服务热线: 0510-88155119
13301510675@163.com
Language

深度解析泓川科技HCY系列高速高精光谱共焦传感器性能优势

日期: 2025-01-09
浏览次数: 115
发表于:
来自
发表于: 2025-01-09
浏览次数: 115
一、光谱共焦传感技术解密
光谱共焦技术的起源,要追溯到科学家们对传统成像精度局限的深刻洞察。在 20 世纪 70 年代,传统成像在精密测量领域遭遇瓶颈,为突破这一困境,基于干涉原理的光谱共焦方法应运而生,开启了高精度测量的新篇章。
进入 80 年代,科研人员不断改进仪器设计,引入特殊的分光元件,如同给传感器装上了 “精密滤网”,精准分辨不同波长光信号;搭配高灵敏度探测器,将光信号转化为精确数字信息。同时,计算机技术强势助力,实现数据快速处理、动态输出测量结果,让光谱共焦技术稳步走向成熟。
90 年代,纳米技术、微电子学蓬勃发展,对测量精度要求愈发苛刻。科研团队迎难而上,开发新算法、模型优化测量,减少误差;增设温度控制、机械振动抑制功能,宛如为传感器打造 “稳定护盾”,确保在复杂实验环境下结果稳定可靠,至此,光谱共焦技术成为精密测量领域的关键力量。


深度解析泓川科技HCY系列高速高精光谱共焦传感器性能优势
添加图片注释,不超过 140 字(可选)



二、HCY 光谱共焦传感器工作原理
(一)核心原理阐释
HCY 光谱共焦传感器的核心在于巧妙运用光学色散现象。当内部的白光点光源发出光线后,光线会迅速射向精密的透镜组。在这里,白光如同被解开了神秘面纱,依据不同波长被精准地色散开来,形成一道绚丽的 “彩虹光带”。
这些不同波长的光,各自沿着独特的路径前行,最终聚焦在不同的高度之上,构建起一个精密的测量范围 “标尺”。当光线抵达物体表面,会发生反射,其中特定波长的光恰似收到指令一般,反射回传感器。而传感器前端的小孔,就如同一位严格的 “守门卫士”,只允许那些精准聚焦、符合条件的光线通过。


深度解析泓川科技HCY系列高速高精光谱共焦传感器性能优势
添加图片注释,不超过 140 字(可选)


穿过小孔的光线马不停蹄地进入光谱仪,光谱仪凭借其超高的分辨能力,快速且精确地识别出光线的波长。基于预先精心标定的波长与距离的对应关系,就能轻松换算出物体表面的准确高度信息,整个过程如同一场光与数据的完美 “舞蹈”。
(二)小孔与光谱分析的协同作用
小孔在这一光学系统里扮演着不可或缺的关键角色。它的直径经过精密设计,宛如一个精准的 “筛子”,能够精准地筛选出从物体表面反射回来的特定波长的光线,将那些杂乱无章的杂散光坚决阻挡在外。如此一来,进入后续分析流程的光线都是 “纯净无暇” 的有效信息,为高精度测量筑牢根基。
光谱分析环节则是整个传感器的 “智慧大脑”。光谱仪运用先进的光栅分光技术,将混合的光线按波长逐一拆分,如同把杂乱的音符梳理成美妙的乐章。探测器对拆分后的光信号进行高灵敏度捕捉,转化为电信号后,再经复杂算法深度解析,精确分辨出光的波长。这一精确的波长数值,直接关联着物体表面高度,二者紧密协作,保障传感器在复杂测量场景下始终输出高精度的数据。
三、HCY 系列传感器型号全解析
(一)HCY10015:长距广域测量能手
HCY10015 型号传感器以其出色的长距测量能力脱颖而出。它的工作距离达到 40mm,测量范围在 10mm - 45mm 之间,光斑大小为 19.2um,直线性可达 ±1.6um,角度特性为 ±15°。这样的参数配置,使得它在面对大型机械部件的轮廓检测时游刃有余。比如在汽车发动机缸体的检测中,它能够轻松覆盖较大的测量区域,精准捕捉缸体表面各个部位的高度变化,为发动机的精密制造提供可靠数据支持,确保发动机的高性能与稳定性。
(二)HCY04025:中小量程精密先锋
HCY04025 专注于中小量程的高精度测量领域。16mm 的工作距离,4mm 的测量范围,光斑精细至 5.8um,直线性误差控制在 ±0.8um 以内,角度特性 ±25°。在电子芯片制造环节,它的优势尽显。对于芯片引脚间距的测量,能够以极高的精度确保引脚排列的精准度,避免因引脚间距误差导致的芯片性能问题;在微小模具尺寸测量中,也能精确分辨细微的尺寸差异,保障模具的精密性,为电子产品的微型化、高性能化奠定基础。
(三)HCY20011:中距通用型干将
HCY20011 堪称中距测量的多面手。工作距离 70mm,测量范围 20mm,光斑 55um,直线性 ±2.2um,角度特性 ±11°。在汽车零部件制造领域,无论是发动机的小型连接件,还是车身框架的关键部件,它都能兼顾精度与量程需求,精准检测尺寸偏差;在五金加工行业,面对各种形状各异的五金件,如复杂结构的连接件、装饰件等,也能稳定输出精确测量结果,保障产品质量,提升生产效率。


深度解析泓川科技HCY系列高速高精光谱共焦传感器性能优势
添加图片注释,不超过 140 字(可选)


