服务热线: 0510-88155119
13301510675@163.com
Language

一场关于基恩士光谱共焦传感器:原理、特性与应用的深度全面剖析好文(上)

日期: 2025-01-14
浏览次数: 466
发表于:
来自 泓川科技
发表于: 2025-01-14
浏览次数: 466

一、引言

1.1 研究背景与意义

在工业制造、科研等众多领域,精密测量技术如同基石,支撑着产品质量的提升与科学研究的深入。光谱共焦传感器作为精密测量领域的关键技术,正以其独特的优势,在诸多行业中发挥着无可替代的作用。它能精确测量物体的位移、厚度、表面轮廓等参数,为生产过程的精确控制与产品质量的严格把控提供了关键数据支持。

基恩士作为传感器领域的佼佼者,其推出的光谱共焦传感器在市场上备受瞩目。基恩士光谱共焦传感器凭借卓越的性能,如高精度、高稳定性、快速响应等,在精密测量领域中脱颖而出。在半导体制造过程中,芯片的生产对精度要求极高,基恩士光谱共焦传感器可精准测量芯片的厚度、线宽等关键参数,保障芯片的性能与质量。在光学元件制造领域,其能够精确测量透镜的曲率、厚度等参数,助力生产出高质量的光学元件。

研究基恩士光谱共焦传感器,对于推动精密测量技术的发展具有重要意义。通过深入剖析其原理、结构、性能以及应用案例,能够为相关领域的技术创新提供参考,促进测量技术的不断进步。在实际应用中,有助于用户更合理地选择和使用该传感器,提高生产效率,降低生产成本。在汽车制造中,利用基恩士光谱共焦传感器对零部件进行精密测量,可优化生产流程,减少废品率。

 

1.2 研究现状

在国外,光谱共焦传感器的研究起步较早,技术也相对成熟。法国的STIL公司作为光谱共焦传感器的发明者,一直处于该领域的技术前沿。其研发的光谱共焦传感器,测量精度可达纳米级,在高精度测量领域具有显著优势。德国的Precitec和Micro - Epsilon等公司,在工业应用方面表现出色,其产品广泛应用于汽车制造、机械加工等领域,能够满足不同工业场景下的高精度测量需求。日本的基恩士,以其卓越的传感器技术闻名于世,其光谱共焦传感器在市场上占据重要地位。

而在国内,相关研究起步相对较晚,但发展迅速。近年来,不少科研机构和企业投入到光谱共焦传感器的研究与开发中,取得了一系列成果。上海思显、无锡泓川科技、深圳海伯森等企业,在技术创新和产品研发方面取得了突破,逐渐缩小了与国外企业的差距。深圳立仪科技研发的光谱共焦传感器,在分辨率和线性精度方面表现出色,已成功应用于多个领域。

在对基恩士光谱共焦传感器的研究中发现,虽然其在市场上得到了广泛应用,但其内部光学系统的优化设计、测量算法的改进等方面仍有研究空间。对于不同复杂环境下,该传感器的适应性和稳定性的研究也有待进一步深入。

 

二、基恩士光谱共焦传感器基础认知

2.1 基本工作原理

2.1.1 色散与聚焦原理

基恩士光谱共焦传感器的工作原理,宛如一场精密的光学“舞蹈”,核心在于巧妙运用色散与聚焦的原理。当一束白光,这束包含了各种不同波长的混合光,如同一个五彩斑斓的光团,射入传感器的色散镜头时,神奇的一幕发生了。色散镜头仿佛一位神奇的“光魔法师”,依据不同波长光的特性,将白光精准地分解为一系列单色光,恰似把一条绚丽的彩虹拆解成了一根根单色的光带。

在这个过程中,每一种单色光都因其独特的波长,被赋予了特定的折射角度,进而沿着不同的路径传播。这些单色光在传播过程中,各自聚焦在不同的位置上,在光轴上形成了一条连续且有序的光谱分布。这一光谱分布,就像是一把精心制作的“光学尺子”,每个波长对应的焦点位置都与特定的距离紧密相连。当被测物体出现在测量区域内时,就如同在这把“光学尺子”上选取了一个特定的刻度。某一特定波长的单色光恰好会聚焦在被测物体的表面,如同精准的“光箭”射中目标。这一聚焦过程并非偶然,而是基于色散镜头的精密设计以及光的折射特性,使得不同波长的光能够在不同距离处聚焦,为后续的精确测量奠定了坚实基础。

2.1.2 波长识别与距离测量

当特定波长的单色光聚焦在被测物体表面后,如同被反射镜反射一样,会沿着原路返回,重新进入传感器的光学系统。这束反射光中蕴含着被测物体的位置信息,宛如一封加密的信件,等待着被解读。传感器内部的波长识别系统,恰似一位经验丰富的“密码破解专家”,迅速而准确地对反射光的波长进行识别。这一识别过程,是通过一系列精密的光学元件和复杂的算法实现的。在光学元件方面,可能采用了高精度的光栅、棱镜等,将反射光进一步分解,以便更精确地分析其波长组成。而在算法层面,运用了先进的信号处理技术,对光信号进行快速而准确的分析和处理。

一旦波长被成功识别,传感器便会依据预先建立的波长与距离的对应关系,如同查阅一本精心编制的“字典”,将波长信息精准地转换为被测物体与传感器之间的距离数值。这一对应关系的建立,需要经过大量的实验和精确的校准,以确保在不同的测量环境和条件下,都能实现高精度的测量。整个过程,从光的发射、聚焦、反射,到波长识别和距离计算,一气呵成,展现了基恩士光谱共焦传感器在精密测量领域的卓越技术和精湛工艺。

 

