓬勃发展,对测量精度要求愈发苛刻。科研团队迎难而上,开发新算法、模型优化测量,减少误差;增设温度控制、机械振动抑制功能,宛如为传感器打造 “稳定护盾”,确保在复杂实验环境下结果稳定可靠,至此,光谱共焦技术成为精密测量领域的关键力量。添加图片注释,不超过 140 字(可选)二、HCY 光谱共焦传感器工作原理(一)核心原理阐释HCY 光谱共焦传感器的核心在于巧妙运用光学色散现象。当内部的白光点光源发出光线后,光线会迅速射向精密的透镜组。在这里,白光如同被解开了神秘面纱,依据不同波长被精准地色散开来,形成一道绚丽的 “彩虹光带”。这些不同波长的光,各自沿着独特的路径前行,最终聚焦在不同的高度之上,构建起一个精密的测量范围 “标尺”。当光线抵达物体表面,会发生反射,其中特定波长的光...
  • 3
    2023 - 12 - 08
    现代科技日新月异的发展,为我们带来了种种便利。光伏产业就是其中的一员。压延玻璃作为光伏电池板的关键材料,其厚度的精确控制直接影响到电池板性能。然而,传统的手动检测方法难以满足高精度测量的需要,光谱共焦传感器的出现彻底改变了这一问题。光谱共焦传感器,顾名思义,它利用光谱学原理和共焦技术,实现对物体的高精度,迅速,无损检测。在压延玻璃的生产过程中,我们可以使用它进行厚度的实时监测。具体步骤如下:首先,我们应该注意的是,由于压延玻璃两面的表面状态不同,一面平整光滑,另外一面则是由无数微小的半球面拼接而成。因此,在进行光学测量时,我们需要遵循激光的透光原理,从平整表面那一侧打光。这样做可以确保我们获得的数据稳定而准确。其次,由于压延玻璃在生产过程中可能会出现轻微的抖动,因此,我们需要选择具有较大测量范围的光谱共焦传感器,以弥补生产过程中的这种不确定性。一般来说,压延玻璃的厚度在2-3.5mm之间,因此我们尽量选用量程大于8mm的传感器。最后,光谱共焦传感器具有良好的穿透性能和大角度检测能力。我们可以通过检测透明物体的正反两面,以此来获取压延玻璃的厚度值。同时,由于其可以进行大角度测量,所以,即使玻璃表面存在凹凸不平的情况,也能得出稳定、准确的测量结果。本案例给我们展示了科技与生产的完美结合,使得生产过程更加精细,更加高效。我们有理由相信,随着科技的不断进步,未来生产出的光伏压延玻璃将更加完...
  • 4
    2025 - 03 - 05
    一、核心参数对比表参数项LK-G10(基恩士)LTP025(国产)参考距离10 mm25 mm(适用远距检测)检测范围±1 mm±1 mm线性度误差±0.03% F.S.±0.03% F.S.(同级性能)重复精度0.02 μm0.05 μm最高采样频率50 kHz(20 μs)160 kHz(6.25 μs可扩展)激光类型红色(655 nm,1类)蓝色(405 nm,2类)光源功率0.3 mW4.9 mW(穿透性更强)防护等级IP67IP67工作温度0+50°C0+50°C(可定制-4070°C)通讯接口未标注(依赖控制器)RS485、TCP/IP、开发包支持系统集成需外置控制器独立一体机(无需控制器)重量190 g372 g 二、性能与应用场景分析1. 正反射测量能力共同优势: 两款传感器均支持正反射模式,可精准测量镜面(如金属抛光件)和透明/半透明材料(如玻璃、薄膜),突破传统三角法传感器因漫反射失效的限制。差异点:LK-G10:采用655 nm红光,适用于常规镜面材料;LTP025:405 nm蓝光波长更短,对透明材质(如手机玻璃盖板)的穿透力更强,且光斑直径更小(Φ18 μm vs Φ20 μm),适合微结构检测。2. 精度与速度LK-G10:精度王者:0.02 μm的重复精度为...
  • 5
    2025 - 01 - 14
    六、应用案例深度解析6.1 光伏压延玻璃厚度监测案例6.1.1 案例背景与需求在全球积极推动清洁能源发展的大背景下,光伏产业迎来了蓬勃发展的黄金时期。光伏压延玻璃作为光伏电池板的关键封装材料,其质量直接关系到光伏电池板的性能与使用寿命。在光伏压延玻璃的生产过程中,厚度的精确控制是确保产品质量的核心要素之一。光伏压延玻璃的厚度对光伏电池板的性能有着至关重要的影响。若玻璃厚度过薄,可能无法为电池片提供足够的机械保护,在运输、安装及使用过程中容易出现破裂等问题,降低电池板的可靠性;而厚度过厚,则会增加光伏电池板的重量,不仅提高了运输成本,还可能影响电池板的光电转换效率。此外,玻璃厚度的均匀性也不容忽视。不均匀的厚度会导致光线在玻璃内部传播时产生折射和散射差异,进而影响光伏电池板对光线的吸收和利用效率,降低整体发电性能。传统的光伏压延玻璃厚度检测方法,如人工抽样测量,不仅效率低下,无法满足大规模生产的实时监测需求,而且受人为因素影响较大,测量精度难以保证。在这种情况下,迫切需要一种高精度、高效率的测量技术,以实现对光伏压延玻璃厚度的实时、精确监测,确保产品质量的稳定性和一致性。 6.1.2 传感器选型与安装在本案例中,经过对多种测量技术的综合评估与测试,最终选用了一款具有卓越性能的光谱共焦传感器。该传感器具备高精度测量能力,能够满足光伏压延玻璃对厚度测量精度的严苛要求;同时,其具...