(四)HCY01045:超精微距洞察者
HCY01045 是微观世界的精密 “眼睛”。工作距离仅 10mm,测量范围 1mm,光斑 7.1um,直线性达到令人惊叹的 ±0.2um,角度特性 ±45°。在生物医学领域,对于细胞培养皿表面微观结构、生物样本的精细轮廓探测,它能够提供超高精度的数据,助力科研人员深入了解微观生命现象;在精密光学元件加工中,对微小镜片的曲率、厚度变化等细微之处,也能敏锐捕捉,确保光学元件的卓越性能。
(五)HCY03560:大角度极限挑战者
HCY03560 以其超大角度测量能力独树一帜。工作距离 12.8mm,测量范围 3.5mm,光斑 14.9um,直线性 ±0.7um,角度特性可达惊人的 ±60°。在航空航天领域,面对航空发动机叶片这种复杂曲面、大弧度的关键部件,它能够全方位贴合叶片表面,精确测量各处的厚度、轮廓度,保障叶片在高温、高速运转下的可靠性;在高端模具制造中,对于具有复杂造型、大弧度过渡的模具,也能精准把控尺寸精度,为模具的高质量成型提供有力保障。


深度解析泓川科技HCY系列高速高精光谱共焦传感器性能优势
添加图片注释,不超过 140 字(可选)



四、HCY 传感器卓越性能优势
(一)高精度测量:微观世界的精准标尺
HCY 光谱共焦传感器凭借先进的光谱分析技术与精密的光学设计,在精度把控上达到了令人惊叹的水准。在精密机械加工领域,对于航空发动机叶片的加工,其表面粗糙度要求极高,细微的起伏都可能影响叶片性能。HCY 传感器能够以亚微米甚至纳米级的测量精度,精准捕捉叶片表面每一处的高度变化,确保加工精度符合严苛标准,为航空发动机的高效、稳定运行提供坚实保障。
在半导体芯片制造环节,芯片上的电路线宽已进入纳米尺度,HCY 传感器的高精度测量能力得以充分施展。它能够实时监测芯片制造过程中的蚀刻深度、薄膜沉积厚度等关键参数,为芯片的良品率提升立下汗马功劳,助力半导体产业不断突破性能极限。


深度解析泓川科技HCY系列高速高精光谱共焦传感器性能优势
添加图片注释,不超过 140 字(可选)


(二)非接触式测量:呵护被测物表面
HCY 光谱共焦传感器采用非接触式测量方式,从根源上杜绝了对被测物体表面的划伤、污染风险。在电子屏幕制造中,对于脆弱的液晶显示屏、有机发光二极管(OLED)屏幕,传统接触式测量极易造成屏幕划痕、像素损坏,而 HCY 传感器在不接触屏幕的前提下,就能精确测量屏幕的平整度、厚度均匀性等参数,保障屏幕出厂时的完美品质,为消费者带来极致视觉体验。
在生物医学领域,对于细胞培养皿、生物组织切片等娇贵样本,传感器的非接触特性更是凸显优势。它可以在不干扰样本活性的情况下,细致探测样本表面微观形貌,为医学研究、疾病诊断提供精准数据,推动生物医学科研大步向前。
(三)高速响应:实时捕捉动态变化
现代工业生产线上,产品快速流转,对测量设备的响应速度提出严苛要求。HCY 光谱共焦传感器具备超高的采样频率,最高可达 33kHz,能够在瞬间获取物体表面的精确信息。在高速印刷电路板(PCB)生产线,电子元件以极快速度贴片焊接,HCY 传感器可实时监测焊点高度、元件平整度,迅速反馈偏差信息,助力生产线及时调整工艺参数,保障 PCB 板的高质量产出,避免因焊接缺陷导致的产品故障。


深度解析泓川科技HCY系列高速高精光谱共焦传感器性能优势
添加图片注释,不超过 140 字(可选)


在汽车发动机的动态测试环节,发动机高速运转,内部零部件承受剧烈震动与位移变化。HCY 传感器凭借高速响应能力,实时追踪活塞、曲轴等关键部件的运动状态,为发动机性能优化、可靠性提升提供关键数据支撑,确保汽车动力强劲、运行平稳。
(四)超强适应性:应对多样材质挑战
HCY 光谱共焦传感器对材质的包容性堪称一绝,无论是透明的光学玻璃、反光的金属镜面,还是低反射率的橡胶塑料、粗糙的陶瓷石材,它都能稳定、精准地测量。在光学镜片制造中,面对多层不同折射率的镜片材料叠加,传感器利用特殊算法穿透各层材质,精确测量每层厚度以及镜片整体的曲率精度,确保镜片成像清晰、精准无误,满足高端光学仪器的严苛需求。


深度解析泓川科技HCY系列高速高精光谱共焦传感器性能优势
添加图片注释,不超过 140 字(可选)


在食品包装行业,对于塑料薄膜、铝箔复合材料制成的包装袋,HCY 传感器能够同时兼顾不同材质特性,精准检测包装厚度、密封边缘平整度,保障食品包装的密封性与安全性,延长食品保鲜期,守护消费者舌尖上的安全。
(五)大角度测量:复杂轮廓尽收眼底
HCY 光谱共焦传感器的超大角度测量能力,使其在面对复杂形状物体时游刃有余。在航空航天领域,飞行器的机翼、机身等部件多为复杂曲面结构,传统测量手段难以全面、精准覆盖。HCY 传感器最大镜面角度可达 ±60°,能够紧密贴合曲面,精确扫描出部件的真实轮廓,为飞行器的空气动力学设计优化、结构强度验证提供高精度数据,助力航空航天事业腾飞。