二、基恩士光谱共焦传感器基础认知

2.2 系统构成剖析

2.2.1 传感器探头类型及功能

基恩士光谱共焦传感器的探头类型丰富多样,宛如精密测量领域的“多面手”,每种探头都凭借独特的设计与卓越的性能,在不同的测量场景中展现出非凡的价值。

ø8小型探头CL - L(P)007,堪称探头家族中的“小巧玲珑”。其基准距离为7mm,测量范围达±1.5mm,以超小尺寸的优势,在狭窄空间的测量中尽显身手。在电子芯片制造领域,芯片的尺寸愈发微小,元件之间的间距也极为紧凑。ø8小型探头能够轻松穿梭于这些狭小的空间,对芯片上的微小焊点高度、线路宽度等进行精确测量,为芯片制造的高精度要求提供了可靠保障。其超小的尺寸设计,使其能够适应各种复杂的安装环境,在一些对空间要求苛刻的设备中,也能灵活安装,确保测量工作的顺利进行。

一场关于基恩士光谱共焦传感器:原理、特性与应用的深度全面剖析好文

长量程型探头CL - L(P)15,则是测量范围的“佼佼者”。它拥有150mm的基准距离,测量范围更是达到了令人瞩目的±35mm。在大型机械制造、汽车零部件加工等领域,长量程型探头发挥着不可或缺的作用。在汽车发动机缸体的加工过程中,需要对缸体的内径、深度等较大尺寸参数进行测量。长量程型探头凭借其宽广的测量范围,能够一次性完成对这些参数的精确测量,大大提高了测量效率,减少了测量误差。在大型机械的装配过程中,长量程型探头可以对不同部件之间的相对位置进行精确测量,确保机械装配的精度和稳定性。

一场关于基恩士光谱共焦传感器:原理、特性与应用的深度全面剖析好文

真空、耐热型探头CL - V020和CL - V050,犹如测量领域的“特种部队”,专为极端环境而设计。CL - V020的基准距离为20mm,测量范围为±1.3mm;CL - V050的基准距离为50mm,测量范围为±4mm。这两款探头具备超强的耐环境性能,能够在超高真空环境下稳定工作,满足了半导体制造、真空镀膜等行业对真空环境下精密测量的严格要求。在半导体芯片的制造过程中,需要在超高真空的环境下进行光刻、蚀刻等工艺,真空、耐热型探头能够在这种环境下对芯片的尺寸、形状等参数进行精确测量,确保芯片的制造质量。它们还能承受高达200°C的高温,在一些高温加工工艺中,如金属热处理、玻璃制造等,能够直接在高温环境中对工件进行测量,无需等待工件冷却,极大地提高了生产效率。

一场关于基恩士光谱共焦传感器:原理、特性与应用的深度全面剖析好文


超高精度型探头CL - S015,以其卓越的精度,成为对精度要求极高的测量场景中的“首选利器”。其基准距离为15mm,测量范围为±1mm。在光学镜片制造、精密仪器加工等领域,超高精度型探头能够发挥其高精度的优势,对镜片的曲率半径、表面平整度等参数进行精确测量,确保光学镜片的光学性能。在精密仪器的制造过程中,超高精度型探头可以对仪器的关键零部件进行高精度测量,保证仪器的精度和可靠性。


形状测量型探头CL - PT010,恰似一位精准的“形状雕刻师”,能够准确追踪目标物的形状。其光点直径仅为ø3.5µm,具备出色的角度特性,可测量范围为±45°。在精密模具制造、航空航天零部件加工等领域,形状测量型探头能够对模具的型腔形状、航空发动机叶片的复杂曲面等进行精确测量,为制造工艺的优化和产品质量的提升提供了关键数据支持。

 一场关于基恩士光谱共焦传感器:原理、特性与应用的深度全面剖析好文


2.2.2 控制器的关键作用

控制器作为基恩士光谱共焦传感器系统的“大脑”,在数据处理、通信以及系统控制等方面发挥着核心作用。

在数据处理方面,控制器宛如一位高效的“数据分析师”。它能够快速、准确地处理来自传感器探头的大量原始数据。当探头对被测物体进行测量时,会产生一系列包含物体位置、形状等信息的光信号,这些信号被转换为电信号后传输至控制器。控制器运用先进的算法和强大的计算能力,对这些数据进行分析、筛选和整合,从中提取出准确的测量结果。在测量物体的表面轮廓时,控制器会对探头采集到的多个测量点数据进行处理,通过复杂的算法拟合出物体的真实轮廓,从而实现对物体形状的精确测量。


在通信方面,控制器是传感器与外部设备之间的“桥梁”。它支持多种通信方式,如Ethernet、USB、RS - 232C等,能够与上位PC、PLC等设备进行稳定、高效的通信。通过Ethernet通信方式,控制器可以将测量数据实时传输至上位PC,上位PC可以对这些数据进行进一步的分析、存储和展示。在工业自动化生产线中,控制器可以通过PLC链路与PLC进行通信,将测量结果反馈给PLC,PLC根据这些结果对生产过程进行实时控制,实现生产过程的自动化和智能化。

一场关于基恩士光谱共焦传感器:原理、特性与应用的深度全面剖析好文


在系统控制方面,控制器则是整个测量系统的“指挥官”。它能够对传感器探头的工作状态进行精确控制,包括测量频率、采样速度等参数的调节。在不同的测量场景中,根据实际需求,控制器可以灵活调整这些参数,以确保测量结果的准确性和稳定性。在对快速运动的物体进行测量时,控制器可以提高测量频率,确保能够捕捉到物体在不同时刻的位置信息;在对高精度要求的测量任务中,控制器可以降低采样速度,提高测量的精度。控制器还能够对整个系统的运行状态进行监控,及时发现并解决可能出现的故障,保障系统的稳定运行。

