服务热线: 0510-88155119
13301510675@163.com
Language
项目案例 Case
Case 光谱共聚焦

基于国产泓川 LTC3000 光谱共焦传感器的手机相机镜头外观扫描测量案例

日期: 2025-08-30
浏览次数: 0

一、案例背景与核心测试需求

手机相机镜头模组(以某型号 5P 光学镜头为例)的多镜片安装精度直接决定成像质量 —— 镜片间高度差过大会导致光路偏移,引发画面模糊、畸变;安装深度偏差超出阈值会改变焦距,影响自动对焦性能;镜筒与镜片的配合缝隙过大则易进灰、产生杂散光,甚至导致镜片松动。本案例针对该 5P 镜头模组的外观关键参数展开测量,具体需求如下:

  1. 镜片间高度差

    :相邻镜片(如 1# 镜片与 2# 镜片、4#     镜片与 5# 镜片)的表面高度差≤5μm,全镜片组高度差累计偏差≤10μm
  2. 镜片安装深度

    :镜筒基准面到各镜片表面的距离(设计值:1# 镜片 120μm3# 镜片 350μm5# 镜片     600μm),实际偏差需≤±3μm
  3. 配合缝隙

    :镜筒内壁与镜片边缘的径向间隙需控制在 20~50μm,且圆周方向均匀性误差≤5μm
  4. 设备适配性

    :镜头模组尺寸仅 φ8mm×12mm(镜筒外径 φ8mm),需传感器体积小巧(避免空间干涉),同时兼容透明材料(光学玻璃镜片,透光率 98%)与非透明材料(工程塑胶镜筒,反射率约 25%);
  5. 产线效率

    :单次测量时间≤10 秒(量产需求),重复测量精度≤0.5μm(避免误判)。
基于国产泓川 LTC3000 光谱共焦传感器的手机相机镜头外观扫描测量案例


经选型验证,国产泓川 LTC3000 光谱共焦传感器(外径 φ8mm、长度 38.7mm,静态重复精度 0.1μm,线性误差 <±0.6μm)完美匹配狭小空间安装需求,搭配 LT-CPS 高速控制器(Max.32kHz 采样频率)可兼顾精度与效率,成为核心测量设备。



二、测试设备与系统搭建

1. 核心设备清单

设备名称

型号 / 规格

作用说明

光谱共焦传感器

LTC3000(泓川科技)

核心测量单元,输出距离数据(量程 ±1500μm,覆盖镜片深度与缝隙范围)

高速控制器

LT-CPS(激光光源版)

32kHz 最高采样频率,同步控制传感器与运动平台,支持 EtherCAT 工业通信

高精度运动平台

XY 轴行程 20mm×20mm轴行程 10mm

带动样品实现环形 / 螺旋扫描,XY  轴重复定位精度 ±1μm ±0.3μm

真空样品固定台

吸附面积 φ10mm,吸附力  0.3MPa

无应力固定镜头模组,避免镜筒变形导致的测量偏差

光学定位辅助模块

显微视觉系统(放大倍率 200×

辅助校准传感器光斑与镜头中心对齐,定位精度 ±0.5μm

环境控制单元

温度 23±2℃,湿度  35%~55%,无气流干扰

降低环境温湿度对 LTC3000 温度特性(<0.05% F.S./℃)的影响

2. 系统搭建逻辑

LTC3000 通过 FC/PC 光纤连接 LT-CPS 控制器,控制器与运动平台、视觉模块通过 EtherCAT 总线实现毫秒级同步;镜头模组通过真空台吸附在运动平台中心,LTC3000 固定于 Z 轴微调支架(初始距离按 “测量中心距离 7mm” 校准),确保光斑垂直入射镜头中心(测量角度 <±3°,远低于 LTC3000  ±14° 允许范围),避免角度偏差导致的距离计算误差。

三、测量原理与技术适配性

1. 光谱共焦核心原理(针对镜头模组特性)

LTC3000 通过 “白光色散 + 共焦滤波” 实现多材料精准测量:

  • 白光经色散透镜分解为不同波长单色光,其中短波长(蓝光)聚焦于近距表面(如 1# 镜片表面),长波长(红光)聚焦于远距表面(如 5# 镜片表面或镜筒底部);
  • 反射光经共焦小孔滤波后,仅 “聚焦点波长” 被光谱仪捕捉     ——透明镜片会产生 “表面反射峰(短波长)”  “底面反射峰(长波长)非透明镜筒仅产生 “表面反射峰(单一波长)
  • LT-CPS 

    控制器通过预校准的 “波长 - 距离” 曲线(纳米级激光干涉仪标定,线性误差 <±0.6μm),将波长信号转换为精确距离值,分辨率达 0.02μm

2. 镜头模组多参数测量适配性

测量参数

材料类型

反射信号特征

测量逻辑

镜片高度差

透明光学玻璃

相邻镜片各有 “双反射峰,表面峰波长不同

计算同一径向位置下,相邻镜片表面峰的距离差值

镜片安装深度

透明玻璃 + 非透明镜筒

镜筒基准面(单峰)镜片表面(双峰中短波长峰)

镜筒基准面距离 - 镜片表面距离  = 安装深度

配合缝隙

透明玻璃 + 非透明镜筒

镜筒内壁(单峰)镜片边缘(双峰)

定位两者边缘坐标,计算径向距离差


四、详细扫描步骤(兼顾精度与产线效率)

1. 测试前校准(关键基准统一)