深度解析泓川科技HCY系列高速高精光谱共焦传感器性能优势
添加图片注释,不超过 140 字(可选)


在高端模具制造中,模具型腔常设计有复杂的纹理、大弧度的过渡曲面,HCY 传感器能够深入型腔内部,多角度捕捉每一处细节尺寸,确保模具成型精度,为塑料制品、金属铸件的精美外观与优良性能奠定基础,满足各行业对高品质模具的追求。

五、多元应用场景洞察
(一)电子制造领域:精密元件的质量把关者
在电子制造领域,HCY 光谱共焦传感器是当之无愧的精密 “把关人”。对于 PCB 板的焊接质量检测,它能够以极高的精度扫描焊点,精准识别虚焊、连焊等缺陷。在芯片引脚间距测量环节,凭借亚微米级的精度,确保引脚排列整齐划一,为芯片正常工作筑牢根基。面对电子器件的平整度检测,传感器快速扫过,瞬间捕捉微小起伏,保障电子产品性能稳定可靠,为电子产业的微型化、高性能化发展提供坚实支撑。


深度解析泓川科技HCY系列高速高精光谱共焦传感器性能优势
添加图片注释,不超过 140 字(可选)


(二)汽车工业:零部件制造的精密护卫
汽车工业对零部件精度要求极高,HCY 光谱共焦传感器在此大显身手。在汽车发动机部件的制造中,无论是活塞、曲轴的尺寸精度控制,还是缸体表面的平整度检测,它都能精准测量,保障发动机动力强劲、运行平稳。车身板材的平整度直接影响整车外观与风阻系数,传感器细致检测,确保板材光滑平整。轮毂作为汽车关键安全部件,其曲面精度关乎行驶稳定性,HCY 传感器全方位测量,为汽车的高质量生产与安全行驶保驾护航。


深度解析泓川科技HCY系列高速高精光谱共焦传感器性能优势
添加图片注释,不超过 140 字(可选)


(三)新能源产业:电池组件的精准测量仪
新能源产业蓬勃发展,HCY 光谱共焦传感器为其注入精准力量。在太阳能电池板的生产线上,它精确测量电池板间隙,确保光电转换效率最大化。电芯作为电池核心,其厚度的微小差异都会影响电池性能,传感器严格把控,保障电池容量与安全性。密封部位的厚度监控同样关键,传感器助力打造严密防护,防止电池漏液、短路等问题,推动新能源产品高效、稳定地走进千家万户。


深度解析泓川科技HCY系列高速高精光谱共焦传感器性能优势
添加图片注释,不超过 140 字(可选)


(四)光学制造:镜片镜头的精密塑造者
光学制造领域,HCY 光谱共焦传感器宛如一位精密 “工匠”。对于光学镜片的曲率半径测量,它精确到纳米级别,确保镜片聚焦精准,成像清晰锐利。多层光学结构间距的细微变化,都逃不过传感器的 “慧眼”,保障光学仪器的高性能。镜头表面平整度直接关系成像质量,传感器细致检测,助力打造高品质镜头,满足天文观测、摄影摄像、医疗影像等领域对光学设备的严苛需求。


深度解析泓川科技HCY系列高速高精光谱共焦传感器性能优势
添加图片注释,不超过 140 字(可选)


六、选购与使用指南
(一)选型要点:匹配需求,精准抉择
选型时,首先要精准确定测量范围。若被测物体尺寸跨度大,像大型机械结构件,应优先考虑 HCY10015、HCY20011 这类测量范围较宽的型号;若专注于微小精密部件,如芯片引脚、微型模具细节,HCY04025、HCY01045 凭借其小量程、高精度特性更为合适。
精度要求是核心考量因素。对于航空航天、高端光学制造等对精度苛求的领域,HCY01045 的 ±0.2um 直线性误差,能满足最严苛标准;一般性工业生产,HCY04025 等中等精度型号则在成本与性能间实现良好平衡。
被测物体材质与形状不容忽视。面对透明材质,需关注传感器对透明物体的测量能力,如 HCY01045 最小可测量透明物体厚度仅 30um,能胜任精细透明件检测;若物体表面粗糙或曲度大,像模具纹理表面、复杂曲面工件,HCY03560 的 ±60° 超大角度测量能力以及大光斑、多角度适应性,可确保精准测量。
工作环境同样关键。在高温、高湿、强电磁干扰的恶劣工业现场,要优先挑选具备良好耐环境性的型号,其控制器能在 - 10~50°C 温度范围稳定工作,防护设计可抵御一定湿度、震动与电磁干扰,为稳定测量筑牢根基。


深度解析泓川科技HCY系列高速高精光谱共焦传感器性能优势
添加图片注释,不超过 140 字(可选)
深度解析泓川科技HCY系列高速高精光谱共焦传感器性能优势
添加图片注释,不超过 140 字(可选)
深度解析泓川科技HCY系列高速高精光谱共焦传感器性能优势
添加图片注释,不超过 140 字(可选)



(二)安装调试技巧:确保性能稳定发挥
安装时,要确保传感器与被测物相对位置稳定。使用专用夹具,如环形夹具,紧密固定传感器,防止晃动;依据物体形状、测量需求,精细调整传感器角度、高度,保证光线垂直入射,保障测量精度。同时,要避开强光干扰源,如强光照明设备、弧焊光区域,必要时增设遮光罩,避免杂散光扰乱测量光路,确保光线传输纯净、稳定。


深度解析泓川科技HCY系列高速高精光谱共焦传感器性能优势
添加图片注释,不超过 140 字(可选)