 

2.2.3 其他组件概述

除了传感器探头和控制器,基恩士光谱共焦传感器系统中的其他组件,如光学单元、显示面板、缆线等,也各自发挥着重要的支持作用。

光学单元,作为传感器的“光学心脏”,负责将光源发出的光进行精确的调制和聚焦,确保光线能够准确地照射到被测物体上,并将反射光有效地收集和传输回传感器。它采用了先进的光学设计和精密的制造工艺,能够最大限度地减少光线的损耗和干扰,提高测量的精度和稳定性。在一些高精度的测量应用中,光学单元的性能直接影响着测量结果的准确性,其对光线的精确控制能力,使得传感器能够在复杂的环境中实现高精度的测量。

显示面板,犹如系统的“信息窗口”,能够直观地展示测量结果。它具有高分辨率和清晰的显示效果,能够以数字、图形等多种形式呈现测量数据。操作人员可以通过显示面板实时了解测量结果,及时发现测量过程中出现的问题。显示面板的操作界面简洁易懂,方便操作人员进行参数设置和功能选择。在一些需要现场快速查看测量结果的场景中,显示面板的便捷性和直观性能够大大提高工作效率。

缆线,作为连接各个组件的“神经脉络”,确保了信号的稳定传输。它采用了高品质的材料和先进的制造工艺,具有良好的抗干扰能力和耐用性。不同类型的缆线,如探头延长电缆、增设电缆等,能够满足不同的安装和使用需求。在大型测量系统中,缆线的长度和布局需要根据实际情况进行合理规划,以确保信号能够准确、快速地传输到各个组件,保障系统的正常运行。

 

三、基恩士光谱共焦传感器独特性能

3.1 高精度测量性能

3.1.1 精度参数与实际表现

基恩士光谱共焦传感器在精度方面表现卓越,其精度参数令人瞩目。不同型号的传感器在精度上各有特点,以超高精度型CL - L(P)015为例,其测量范围为±1.3mm,直线性误差可达±0.49µm,这一精度在众多测量任务中都能实现极为精确的测量。在实际应用中,该传感器的高精度性能得到了充分验证。在精密光学元件制造中,对于光学镜片的厚度测量要求极高,误差需控制在极小范围内。基恩士CL - L(P)015传感器能够精准测量镜片厚度,其测量精度可确保镜片的光学性能符合严格标准,为高质量光学元件的生产提供了有力保障。

在电子芯片制造领域,芯片的尺寸愈发微小,对测量精度的要求也随之提升。CL - L(P)015传感器能够精确测量芯片上微小结构的尺寸,如线路宽度、焊点高度等。在测量芯片线路宽度时,其精度可以达到微米级甚至更高,能够准确检测出线路宽度的细微变化,为芯片制造工艺的优化提供了关键数据支持。这不仅有助于提高芯片的性能和可靠性,还能减少因测量误差导致的废品率,降低生产成本。

一场关于基恩士光谱共焦传感器:原理、特性与应用的深度全面剖析好文

 

3.1.2 影响精度的因素及优化措施

尽管基恩士光谱共焦传感器具备高精度的测量能力,但在实际应用中,仍存在一些因素会对其精度产生影响。环境因素是其中之一,温度的变化可能导致传感器内部光学元件的热胀冷缩,从而影响光线的传播路径和聚焦效果,进而引入测量误差。在高温环境下,光学镜片可能会发生微小的变形,使得光线的折射角度发生改变,导致测量结果出现偏差。湿度的变化也可能对传感器的性能产生影响,潮湿的环境可能会使光学元件表面产生雾气或水珠,影响光线的传输和反射,降低测量精度。

为了优化精度,基恩士采用了一系列先进的技术手段和设计。在传感器的结构设计上,采用了高精度的光学元件和稳定的机械结构,以减少因元件制造误差和机械振动对测量精度的影响。在光学元件的选择上,选用了高质量的镜片,其具有低色散、高透过率等特性,能够确保光线在传播过程中的稳定性和准确性。在机械结构方面,采用了精密的加工工艺和稳定的安装方式,减少了机械振动对测量结果的干扰。

在测量算法上,基恩士进行了精心优化。通过先进的算法对测量数据进行处理,能够有效补偿因环境因素和测量过程中产生的误差。采用温度补偿算法,根据传感器内部温度传感器测量到的温度值,对测量结果进行实时补偿,消除温度变化对测量精度的影响。通过对大量测量数据的分析和建模,建立了误差补偿模型,能够对测量过程中的系统误差进行精确补偿,提高测量精度。

一场关于基恩士光谱共焦传感器:原理、特性与应用的深度全面剖析好文

 

3.2 强环境适应性

3.2.1 耐温、耐湿及防尘防水性能

基恩士光谱共焦传感器在恶劣环境条件下展现出卓越的适应能力。其耐温性能令人称赞,部分型号的传感器能够在高温环境中稳定工作。真空、耐热型探头CL - V020和CL - V050,采用了自主研发的特殊结构,能够承受高达200°C的高温,在如此高温环境下,其光学系统依然能够保持稳定,不会发生性能降低的情况。这一特性使得该传感器在金属热处理、玻璃制造等高温加工行业中具有重要的应用价值。在金属热处理过程中,需要对高温状态下的金属工件尺寸进行测量,CL - V020和CL - V050能够直接在高温环境中对工件进行测量,无需等待工件冷却,不仅提高了测量效率,还避免了因工件冷却过程中可能产生的尺寸变化而导致的测量误差。