  • 6
    2025 - 02 - 09
    摘要为提高激光位移传感器在机测量工件特征的精度,本文针对其关键误差源展开研究并提出补偿策略。实验表明,激光位移传感器的测量误差主要由传感器倾斜误差与数控机床几何误差构成。通过设计倾斜误差实验,利用Legendre多项式建立误差模型,补偿后倾斜误差被控制在±0.025 mm以内;针对机床几何误差,提出基于球杆仪倾斜安装的解耦方法,结合参数化建模对X/Y轴误差进行辨识与补偿。实验验证表明,补偿后工件线性尺寸测量误差小于0.05 mm,角度误差小于0.08°,显著提升了在机测量的精度与可靠性。研究结果为高精度在机测量系统的误差补偿提供了理论依据与实用方法。关键词:工件特征;在机测量;激光位移传感器;误差建模;Legendre多项式1. 引言在机测量技术通过集成测量与加工过程,避免了传统离线测量的重复装夹与搬运误差,成为精密制造领域的关键技术之一。非接触式激光位移传感器凭借其高精度、高采样率及非损伤性等优势,被广泛应用于复杂曲面、微结构等工件的在机测量中。然而,实际测量中,传感器倾斜误差与机床几何误差会显著影响测量结果。现有研究多聚焦单一误差源,缺乏对多误差耦合影响的系统性分析。本文结合理论建模与实验验证,提出一种综合误差补偿方法,为提升在机测量精度提供新的解决方案。2. 误差源分析与建模2.1 激光位移传感器倾斜误差当激光束方向与被测表面法线存在夹角时,倾斜误差会导致...
  • 7
    2023 - 02 - 26
    今天我为大家展示安全激光扫描仪产品,安全激光扫描仪适用于各种应用技术领域,      在设备开发期间我们给予了特别关注,以确保它能够在广泛应用中发挥最佳功能,尤其重视大型工作区域的防护,例如机床正面区域或机器人工作区域。      其他应用包括移动车辆的防护,例如侧向滑动装置或移动运输设备,无人驾驶运输系统。甚至垂直安装激光扫描仪的出入口保护系统。尽管我们在安全激光扫描与领域,已经有数10年的经验了,但该应用领域仍然面对许多挑战。不过我们的激光安全扫描仪具有独一无二的功能属性,例如具有8.25米检测距离和270度扫描范围。       属于目前市场上的高端设备,非常适合侧向滑动装置正面区域等大型区域或长距离的防护。该设备的另一个亮点就是能够同时监测两个保护功能。这在许多应用领域中,独具优势以前需要使用两个设备,如今只需要使用一台这样的安全激光扫描仪,即可完成两台设备的功能。               实践中遇到的一项挑战是设计一款异常强骨的激光安全扫描仪。能够适应周围环境中可能存在的灰尘和颗粒等恶劣条件,因此我们提供了较分辨率达到0.1度的设备。它在目前市场上具有非常高的价值。   ...
  • 8
    2025 - 01 - 10
    一文读懂白光干涉测厚仪在工业生产、科研领域,精准测量材料厚度常常起着决定性作用。从电子设备的精细薄膜,到汽车制造的零部件,再到航空航天的关键组件,材料厚度的精准把控,直接关系到产品质量与性能。而在众多测厚技术中,白光干涉测厚仪凭借其超高精度与先进原理,脱颖而出,成为众多专业人士的得力助手。今天,就让我们一起深入了解这款神奇的仪器。原理:光学魔法精准测厚白光干涉测厚仪的核心原理,宛如一场精妙的光学魔法。仪器内部的光源发出的白光,首先经过扩束准直,让光线更加整齐有序。随后,这束光抵达分光棱镜,被巧妙地分成两束。一束光射向被测物体表面,在那里发生反射;另一束光则投向参考镜,同样被反射回来。这两路反射光如同久别重逢的老友,再次汇聚,相互干涉,形成了独特的干涉条纹。这些干涉条纹就像是大自然书写的密码,它们的明暗程度以及出现的位置,与被测物体的厚度紧密相关。当薄膜厚度发生细微变化时,光程差也随之改变,干涉条纹便会相应地舞动起来。通过专业的探测器接收这些条纹信号,并运用复杂而精准的算法进行解析,就能精确地计算出薄膜的厚度值,就如同从神秘的密码中解读出关键信息一般。打个比方,想象白光如同一场盛大的交响乐,不同波长的光如同各种乐器发出的声音。当它们在物体表面反射并干涉时,就像是乐器合奏,产生出独特的 “旋律”—— 干涉条纹。而我们的测厚仪,便是那位精通音律的大师,能从这旋律中精准听出薄膜厚度的 “音...
Message 最新动态