调试环节,需依据标准件精准校准。开机预热 15 - 30 分钟,待设备稳定后,用高精度标准块或已知尺寸工件校准零点与量程,补偿系统误差。操作软件中,依测量需求优化采样频率、积分时间等参数,平衡测量速度与精度,使传感器在不同场景下均能输出可靠数据。


深度解析泓川科技HCY系列高速高精光谱共焦传感器性能优势
添加图片注释,不超过 140 字(可选)


(三)日常维护建议:延长使用寿命
日常维护务必定期清洁镜头,用柔软无尘布、少量专用清洁剂轻轻擦拭,去除灰尘、油污,确保光线透过率;严禁使用粗糙材料刮擦镜头,以防损伤光学表面。定期检查线缆连接,查看光纤跳线、电源线、数据线是否松动、破损,及时紧固或更换问题线缆,保障信号传输稳定。
使用过程中,避免传感器碰撞、摔落,轻拿轻放,搬运时做好防护;存放时置于干燥、恒温、无强磁场环境,可配备专用收纳盒。此外,要密切留意工作环境温湿度,避免超出设备耐受范围,防止因环境因素加速元件老化、降低测量精度,让传感器时刻保持最佳状态。

七、行业前瞻与结语
(一)技术趋势展望:创新驱动未来
展望未来,随着科技的迅猛发展,光谱共焦传感器领域将迎来更为璀璨的创新浪潮。在精度提升上,科研人员将不断攻克难关,引入量子光学技术、超精密制造工艺,有望将测量精度推向皮米级新高度,为前沿科研、高端制造提供前所未有的精准数据支持。
速度方面,借助高速光电器件、并行处理算法,传感器的响应频率将大幅跃升,轻松捕捉纳秒级瞬间动态,满足如超高速芯片封装检测、飞秒激光微加工监测等极端场景需求。
微型化进程中,融合微纳加工、集成光子学成果,传感器将 “瘦身” 成微小芯片,嵌入智能穿戴、微型医疗器械,开启随身、实时监测的全新模式。
智能化升级时,依托深度学习、大数据分析,传感器能自主学习、智能诊断,在复杂工业生产中精准预判设备故障,自动优化测量流程,实现无人化高效质检。
多技术融合更是大势所趋,与激光雷达、超声成像技术协同,传感器将跨越单一测量维度,构建全方位、多参数感知体系,为自动驾驶、生物医疗成像开拓全新视野,全方位赋能未来科技生活。
(二)HCY 传感器价值总结
HCY 光谱共焦传感器宛如一颗闪耀的科技明珠,以其卓越的高精度测量能力,为精密制造雕琢细节,让微观世界清晰呈现;凭借非接触、无损检测特性,呵护娇贵材料与精密表面,降低废品率,提升产品附加值。高速响应与超强适应性,则使其在瞬息万变的工业现场稳如泰山,无论是高速流水线还是多样材质,皆能精准掌控。大角度测量绝技,解锁复杂轮廓检测难题,为航空航天、高端模具注入创新活力。
从电子芯片的微观焊点,到汽车发动机的澎湃心脏;从太阳能电池的高效转化,到光学镜片的精准聚焦,HCY 传感器全程护航。在产业升级浪潮中,它助力企业降本增效、质量飞跃,增强市场竞争力,是精密测量领域当之无愧的中流砥柱,必将携手各行业开拓者,共创科技变革的美好未来。