在耐湿性能方面,该传感器也表现出色。它能够在一定湿度范围内正常工作,有效抵抗潮湿环境对测量精度的影响。通过采用特殊的密封技术和防护材料,防止水汽进入传感器内部,从而确保了传感器在潮湿环境中的稳定性和可靠性。在一些湿度较高的生产环境中,如食品加工、纺织印染等行业,基恩士光谱共焦传感器能够稳定地进行测量工作,为生产过程的质量控制提供了有力支持。

在防尘防水性能上,基恩士光谱共焦传感器达到了IP67防护等级。这意味着该传感器能够完全防止灰尘进入,即使在短暂浸泡在水中的情况下,也能保证正常工作。其高防水性能,使得在加工现场等易产生飞沫的场所,如机械加工、汽车制造等行业,能够放心使用。在机械加工过程中,冷却液和切削液的飞溅是常见现象,具有高防水性能的基恩士光谱共焦传感器能够在这样的环境中稳定地测量工件的尺寸和形状,不受飞沫的干扰。


 一场关于基恩士光谱共焦传感器:原理、特性与应用的深度全面剖析好文

3.2.2 特殊环境下的应用案例

在真空环境下,基恩士的真空、耐热型探头CL - V020和CL - V050发挥了重要作用。在半导体制造领域,芯片的制造过程需要在超高真空环境下进行,以避免杂质对芯片性能的影响。在芯片光刻工艺中,需要精确测量光刻胶的厚度和位置,CL - V020和CL - V050能够在超高真空环境下稳定工作,对光刻胶进行精确测量,确保光刻工艺的精度,从而提高芯片的制造质量。这两款探头的传感器探头内部不使用有机粘合剂,采用SUS304材质,仅有镜头,尽可能减少渗气的产生,满足了真空环境下对传感器的严格要求。

在高温环境的应用中,以玻璃制造行业为例。在玻璃的成型过程中,玻璃处于高温熔融状态,需要对其尺寸和形状进行实时测量和控制,以保证玻璃产品的质量。基恩士的CL - V020和CL - V050传感器能够直接在高温环境中对玻璃进行测量,其特殊结构使得在200°C的高温下,光学系统不会发生变化,性能稳定。通过对玻璃的实时测量,生产人员可以及时调整生产工艺参数,确保玻璃产品的尺寸和形状符合要求,提高生产效率和产品质量。

 

3.3 针对特殊对象的测量能力

3.3.1 透明、半透明及镜面物体测量

基恩士光谱共焦传感器在对透明、半透明及镜面物体的测量方面,展现出独特的优势。其测量原理基于光谱共焦技术,通过对不同波长光的聚焦和反射光的分析,实现对物体的精确测量。对于透明和半透明物体,传感器能够利用不同波长光在物体内部的折射和反射特性,准确地测量物体的厚度、内部结构等参数。在测量透明玻璃片的厚度时,传感器发射的白光经过色散镜头后,不同波长的光在玻璃片中传播的路径不同,通过分析反射光的波长,传感器可以精确计算出玻璃片的厚度。

在测量半透明的塑料薄膜时,传感器能够穿透薄膜,对薄膜的厚度以及内部可能存在的缺陷进行检测。这一特性使得基恩士光谱共焦传感器在光学材料制造、电子器件封装等领域具有重要的应用价值。在光学镜片制造中,需要精确测量镜片的厚度和曲率,传感器能够快速、准确地完成这些测量任务,为镜片的质量控制提供了可靠的数据支持。

对于镜面物体,由于其表面光滑,光线反射规则,传统的测量方法往往难以准确获取物体的表面信息。而基恩士光谱共焦传感器能够通过精确控制光线的聚焦和反射,有效地避免了镜面反射带来的干扰,实现对镜面物体表面轮廓、平整度等参数的高精度测量。在精密模具制造中,模具的表面质量对产品的成型质量至关重要,传感器可以对模具的镜面表面进行精确测量,确保模具的表面平整度符合要求,从而提高产品的质量和生产效率。

一场关于基恩士光谱共焦传感器:原理、特性与应用的深度全面剖析好文

 

3.3.2 粗糙表面与微小物体测量

在面对粗糙表面的测量时,基恩士光谱共焦传感器采用了先进的算法和光学技术,能够有效地克服表面粗糙度对测量精度的影响。传感器通过发射多种波长的光,并对反射光进行综合分析,能够准确地确定物体的真实表面位置,减少因表面凹凸不平而产生的测量误差。在测量金属铸件的粗糙表面时,传感器能够快速、准确地获取表面的轮廓信息,为后续的加工和质量检测提供了重要的数据支持。这一特性使得该传感器在机械加工、汽车制造等行业中得到了广泛应用。在汽车零部件的加工过程中,需要对零部件的表面粗糙度进行测量,以确保其符合质量标准,基恩士光谱共焦传感器能够满足这一需求,为汽车制造的质量控制提供了有力保障。

对于微小物体的测量,基恩士光谱共焦传感器凭借其高精度的光学系统和微小的光点尺寸,能够实现对微小物体的精确测量。形状测量型探头CL - PT010的光点直径仅为ø3.5µm,能够准确地追踪微小物体的形状和尺寸。在电子芯片制造中,芯片上的微小电路和元件需要进行精确测量,传感器能够对这些微小结构进行测量,确保芯片的制造精度和性能。在生物医学领域,对于细胞、微生物等微小物体的测量也具有重要意义,传感器可以对细胞的形态、大小进行测量,为生物医学研究提供了重要的技术手段。