泓川科技 LTP 系列激光位移传感器全国产化制造流程细节全披露 2025 - 06 - 22 一、国产化背景与战略意义在全球供应链竞争加剧的背景下,激光位移传感器作为工业自动化核心测量部件,其国产化生产对打破技术垄断、保障产业链安全具有重要战略意义。泓川科技 LTP 系列依托国内完整的光学、电子、机械产业链体系,实现了从核心零部件到整机制造的全流程国产化,彻底解决了接口卡脖子问题,产品精度与稳定性达到国际先进水平,同时具备更强的成本竞争力与定制化服务能力。二、核心部件全国产化组成体系(一)光学系统组件激光发射单元激光二极管:采用深圳镭尔特光电 655nm 红光 PLD650 系列(功率 0.5-4.9mW)及埃赛力达 905nm 红外三腔脉冲激光二极管,支持准直快轴压缩技术,波长稳定性 ±0.1nm,满足工业级高稳定性需求。准直透镜:选用杭州秋籁科技 KEWLAB CL-UV 系列,表面粗糙度 光学滤光片:深圳激埃特光电定制窄带滤光片,红外截止率 99.9%,有效消除环境光干扰。激光接收单元光电探测器:上海欧光电子代理 OTRON 品牌 PSD 位置敏感探测器,分辨率达 0.03μm(如 LTPD08 型号),北京中教金源量子点探测器正在实现自主替代。聚焦透镜组:福州合创光电高精度分光棱镜,偏振消光比 1000:1,配合广州明毅电子阳极氧化支架,确保光路同轴度≤5μm。(二)电子电路组件信号处理模块微处理器:龙芯中科 3A5000 工业级芯片,支持 - 40℃...
有没有量程1米,测量精度误差1mm的国产激光位移传感器,频率5Khz以上? 2025 - 06 - 19 有!LTM 系列三款国产激光位移传感器满足需求在工业检测领域,量程 1 米、精度误差 1mm、频率 5KHz 以上的激光位移传感器是高端测量的刚需,而国产传感器常因精度或频率不足被进口品牌垄断。无锡泓川科技的 LTM2-800W、LTM3-800W、LTM5-800W 三款产品,不仅全面覆盖上述指标,更以进口品牌一半的成本优势,成为国产替代的优选方案。以下从性能参数、优劣分析、场景适配及成本对比展开详细介绍。一、核心性能参数对比型号LTM2-800WLTM3-800WLTM5-800W参考距离800mm800mm800mm测量范围±500mm(总量程 1000mm)±500mm(总量程 1000mm)±500mm(总量程 1000mm)光斑尺寸450×6000μm450×6000μm450×6000μm重复精度45μm45μm45μm线性误差采样频率5KHz10KHz31.25KHz工业接口485 串口 / 模拟信号(二选一)以太网 / 485 串口 / 模拟信号以太网 / 485 串口 / 模拟信号光源660nm,Max.50mW660nm,Max.50mW660nm,Max.50mW防护等级IP67IP67IP67工作温度0~+50℃0~+50℃0~+50℃功耗约 2.0W约 2.0W约 2.0W二、产品优势分析(一)...
泓川科技HC26激光位移传感器:高性价国产比替代奥泰斯CD33的优选方案 2025 - 06 - 09 在工业精密测量领域,无锡泓川科技的HC26系列激光位移传感器凭借出色的性能参数与显著的成本优势,成为替代奥泰斯CD33系列的高竞争力选择。以下从核心性能、特殊应用适配性及成本三方面进行对比分析:一、核心性能参数对标(HC26 vs CD33)参数泓川HC26系列奥泰斯CD33 (行业标准)HC26优势重复精度2μm (30mm款) → 50μm (195mm款)通常1~3μm (高端款)接近主流精度线性度±0.1%F.S.±0.05%~0.1%F.S.达到同级水平响应时间最快333μs (多档可调)通常500μs~1ms速度更快输出接口RS485(Modbus RTU)+模拟量(4-20mA/0-10V)类似接口组合同等兼容性防护等级IP67 (防尘防水)IP67/IP65同等工业防护温度特性0.05%F.S/℃0.03~0.05%F.S/℃稳定性接近注:HC26提供4种基准距离型号(30/50/85/195mm),覆盖小量程高精度(±4mm@30mm)至大量程(±99.98mm@195mm)场景,满足CD33主流应用范围。二、核心替代优势:全系支持正反射安装HC26系列所有型号均内置正反射光路设计,解决CD33在特殊材质检测中的痛点:镜面材料:通过正反射接收强光信号,避免漫反射信号微弱导致的测量失效。透明材质(如玻璃、薄...
Copyright ©2005 - 2013 无锡泓川科技有限公司

1

犀牛云提供企业云服务
Our Link
X
3

SKYPE 设置

4

阿里旺旺设置

等待加载动态数据...

等待加载动态数据...

5

电话号码管理

  • 0510-88155119
6

二维码管理

等待加载动态数据...

等待加载动态数据...

展开