News / 推荐阅读 +More
2025 - 10 - 21
点击次数: 126
在工业精密测量中,传统红光激光位移传感器常受高反射、半透明、高温红热等特殊场景限制,而蓝光光源(405nm 波长)凭借独特物理特性实现突破。以下通过 “一问一答” 形式,详解蓝光传感器的优势、原理构造,并结合泓川科技 LTP 系列定制方案,看其如何解决特殊环境测量难题。1. 蓝光光源激光位移传感器相比传统红光,核心优势是什么?蓝光传感器的核心优势源于 405nm 波长的物理特性,相比传统 655nm 左右的红光,主要体现在三方面:更高横向分辨率:根据瑞利判据,光学分辨率与波长成反比。蓝光波长仅为红光的 62%(405nm/655nm≈0.62),相同光学系统下横向分辨率可提升约 38%,能形成更小光斑(如泓川 LTP025 蓝光版光斑最小达 Φ18μm),适配芯片针脚、晶圆等微米级结构测量。更强信号稳定性:蓝光单光子能量达 3.06eV,远高于红光的 2.05eV。在低反射率材料(如橡胶、...
2025 - 09 - 05
点击次数: 122
高精度测量传感器全系列:赋能精密制造,适配多元检测需求聚焦半导体、光学膜、机械加工等领域的精密检测核心痛点,我们推出全系列高性能测量传感器,覆盖 “测厚、对焦、位移” 三大核心应用场景,以 “高精准、高速度、高适配” 为设计核心,为您的工艺控制与质量检测提供可靠技术支撑。以下为各产品系列的详细介绍:1.LTS-IR 红外干涉测厚传感器:半导体材料测厚专属核心用途:专为硅、碳化硅、砷化镓等半导体材料设计,精准实现晶圆等器件的厚度测量。性能优点:精度卓越:±0.1μm 线性精度 + 2nm 重复精度,确保测量数据稳定可靠;量程适配:覆盖 10μm2mm 测厚范围,满足多数半导体材料检测需求;高效高速:40kHz 采样速度,快速捕捉厚度数据,适配在线检测节奏;灵活适配:宽范围工作距离设计,可灵活匹配不同规格的检测设备与场景。2. 分体式对焦传感器:半导体 / 面板缺陷检测的 “高速对焦...
2025 - 09 - 02
点击次数: 106
泓川科技激光位移传感器产品技术报告尊敬的客户: 感谢您对泓川科技激光位移传感器产品的关注与信任。为帮助您全面了解我司产品,现将激光位移传感器相关技术信息从参数指标、设计原理、结构设计等八大核心维度进行详细说明,为您的选型、使用及维护提供专业参考。一、参数指标我司激光位移传感器涵盖 LTP400 系列与 LTP450 系列,各型号核心参数经纳米级高精度激光干涉仪标定验证,确保数据精准可靠,具体参数如下表所示:表 1:LTP400EA参数表参数类别具体参数LTP400EA备注基础测量参数测量中心距离400mm以量程中心位置计算(*1)量程200mm-重复精度(静态)3μm测量标准白色陶瓷样件,50kHz 无平均,取 65536 组数据均方根偏差(*2)线性度±0.03%F.S.(F.S.=200mm)采用纳米级激光干涉仪标定(*3)光源与光斑光源类型-激光功率可定制,部分型号提供 4...
2025 - 08 - 30
点击次数: 98
泓川科技发布 LT-CP 系列 ETHERCAT 总线高光谱共焦控制器,32KHz 高速采样引领工业高精度测量革新近日,工业高精度测量领域迎来技术突破 —— 泓川科技正式推出LT-CP 系列 ETHERCAT 总线高光谱共焦传感器控制器(含单通道 LT-CPS、双通道 LT-CPD、四通道 LT-CPF 三款型号,含普通光源与高亮激光光源版本)。该系列产品以 “32KHz 高速采样” 与 “ETHERCAT 工业总线” 为核心亮点,填补了行业内 “高频响应 + 实时协同” 兼具的技术空白,为新能源、半导体、汽车制造等高端领域的动态高精度测量需求提供了全新解决方案。一、核心突破:32KHz 高速采样,破解 “多通道降速” 行业痛点光谱共焦技术的核心竞争力在于 “高精度” 与 “响应速度” 的平衡,而 LT-CP 系列在速度维度实现了关键突破 ——单通道模式下最高采样频率达 32KHz,意味着...
2025 - 08 - 12
点击次数: 115
在半导体芯片制造、精密电子组装等高端工业场景中,一个棘手的矛盾始终存在:一方面,设备内部空间日益紧凑,毫米级的安装高度都可能成为 “禁区”;另一方面,随着产品结构复杂化,对测量量程的需求不断提升,5mm 以上的大量程检测已成为常态。如何在狭小空间内实现大量程精密测量?无锡泓川科技给出了突破性答案 ——光学转折镜,以创新设计让光谱共焦传感器的测量方向 “直角转向”,既节省安装空间,又兼容大量程需求,重新定义精密测量的空间可能性。传统方案的痛点:空间与量程难以两全在精密测量领域,侧出光传感器曾是狭小空间的 “救星”。泓川科技旗下 LTCR 系列作为 90° 侧向出光型号,凭借紧凑设计广泛应用于深孔、内壁等特征测量。但受限于结构设计,其量程多集中在 2.5mm 以内(如 LTCR4000 量程为 ±2mm),难以满足半导体晶圆厚度、大型精密构件高度差等大量程场景的需求。若选择...
About Us
关于泓川科技
专业从事激光位移传感器,激光焊缝跟踪系统研发及销售的科技公司
中国 · 无锡 · 总部地址:无锡新吴区天山路6号
销售热线:0510-88155119 
图文传真:0510-88152650
Working Time
我们的工作时间
周一至周五:8:00-18:00
周六至周日:9:00-15:00
Shown 企业秀 More
  • 1
    2024 - 11 - 20