News / 推荐阅读 +More
2025 - 10 - 21
点击次数: 54
在工业精密测量中,传统红光激光位移传感器常受高反射、半透明、高温红热等特殊场景限制,而蓝光光源(405nm 波长)凭借独特物理特性实现突破。以下通过 “一问一答” 形式,详解蓝光传感器的优势、原理构造,并结合泓川科技 LTP 系列定制方案,看其如何解决特殊环境测量难题。1. 蓝光光源激光位移传感器相比传统红光,核心优势是什么?蓝光传感器的核心优势源于 405nm 波长的物理特性,相比传统 655nm 左右的红光,主要体现在三方面:更高横向分辨率:根据瑞利判据,光学分辨率与波长成反比。蓝光波长仅为红光的 62%(405nm/655nm≈0.62),相同光学系统下横向分辨率可提升约 38%,能形成更小光斑(如泓川 LTP025 蓝光版光斑最小达 Φ18μm),适配芯片针脚、晶圆等微米级结构测量。更强信号稳定性:蓝光单光子能量达 3.06eV,远高于红光的 2.05eV。在低反射率材料(如橡胶、...
2025 - 09 - 05
点击次数: 57
高精度测量传感器全系列:赋能精密制造,适配多元检测需求聚焦半导体、光学膜、机械加工等领域的精密检测核心痛点,我们推出全系列高性能测量传感器,覆盖 “测厚、对焦、位移” 三大核心应用场景,以 “高精准、高速度、高适配” 为设计核心,为您的工艺控制与质量检测提供可靠技术支撑。以下为各产品系列的详细介绍:1.LTS-IR 红外干涉测厚传感器:半导体材料测厚专属核心用途:专为硅、碳化硅、砷化镓等半导体材料设计,精准实现晶圆等器件的厚度测量。性能优点:精度卓越:±0.1μm 线性精度 + 2nm 重复精度,确保测量数据稳定可靠;量程适配:覆盖 10μm2mm 测厚范围,满足多数半导体材料检测需求;高效高速:40kHz 采样速度,快速捕捉厚度数据,适配在线检测节奏;灵活适配:宽范围工作距离设计,可灵活匹配不同规格的检测设备与场景。2. 分体式对焦传感器:半导体 / 面板缺陷检测的 “高速对焦...
2025 - 09 - 02
点击次数: 71
泓川科技激光位移传感器产品技术报告尊敬的客户: 感谢您对泓川科技激光位移传感器产品的关注与信任。为帮助您全面了解我司产品,现将激光位移传感器相关技术信息从参数指标、设计原理、结构设计等八大核心维度进行详细说明,为您的选型、使用及维护提供专业参考。一、参数指标我司激光位移传感器涵盖 LTP400 系列与 LTP450 系列,各型号核心参数经纳米级高精度激光干涉仪标定验证,确保数据精准可靠,具体参数如下表所示:表 1:LTP400EA参数表参数类别具体参数LTP400EA备注基础测量参数测量中心距离400mm以量程中心位置计算(*1)量程200mm-重复精度(静态)3μm测量标准白色陶瓷样件,50kHz 无平均,取 65536 组数据均方根偏差(*2)线性度±0.03%F.S.(F.S.=200mm)采用纳米级激光干涉仪标定(*3)光源与光斑光源类型-激光功率可定制,部分型号提供 4...
2025 - 08 - 30
点击次数: 51
泓川科技发布 LT-CP 系列 ETHERCAT 总线高光谱共焦控制器,32KHz 高速采样引领工业高精度测量革新近日,工业高精度测量领域迎来技术突破 —— 泓川科技正式推出LT-CP 系列 ETHERCAT 总线高光谱共焦传感器控制器(含单通道 LT-CPS、双通道 LT-CPD、四通道 LT-CPF 三款型号,含普通光源与高亮激光光源版本)。该系列产品以 “32KHz 高速采样” 与 “ETHERCAT 工业总线” 为核心亮点,填补了行业内 “高频响应 + 实时协同” 兼具的技术空白,为新能源、半导体、汽车制造等高端领域的动态高精度测量需求提供了全新解决方案。一、核心突破:32KHz 高速采样,破解 “多通道降速” 行业痛点光谱共焦技术的核心竞争力在于 “高精度” 与 “响应速度” 的平衡,而 LT-CP 系列在速度维度实现了关键突破 ——单通道模式下最高采样频率达 32KHz,意味着...
2025 - 08 - 12
点击次数: 70
在半导体芯片制造、精密电子组装等高端工业场景中,一个棘手的矛盾始终存在:一方面,设备内部空间日益紧凑,毫米级的安装高度都可能成为 “禁区”;另一方面,随着产品结构复杂化,对测量量程的需求不断提升,5mm 以上的大量程检测已成为常态。如何在狭小空间内实现大量程精密测量?无锡泓川科技给出了突破性答案 ——光学转折镜,以创新设计让光谱共焦传感器的测量方向 “直角转向”,既节省安装空间,又兼容大量程需求,重新定义精密测量的空间可能性。传统方案的痛点:空间与量程难以两全在精密测量领域,侧出光传感器曾是狭小空间的 “救星”。泓川科技旗下 LTCR 系列作为 90° 侧向出光型号,凭借紧凑设计广泛应用于深孔、内壁等特征测量。但受限于结构设计,其量程多集中在 2.5mm 以内(如 LTCR4000 量程为 ±2mm),难以满足半导体晶圆厚度、大型精密构件高度差等大量程场景的需求。若选择...
About Us
关于泓川科技
专业从事激光位移传感器,激光焊缝跟踪系统研发及销售的科技公司
中国 · 无锡 · 总部地址:无锡新吴区天山路6号
销售热线:0510-88155119 
图文传真:0510-88152650
Working Time
我们的工作时间