    在当今精密制造与检测领域,对微小尺寸变化的精确测量需求日益增长。特别是在半导体制造、微纳加工、光学元件检测等高端应用中,对测量误差的严格要求往往达到纳米级。面对这一挑战,国内自主研发的LTC100光谱共焦位移传感器以其卓越的性能脱颖而出,不仅实现了30nm以下的测量误差,还保证了光斑直径小于2μm,为高精度测量领域树立了新的国产标杆。技术亮点:超高精度测量:LTC100采用先进的光谱共焦技术,通过精确控制光源发射的多波长光束与被测物体表面反射光之间的干涉现象,实现位移的高精度测量。其核心算法通过复杂的光谱分析与相位解调技术,有效消除了环境干扰和系统误差,确保测量误差稳定控制在30nm以下。微小光斑设计:传感器内置的精密光学系统采用高数值孔径物镜,结合优化的光束整形技术,实现了小于2μm的光斑直径,使得在微小结构或特征上的测量成为可能,显著提高了测量的空间分辨率。测试数据与算法公式:LTC100的性能验证基于严格的实验室测试与现场应用反馈。以下为其关键测试数据:线性度:在0-10mm测量范围内,线性偏差小于±5nm,确保测量的稳定性和可靠性。重复性:连续测量同一位置100次,标准差小于10nm,证明其高重复性和一致性。分辨率:理论上可达0.1nm,实际测量中受环境因素影响,但依旧保持在1nm左右,远超行业平均水平。核心算法公式简述如下:d=2λ0⋅2πΔϕ其中,d为被测位移...
  • 2
    2025 - 06 - 22
    一、国产化背景与战略意义在全球供应链竞争加剧的背景下,激光位移传感器作为工业自动化核心测量部件,其国产化生产对打破技术垄断、保障产业链安全具有重要战略意义。泓川科技 LTP 系列依托国内完整的光学、电子、机械产业链体系,实现了从核心零部件到整机制造的全流程国产化,彻底解决了接口卡脖子问题,产品精度与稳定性达到国际先进水平,同时具备更强的成本竞争力与定制化服务能力。二、核心部件全国产化组成体系(一)光学系统组件激光发射单元激光二极管:采用深圳镭尔特光电 655nm 红光 PLD650 系列(功率 0.5-4.9mW)及埃赛力达 905nm 红外三腔脉冲激光二极管,支持准直快轴压缩技术,波长稳定性 ±0.1nm,满足工业级高稳定性需求。准直透镜:选用杭州秋籁科技 KEWLAB CL-UV 系列,表面粗糙度 光学滤光片:深圳激埃特光电定制窄带滤光片,红外截止率 99.9%,有效消除环境光干扰。激光接收单元光电探测器:上海欧光电子代理 OTRON 品牌 PSD 位置敏感探测器,分辨率达 0.03μm(如 LTPD08 型号),北京中教金源量子点探测器正在实现自主替代。聚焦透镜组:福州合创光电高精度分光棱镜,偏振消光比 1000:1,配合广州明毅电子阳极氧化支架,确保光路同轴度≤5μm。(二)电子电路组件信号处理模块微处理器:龙芯中科 3A5000 工业级芯片,支持 - 40℃...
  • 3
    2023 - 09 - 30
    引言:在搬送薄片材料时,准确辨别材料的单双张对于生产流程的顺利进行至关重要。即使材料的材质发生了变化,我们仍然可以利用非接触传感器实现稳定的检测。本文介绍了两种常用方式:激光位移传感器和超声波传感器,在机械搬运过程中通过测量材料的厚度来判断其单双张状态。主体:1. 激光位移传感器方案:(a)准备工作:安装两个激光位移传感器,使其形成对射式布置。在中间放置一张标准厚度的材料,并通过上位机软件进行校准设定。(b)测量与校准:激光位移传感器通过测量材料的厚度,获得距离总和,并与设定的固定差值进行比较。当机械搬运过程中出现误差导致厚度与之前的距离数据明显不同时,激光位移传感器将发出错误信号,指示材料为双张状态。2. 超声波传感器方案:(a)准备工作:使用对射式超声波传感器,并先安装一张标准材料来校准基准能量。(b)测量与判断:超声波传感器利用能量穿透原理,通过测量接收端收取到的能量来判断材料的状态。当材料为单张时,接收端将收到接近基准值的能量;而当材料为双张或多张时,接收端收到的能量明显小于标准值,此时超声波传感器将发出报警信号。3. 激光位移传感器方案的优势:- 高精度测量:激光位移传感器具有高精度,可以精确测量材料的厚度变化,从而能够准确判断材料的单双张状态。- 实时监测:传感器反应速度快,并可以实时检测材料的厚度变化,确保在搬运过程中能够及时发现错误信号并进行处理。- 非接触式:激光...
  • 4
    2024 - 12 - 22
    引言光谱共焦传感器凭借非接触、高精度、高效率等优势,成为几何量精密测量的前沿技术。本文将从原理到应用,系统解析这一技术的核心价值与发展趋势。一、核心工作原理:当光波成为标尺1.1 光波与位移的精准映射通过色散物镜将宽光谱光源分解为不同波长的光,各波长光在轴向形成阶梯状焦点阵列。当物体表面反射特定波长时,光谱仪捕捉该波长,通过预设的波长-位移对应模型实现亚微米级定位。1.2 关键技术突破轴向色散线性度:通过组合SKIO、H-ZLAF52A等特殊玻璃材料,实现波长与位移判定系数R²0.97的线性关系衍射极限优化:ZEMAX仿真优化后,焦点RMS半径低至1.552μm(文献案例)抗干扰设计:棱镜-光栅分光技术消除谱线弯曲,提升检测稳定性二、核心组件架构组件功能特性技术指标案例宽光谱光源覆盖450-700nm波段色散范围达3.9mm(超大量程型号)色散物镜正负透镜组分离结构2mm量程下数值孔径0.3,FWHM光谱检测仪高速CCD/CMOS传感器线扫描速率达24mm/s,分辨率0.8μm三、扫描方式演进3.1 点扫描(传统方案)优势:单点精度达纳米级局限:10mm线长扫描耗时分钟级,数据重构复杂3.2 线扫描(革新方案)效率提升:单次扫描覆盖24mm线长,较点扫描提速300%工业适配:3mm轴向量程满足多数工业件检测需求四、应用场景全景图4.1 当前主流应用微观检测:半导体晶圆表面...