周一至周五:8:00-18:00
周六至周日:9:00-15:00
Shown 企业秀 More
  • 1
    2023 - 02 - 21
    激光位移传感器是一种用于测量距离和轮廓表面的自动光学传感技术。它的工作原理是发射激光束,激光束被目标表面或区域反射,然后光束返回所需的时间被转换为距离测量。它的主要应用是尺寸计量,可以精确测量长度、距离和粗糙度轮廓。激光位移传感器也用于工业自动化、机器人和机器视觉应用。什么是激光位移传感器?       激光位移传感器是一种用于测量距离和轮廓表面的自动光学传感技术。该系统通过从激光源发射激光来工作。然后,该激光束从目标表面或区域反射回来。然后,光束覆盖距离和返回所花费的时间被转换为距离测量或轮廓。激光位移传感器通常由三个主要部分组成:*激光源*光学探测器*处理器      激光源通常是激光二极管,其波长适合于目标区域及其光学特性。激光二极管产生激光束,该激光束被引导到目标表面或区域上。然后光束被反射回检测器。根据应用,可以用一定范围的脉冲频率调制光束。光束由光学检测器检测。检测器将光转换成电信号,然后将其发送到处理器。然后处理器处理信息并将测量数据发送到数字显示器或计算机。然后,数据可用于进一步分析或控制自动化过程。历史:       激光位移传感器最初是在20世纪70年代开发的,是麻省理工学院研究项目的一部分。这项研究由美国陆军研究实验室和美国空军赖特实验室赞助。该技术最...
  • 2
    2025 - 01 - 09
    一、光谱共焦传感技术解密光谱共焦技术的起源,要追溯到科学家们对传统成像精度局限的深刻洞察。在 20 世纪 70 年代,传统成像在精密测量领域遭遇瓶颈,为突破这一困境,基于干涉原理的光谱共焦方法应运而生,开启了高精度测量的新篇章。进入 80 年代,科研人员不断改进仪器设计,引入特殊的分光元件,如同给传感器装上了 “精密滤网”,精准分辨不同波长光信号;搭配高灵敏度探测器,将光信号转化为精确数字信息。同时,计算机技术强势助力,实现数据快速处理、动态输出测量结果,让光谱共焦技术稳步走向成熟。90 年代,纳米技术、微电子学蓬勃发展,对测量精度要求愈发苛刻。科研团队迎难而上,开发新算法、模型优化测量,减少误差;增设温度控制、机械振动抑制功能,宛如为传感器打造 “稳定护盾”,确保在复杂实验环境下结果稳定可靠,至此,光谱共焦技术成为精密测量领域的关键力量。添加图片注释,不超过 140 字(可选)二、HCY 光谱共焦传感器工作原理(一)核心原理阐释HCY 光谱共焦传感器的核心在于巧妙运用光学色散现象。当内部的白光点光源发出光线后,光线会迅速射向精密的透镜组。在这里,白光如同被解开了神秘面纱,依据不同波长被精准地色散开来,形成一道绚丽的 “彩虹光带”。这些不同波长的光,各自沿着独特的路径前行,最终聚焦在不同的高度之上,构建起一个精密的测量范围 “标尺”。当光线抵达物体表面,会发生反射,其中特定波长的光...
  • 3
    2025 - 09 - 02
    泓川科技激光位移传感器产品技术报告尊敬的客户: 感谢您对泓川科技激光位移传感器产品的关注与信任。为帮助您全面了解我司产品,现将激光位移传感器相关技术信息从参数指标、设计原理、结构设计等八大核心维度进行详细说明,为您的选型、使用及维护提供专业参考。一、参数指标我司激光位移传感器涵盖 LTP400 系列与 LTP450 系列,各型号核心参数经纳米级高精度激光干涉仪标定验证,确保数据精准可靠,具体参数如下表所示:表 1:LTP400EA参数表参数类别具体参数LTP400EA备注基础测量参数测量中心距离400mm以量程中心位置计算(*1)量程200mm-重复精度(静态)3μm测量标准白色陶瓷样件,50kHz 无平均,取 65536 组数据均方根偏差(*2)线性度±0.03%F.S.(F.S.=200mm)采用纳米级激光干涉仪标定(*3)光源与光斑光源类型-激光功率可定制,部分型号提供 405nm 蓝光版本(*4)光束直径聚焦点光斑 Φ300μm中心位置直径,两端相对变大(*5)电气参数电源电压DC9-36V-功耗约 2.5W-短路保护反向连接保护、过电流保护-输出与通信模拟量输出(选配)电压:0-5V/010V/-1010V;电流:420mA探头可独立提供电压、电流与 RS485 输出(*6)通讯接口RS485 串口、TCP/IP 网口可选配模拟电压 / 电流输出模块(*7)响应...
  • 4
    2023 - 10 - 20
    当目标物的反射率发生急剧变化时,激光位移传感器的测量稳定性会受到影响。反射率较高的目标物可能会达到光饱和状态,这会导致无法正确检测接收光光点位置,从而影响测量的稳定性。对于反射率较低的目标物,可能会因为接收到的光量不足而无法正确检测接收光光点位置,进而影响测量的稳定性。在这种情况下,激光位移传感器需要根据反射率的变化,将接收光量调整到最佳状态后,才能进行稳定的测量。具体来说,针对反射率较高的目标物,可以减小激光功率和缩短发射时间;针对反射率较低的目标物,可以增大激光功率和延长发射时间。这种方法可以帮助调整激光位移传感器的精度,以适应目标物反射率的变化。然而,调整也并非一个简单的过程,需要考虑到测量反射率急剧变化位置的稳定程度以及使用光量调整功能以外功能时的稳定程度。因此,在实际操作过程中,可能需要多次取样和调整才能获取最佳的测量效果。
  • 5
    2025 - 02 - 17
    泓川科技LTC系列光谱共焦传感器中的侧向出光探头(LTCR系列),凭借其独特的90°出光设计与紧凑结构,彻底解决了深孔、内壁、微型腔体等复杂场景的测量难题。本文深度解析LTCR系列的技术优势、核心型号对比及典型行业应用,为精密制造提供全新测量视角。一、侧向出光探头技术优势1. 空间适应性革命90°侧向出光:光路与探头轴线垂直,避免传统轴向探头因长度限制无法深入狭窄空间的问题。超薄探头设计:最小直径仅Φ3.8mm(LTCR1500N),可深入孔径≥4mm的深孔/缝隙。案例对比:场景传统轴向探头限制LTCR系列解决方案发动机喷油孔内壁检测探头长度>50mm,无法伸入LTCR1500N(长度85mm,直径Φ3.8mm)直达孔底微型轴承内圈粗糙度轴向光斑被侧壁遮挡LTCR4000侧向光斑精准照射测量面2. 精度与稳定性兼具纳米级静态噪声:LTCR1500静态噪声80nm,线性误差<±0.3μm,媲美轴向探头性能。抗振动设计:光纤与探头刚性耦合,在30m/s²振动环境下,数据波动<±0.1μm。温漂抑制:全系温漂<0.005%FS/℃,-20℃~80℃环境下无需重新校准。3. 多场景安装适配万向调节支架:支持±15°偏转角度微调,兼容非垂直安装场景。气密性封装:IP67防护等级,可直接用于切削...
  • 6
    2025 - 01 - 14
    一、引言1.1 传感器在现代科技中的重要地位在当今科技飞速发展的时代,传感器作为获取信息的关键设备,已然成为现代科技体系中不可或缺的重要一环。其犹如人类的感官,能够敏锐地感知周围环境的各种物理量、化学量和生物量,并将这些信息转化为电信号或其他便于处理的形式,为后续的分析、决策和控制提供了基础数据。在工业自动化领域,传感器的身影无处不在。以汽车制造为例,生产线上的各类传感器能够实时监测零部件的加工精度、装配位置以及设备的运行状态。通过精确测量工件的尺寸、形状和位置,传感器可以确保每一个零部件都符合严格的质量标准,从而提高产品的一致性和可靠性。压力传感器可以监测液压系统的压力变化,及时发现潜在的故障隐患,保障生产过程的安全稳定。在智能家居领域,传感器让家居环境变得更加智能和舒适。温度传感器能够实时感知室内温度,自动调节空调的运行模式,使室内始终保持在最适宜的温度范围内。而光照传感器则可根据外界光线的强弱,自动控制窗帘的开合以及灯光的亮度,不仅节省了能源,还为用户营造了温馨舒适的居住氛围。传感器在医疗领域的应用也极为广泛,为医疗诊断和治疗提供了有力的支持。在医疗设备中,传感器能够精准测量患者的生理参数,如心电图传感器可实时监测心脏的电活动情况,为医生诊断心脏疾病提供了重要依据。而血压传感器则能准确测量患者的血压值,帮助医生及时了解患者的心血管健康状况。在药物研发过程中,传感器可用于监测药...
  • 7
    2025 - 02 - 05
    一、引言1.1 研究背景与目的在工业自动化进程不断加速的当下,激光位移传感器作为关键测量设备,凭借其高精度、非接触、高响应速度等突出优势,在工业制造、汽车生产、航空航天等众多领域得到广泛应用。从精密零件的尺寸检测,到大型机械的装配定位,再到生产线上的实时监测,激光位移传感器都发挥着不可或缺的作用,为提升产品质量、提高生产效率、保障生产安全提供了坚实支撑。基恩士作为传感器领域的知名品牌,其 LK-H/LK-G5000 系列激光位移传感器备受关注。该系列产品融合先进技术,具备卓越性能,在市场上占据重要地位。深入研究这一系列产品,能够使我们全面掌握其技术特性、应用场景以及市场表现,为相关行业的技术选型、产品研发、生产优化等提供有力参考,同时也有助于推动激光位移传感器技术的进一步发展与创新。 1.2 研究方法与数据来源本次研究主要采用了文献研究法,广泛查阅了基恩士官方网站发布的产品资料、技术文档、应用案例,以及行业权威报告、学术期刊论文等,获取了关于 LK-H/LK-G5000 系列激光位移传感器的一手信息和专业分析。同时,运用案例分析法,对该系列产品在不同行业的实际应用案例进行深入剖析,总结其应用效果与优势,为研究提供了实践依据。此外,还参考了相关的市场调研报告,了解了激光位移传感器市场的整体发展趋势和竞争格局,以便更全面地评估该系列产品的市场地位与前景。 二、基恩士...
  • 8
    2023 - 02 - 26
    今天我为大家展示安全激光扫描仪产品,安全激光扫描仪适用于各种应用技术领域,      在设备开发期间我们给予了特别关注,以确保它能够在广泛应用中发挥最佳功能,尤其重视大型工作区域的防护,例如机床正面区域或机器人工作区域。      其他应用包括移动车辆的防护,例如侧向滑动装置或移动运输设备,无人驾驶运输系统。甚至垂直安装激光扫描仪的出入口保护系统。尽管我们在安全激光扫描与领域,已经有数10年的经验了,但该应用领域仍然面对许多挑战。不过我们的激光安全扫描仪具有独一无二的功能属性,例如具有8.25米检测距离和270度扫描范围。       属于目前市场上的高端设备,非常适合侧向滑动装置正面区域等大型区域或长距离的防护。该设备的另一个亮点就是能够同时监测两个保护功能。这在许多应用领域中,独具优势以前需要使用两个设备,如今只需要使用一台这样的安全激光扫描仪,即可完成两台设备的功能。               实践中遇到的一项挑战是设计一款异常强骨的激光安全扫描仪。能够适应周围环境中可能存在的灰尘和颗粒等恶劣条件,因此我们提供了较分辨率达到0.1度的设备。它在目前市场上具有非常高的价值。   ...