  • 5
    2025 - 06 - 19
    有!LTM 系列三款国产激光位移传感器满足需求在工业检测领域,量程 1 米、精度误差 1mm、频率 5KHz 以上的激光位移传感器是高端测量的刚需,而国产传感器常因精度或频率不足被进口品牌垄断。无锡泓川科技的 LTM2-800W、LTM3-800W、LTM5-800W 三款产品,不仅全面覆盖上述指标,更以进口品牌一半的成本优势,成为国产替代的优选方案。以下从性能参数、优劣分析、场景适配及成本对比展开详细介绍。一、核心性能参数对比型号LTM2-800WLTM3-800WLTM5-800W参考距离800mm800mm800mm测量范围±500mm(总量程 1000mm)±500mm(总量程 1000mm)±500mm(总量程 1000mm)光斑尺寸450×6000μm450×6000μm450×6000μm重复精度45μm45μm45μm线性误差采样频率5KHz10KHz31.25KHz工业接口485 串口 / 模拟信号(二选一)以太网 / 485 串口 / 模拟信号以太网 / 485 串口 / 模拟信号光源660nm,Max.50mW660nm,Max.50mW660nm,Max.50mW防护等级IP67IP67IP67工作温度0~+50℃0~+50℃0~+50℃功耗约 2.0W约 2.0W约 2.0W二、产品优势分析(一)...
  • 6
    2025 - 01 - 20
    一、引言1.1 研究背景与意义在当今数字化时代,IC 芯片作为现代电子设备的核心部件,其重要性不言而喻。从智能手机、电脑到汽车电子、工业控制,乃至新兴的人工智能、物联网等领域,IC 芯片无处不在,如同电子设备的 “大脑”,掌控着设备的运行与功能实现。其发展水平不仅是衡量一个国家科技实力的重要标志,更在全球经济竞争中占据着关键地位。近年来,IC 芯片产业呈现出蓬勃发展的态势。随着摩尔定律的持续推进,芯片的集成度不断提高,尺寸愈发微小,性能却实现了质的飞跃。与此同时,5G、人工智能、大数据等新兴技术的迅猛发展,为 IC 芯片产业注入了强大的发展动力,市场对芯片的需求呈现出爆发式增长。在 IC 芯片制造的复杂流程中,精确测量起着举足轻重的作用,如同工匠手中精准的量具,确保每一个环节都达到极高的精度标准。从芯片设计阶段的版图测量,到制造过程中的光刻、蚀刻、沉积等工艺的尺寸控制,再到封装测试阶段对芯片外形、引脚等的精确测量,每一步都离不开高精度测量技术的支撑。只有通过精确测量,才能保证芯片的性能、良率以及可靠性,满足市场对高质量芯片的严苛要求。光谱共焦传感器作为一种先进的测量技术,凭借其独特的工作原理和卓越的性能优势,在 IC 芯片测量领域展现出了巨大的潜力。它能够实现对芯片表面形貌、厚度、尺寸等参数的高精度非接触测量,为芯片制造提供了可靠的数据支持。这种高精度测量对于提高芯片制造工艺的精度...
  • 7
    2025 - 09 - 05
    高精度测量传感器全系列:赋能精密制造,适配多元检测需求聚焦半导体、光学膜、机械加工等领域的精密检测核心痛点,我们推出全系列高性能测量传感器,覆盖 “测厚、对焦、位移” 三大核心应用场景,以 “高精准、高速度、高适配” 为设计核心,为您的工艺控制与质量检测提供可靠技术支撑。以下为各产品系列的详细介绍:1.LTS-IR 红外干涉测厚传感器:半导体材料测厚专属核心用途:专为硅、碳化硅、砷化镓等半导体材料设计,精准实现晶圆等器件的厚度测量。性能优点:精度卓越:±0.1μm 线性精度 + 2nm 重复精度,确保测量数据稳定可靠;量程适配:覆盖 10μm2mm 测厚范围,满足多数半导体材料检测需求;高效高速:40kHz 采样速度,快速捕捉厚度数据,适配在线检测节奏;灵活适配:宽范围工作距离设计,可灵活匹配不同规格的检测设备与场景。2. 分体式对焦传感器:半导体 / 面板缺陷检测的 “高速对焦助手”核心用途:针对半导体、面板领域的高精度缺陷检测场景,提供高速实时对焦支持,尤其适配显微对焦类检测设备。性能优点:对焦速度快:50kHz 高速对焦,同步匹配缺陷检测的实时性需求;对焦精度高:0.5μm 对焦精度,保障缺陷成像清晰、检测无偏差;设计灵活:分体式结构,可根据检测设备的安装空间与布局灵活调整,降低适配难度。3. LT-R 反射膜厚仪:极薄膜厚检测的 “精密管家”核心用途:专注于极薄膜...
  • 8
    2023 - 02 - 20
    1、激光位移传感器在轮胎转速测量中有重要作用。通常,一台汽车的轮胎都包含有激光位移传感器,它可以准确地测量出车轮的输出速度。该传感器利用轮胎上绕着水平或垂直线的激光点来测量轮胎行驶距离和变速器输出转速,从而确定变速比。此外,它还能准确地测量车轮上的前后运动,特别是对于汽车行驶的直线行驶和转弯的控制都有着重要的作用。2、激光位移传感器在防撞技术中也得到了广泛应用。它通常会被安装在前脸和侧面,通过测量前脸物体和周围物体的距离来调整外防撞车身和限速 门控驾驶,从而有效地防止汽车发生碰撞,保护汽车行驶的安全。 3、激光位移传感器在停车技术中也得到了广泛应用。它不仅可以测量汽车行驶距离、角度和速度,还可以准确地记录汽车在停车时的位置,并在遇到障 害的情况下立即触发保护电路或自动脱离,从而避免发生碰撞事故。 4、激光位移传感器也被广泛用于汽车行驶辅助系统中,它可以准确地测量出汽车行驶距离、方向及车速, 为汽车驾驶员提供实时信息,以增加驾驶操控质量,帮助驾驶员进行准确的行驶安排和调整。 5、激光位移传感器也在汽车悬挂系统中得到应用,它可以测量每个车轮的距离及方向,并建立一个三维的实时图像 。这种三维的实时图像可以非常准确地反映出汽车悬挂系统的表现,从而使汽车行驶的平稳性和操控性都大大提高。6、激光位移传感器还可用于汽车智能辅助驾驶系统中, 这种系统结合了导航、安全显...
Message 最新动态
蓝光光源激光位移传感器:优势、原理与特殊场景解决方案 —— 泓川科技 LTP 系列 405nm 定制... 2025 - 10 - 21 在工业精密测量中,传统红光激光位移传感器常受高反射、半透明、高温红热等特殊场景限制,而蓝光光源(405nm 波长)凭借独特物理特性实现突破。以下通过 “一问一答” 形式,详解蓝光传感器的优势、原理构造,并结合泓川科技 LTP 系列定制方案,看其如何解决特殊环境测量难题。1. 蓝光光源激光位移传感器相比传统红光,核心优势是什么?蓝光传感器的核心优势源于 405nm 波长的物理特性,相比传统 655nm 左右的红光,主要体现在三方面:更高横向分辨率:根据瑞利判据,光学分辨率与波长成反比。蓝光波长仅为红光的 62%(405nm/655nm≈0.62),相同光学系统下横向分辨率可提升约 38%,能形成更小光斑(如泓川 LTP025 蓝光版光斑最小达 Φ18μm),适配芯片针脚、晶圆等微米级结构测量。更强信号稳定性:蓝光单光子能量达 3.06eV,远高于红光的 2.05eV。在低反射率材料(如橡胶、有机涂层)表面,能激发出更强散射信号;同时穿透性更低,仅在材料表层作用,避免内部折射干扰,适合表面精准测量。更优抗干扰能力:蓝光波段与红热辐射(500nm 以上)、户外强光(可见光为主)重叠度低,搭配专用滤光片后,可有效隔绝高温物体自发光、阳光直射等干扰,这是红光难以实现的。2. 蓝光激光位移传感器的原理构造是怎样的?为何能实现高精度测量?蓝光传感器的高精度的核心是 “光学设计 + 信号处理 + ...
泓川科技国产系列光谱共焦/激光位移传感器/白光干涉测厚产品性能一览 2025 - 09 - 05 高精度测量传感器全系列:赋能精密制造,适配多元检测需求聚焦半导体、光学膜、机械加工等领域的精密检测核心痛点,我们推出全系列高性能测量传感器,覆盖 “测厚、对焦、位移” 三大核心应用场景,以 “高精准、高速度、高适配” 为设计核心,为您的工艺控制与质量检测提供可靠技术支撑。以下为各产品系列的详细介绍:1.LTS-IR 红外干涉测厚传感器:半导体材料测厚专属核心用途:专为硅、碳化硅、砷化镓等半导体材料设计,精准实现晶圆等器件的厚度测量。性能优点:精度卓越:±0.1μm 线性精度 + 2nm 重复精度,确保测量数据稳定可靠;量程适配:覆盖 10μm2mm 测厚范围,满足多数半导体材料检测需求;高效高速:40kHz 采样速度,快速捕捉厚度数据,适配在线检测节奏;灵活适配:宽范围工作距离设计,可灵活匹配不同规格的检测设备与场景。2. 分体式对焦传感器:半导体 / 面板缺陷检测的 “高速对焦助手”核心用途:针对半导体、面板领域的高精度缺陷检测场景,提供高速实时对焦支持,尤其适配显微对焦类检测设备。性能优点:对焦速度快:50kHz 高速对焦,同步匹配缺陷检测的实时性需求;对焦精度高:0.5μm 对焦精度,保障缺陷成像清晰、检测无偏差;设计灵活:分体式结构,可根据检测设备的安装空间与布局灵活调整,降低适配难度。3. LT-R 反射膜厚仪:极薄膜厚检测的 “精密管家”核心用途:专注于极薄膜...
多方面研究泓川科技LTP系列大量程全国产激光位移传感器 2025 - 09 - 02 泓川科技激光位移传感器产品技术报告尊敬的客户: 感谢您对泓川科技激光位移传感器产品的关注与信任。为帮助您全面了解我司产品,现将激光位移传感器相关技术信息从参数指标、设计原理、结构设计等八大核心维度进行详细说明,为您的选型、使用及维护提供专业参考。一、参数指标我司激光位移传感器涵盖 LTP400 系列与 LTP450 系列,各型号核心参数经纳米级高精度激光干涉仪标定验证,确保数据精准可靠,具体参数如下表所示:表 1:LTP400EA参数表参数类别具体参数LTP400EA备注基础测量参数测量中心距离400mm以量程中心位置计算(*1)量程200mm-重复精度(静态)3μm测量标准白色陶瓷样件,50kHz 无平均,取 65536 组数据均方根偏差(*2)线性度±0.03%F.S.(F.S.=200mm)采用纳米级激光干涉仪标定(*3)光源与光斑光源类型-激光功率可定制,部分型号提供 405nm 蓝光版本(*4)光束直径聚焦点光斑 Φ300μm中心位置直径,两端相对变大(*5)电气参数电源电压DC9-36V-功耗约 2.5W-短路保护反向连接保护、过电流保护-输出与通信模拟量输出(选配)电压:0-5V/010V/-1010V;电流:420mA探头可独立提供电压、电流与 RS485 输出(*6)通讯接口RS485 串口、TCP/IP 网口可选配模拟电压 / 电流输出模块(*7)响应...
Copyright ©2005 - 2013 无锡泓川科技有限公司

1

犀牛云提供企业云服务
Our Link
X
3

SKYPE 设置

4

阿里旺旺设置

等待加载动态数据...

等待加载动态数据...

5

电话号码管理

  • 0510-88155119
6

二维码管理

等待加载动态数据...

等待加载动态数据...

展开