Message 最新动态
蓝光光源激光位移传感器:优势、原理与特殊场景解决方案 —— 泓川科技 LTP 系列 405nm 定制... 2025 - 10 - 21 在工业精密测量中,传统红光激光位移传感器常受高反射、半透明、高温红热等特殊场景限制,而蓝光光源(405nm 波长)凭借独特物理特性实现突破。以下通过 “一问一答” 形式,详解蓝光传感器的优势、原理构造,并结合泓川科技 LTP 系列定制方案,看其如何解决特殊环境测量难题。1. 蓝光光源激光位移传感器相比传统红光,核心优势是什么?蓝光传感器的核心优势源于 405nm 波长的物理特性,相比传统 655nm 左右的红光,主要体现在三方面:更高横向分辨率:根据瑞利判据,光学分辨率与波长成反比。蓝光波长仅为红光的 62%(405nm/655nm≈0.62),相同光学系统下横向分辨率可提升约 38%,能形成更小光斑(如泓川 LTP025 蓝光版光斑最小达 Φ18μm),适配芯片针脚、晶圆等微米级结构测量。更强信号稳定性:蓝光单光子能量达 3.06eV,远高于红光的 2.05eV。在低反射率材料(如橡胶、有机涂层)表面,能激发出更强散射信号;同时穿透性更低,仅在材料表层作用,避免内部折射干扰,适合表面精准测量。更优抗干扰能力:蓝光波段与红热辐射(500nm 以上)、户外强光(可见光为主)重叠度低,搭配专用滤光片后,可有效隔绝高温物体自发光、阳光直射等干扰,这是红光难以实现的。2. 蓝光激光位移传感器的原理构造是怎样的?为何能实现高精度测量?蓝光传感器的高精度的核心是 “光学设计 + 信号处理 + ...
泓川科技国产系列光谱共焦/激光位移传感器/白光干涉测厚产品性能一览 2025 - 09 - 05 高精度测量传感器全系列:赋能精密制造,适配多元检测需求聚焦半导体、光学膜、机械加工等领域的精密检测核心痛点,我们推出全系列高性能测量传感器,覆盖 “测厚、对焦、位移” 三大核心应用场景,以 “高精准、高速度、高适配” 为设计核心,为您的工艺控制与质量检测提供可靠技术支撑。以下为各产品系列的详细介绍:1.LTS-IR 红外干涉测厚传感器:半导体材料测厚专属核心用途:专为硅、碳化硅、砷化镓等半导体材料设计,精准实现晶圆等器件的厚度测量。性能优点:精度卓越:±0.1μm 线性精度 + 2nm 重复精度,确保测量数据稳定可靠;量程适配:覆盖 10μm2mm 测厚范围,满足多数半导体材料检测需求;高效高速:40kHz 采样速度,快速捕捉厚度数据,适配在线检测节奏;灵活适配:宽范围工作距离设计,可灵活匹配不同规格的检测设备与场景。2. 分体式对焦传感器:半导体 / 面板缺陷检测的 “高速对焦助手”核心用途:针对半导体、面板领域的高精度缺陷检测场景,提供高速实时对焦支持,尤其适配显微对焦类检测设备。性能优点:对焦速度快:50kHz 高速对焦,同步匹配缺陷检测的实时性需求;对焦精度高:0.5μm 对焦精度,保障缺陷成像清晰、检测无偏差;设计灵活:分体式结构,可根据检测设备的安装空间与布局灵活调整,降低适配难度。3. LT-R 反射膜厚仪:极薄膜厚检测的 “精密管家”核心用途:专注于极薄膜...
多方面研究泓川科技LTP系列大量程全国产激光位移传感器 2025 - 09 - 02 泓川科技激光位移传感器产品技术报告尊敬的客户: 感谢您对泓川科技激光位移传感器产品的关注与信任。为帮助您全面了解我司产品,现将激光位移传感器相关技术信息从参数指标、设计原理、结构设计等八大核心维度进行详细说明,为您的选型、使用及维护提供专业参考。一、参数指标我司激光位移传感器涵盖 LTP400 系列与 LTP450 系列,各型号核心参数经纳米级高精度激光干涉仪标定验证,确保数据精准可靠,具体参数如下表所示:表 1:LTP400EA参数表参数类别具体参数LTP400EA备注基础测量参数测量中心距离400mm以量程中心位置计算(*1)量程200mm-重复精度(静态)3μm测量标准白色陶瓷样件,50kHz 无平均,取 65536 组数据均方根偏差(*2)线性度±0.03%F.S.(F.S.=200mm)采用纳米级激光干涉仪标定(*3)光源与光斑光源类型-激光功率可定制,部分型号提供 405nm 蓝光版本(*4)光束直径聚焦点光斑 Φ300μm中心位置直径,两端相对变大(*5)电气参数电源电压DC9-36V-功耗约 2.5W-短路保护反向连接保护、过电流保护-输出与通信模拟量输出(选配)电压:0-5V/010V/-1010V;电流:420mA探头可独立提供电压、电流与 RS485 输出(*6)通讯接口RS485 串口、TCP/IP 网口可选配模拟电压 / 电流输出模块(*7)响应...
Copyright ©2005 - 2013 无锡泓川科技有限公司

1

犀牛云提供企业云服务
Our Link
X
3

SKYPE 设置

4

阿里旺旺设置

等待加载动态数据...

等待加载动态数据...

5

电话号码管理

  • 0510-88155119
6

二维码管理

等待加载动态数据...

等待加载动态数据...

展开