1)传感器线性校准

用纳米级激光干涉仪(精度 ±0.05μm)在 LTC3000 量程 ±1500μm 内取 30 个校准点,拟合 “波长 - 距离” 曲线,确保全量程内线性误差 <±0.6μm—— 针对镜头常用的 “0~1000μm 深度范围,误差进一步控制在 ±0.3μm 内。

2)光斑与镜头中心对齐

  1. 通过显微视觉模块观察镜头模组,标记镜筒内壁圆心(X0,Y0);
  2. 移动 XY 轴使 LTC3000 光斑中心与(X0,Y0)重合,记录坐标;
  3. 采集镜筒基准面距离值 H0=7.000mmLTC3000 中心距离),作为后续深度计算基准。

3)样品基准校准

采集镜筒顶部基准面 5 个点(圆周均匀分布)的距离平均值,设为 H_base=6.998mm(因镜筒加工误差,略低于中心距离 7mm),用于消除样品安装偏心导致的基准偏差。

2. 扫描路径规划(圆形镜头高效覆盖)

采用 “环形扫描 + 径向加密” 策略,避免冗余采样,单次扫描时间控制在 8 秒内:

  • 扫描范围

    :径向(R0~4mm(覆盖 φ8mm     镜筒全范围),圆周(θ0~360°
  • 扫描步距

    :径向步距 10μm光斑直径     20μm,避免漏扫),圆周步距 1°360 个采样环);
  • 采样频率

    :设置为 25kHz(低于 LT-CPS  32kHz 上限,平衡数据稳定性与效率);
  • 总采样点

    360 个环 × 400 个径向点(4mm/10μm= 144,000 个点,扫描时间 = 144,000 / 25,000 ≈ 5.76 秒。

3. 数据采集流程

  1. 运动平台从(X0,Y0)出发,按 “径向递增 10μm→圆周旋转 1°” 的环形路径移动;
  2. 每移动一个步距,LT-CPS 触发 LTC3000 采集 1 组数据,包含 “反射峰数量、峰波长、峰强度、当前坐标(R,θ
  3. 若为 “双反射峰(强度比 1:0.9,判定为透明镜片区域,记录表面峰波长 λ_s;若为 “单反射峰(强度 > 0.8V,判定为非透明镜筒区域,记录峰波长 λ_t
  4. 扫描结束后,将 “坐标(R,θ波长(λ” 数据转换为 “坐标(R,θ距离(H” 矩阵,存储为 CSV 格式。


五、核心测量算法设计(针对三大参数)

1. 数据预处理(降噪与去干扰)

1)降噪算法

采用 “5 点环形移动平均滤波”—— 对每个采样点(R,θ),用其相邻的(R-10μm,θ)、(R+10μm,θ)、(R,θ-1°)、(R,θ+1°)、(R,θ个点的距离平均值替代,消除产线微小振动导致的噪声(滤波前数据标准差 0.15μm,滤波后降至 0.04μm,接近 LTC3000 静态重复精度 0.1μm)。

2)异常值剔除

基于 3σ 准则,剔除距离值超出 “基准范围 ±10μm” 的异常点(多为镜头表面灰尘干扰,占比 < 0.05%),并用 “径向线性插值” 补全数据,避免缝隙测量空洞。

2. 三大核心参数计算算法

1)镜片间高度差算法

  1. 提取同一径向位置(如 R=1mm)、不同镜片层的表面距离值:设 1# 镜片表面距离为 H12# 镜片为 H25# 镜片为 H5
  2. 计算相邻镜片高度差:ΔH1-2=|H1-H2|ΔH2-3=|H2-H3|ΔH4-5=|H4-H5|
  3. 判定标准:所有 ΔH≤5μm,且累计偏差 ΔH_total=|H1-H5|≤10μm

2)镜片安装深度算法

  1. 提取镜筒基准面距离 H_base(非透明区域,单峰对应的距离);
  2. 计算各镜片安装深度:D1=H_base - H11# 镜片),D2=H1 - H22# 镜片,镜筒未覆盖,以 1# 镜片为基准),D5=H4     - H55# 镜片);
  3. 计算深度偏差:ΔD1=|D1 - D1 设计值 |D1 设计值 = 120μm),ΔD3=|D3 - 350μm|ΔD5=|D5 - 600μm|
  4. 判定标准:所有 ΔD≤3μm

3)配合缝隙算法(改进Canny 边缘检测)

  1. 对径向数据(固定 θ 0  4mm)进行梯度计算:G_R = [H (R+10μm,θ) - H     (R-10μm,θ)] / 20μm
  2. 设定梯度阈值 G_th=8μm/mm(镜筒与镜片边缘处梯度突变),当 G_R >     G_th 时,判定为 “镜片边缘R1);当 G_R < -G_th 时,判定为 “镜筒内壁边缘R2);
  3. 计算配合缝隙宽度:W=R2 - R1
  4. 圆周均匀性误差:σ_W=√[Σ(W_θ - W_avg)² / 360]W_θ 为每个 θ 角的缝隙宽度,W_avg 为平均值);
  5. 判定标准:20μm≤W_avg≤50μm,且 σ_W≤5μm
基于国产泓川 LTC3000 光谱共焦传感器的手机相机镜头外观扫描测量案例


六、测试结果与数据分析(组样品,编号 L1~L3

1. 基础测量结果(设计指标:ΔH≤5μmΔD≤3μm20≤W≤50μmσ_W≤5μm

样品编号

镜片最大高度差 ΔH_maxμm

镜片最大深度偏差 ΔD_maxμm

配合缝隙平均值 W_avgμm

缝隙均匀性误差 σ_Wμm

合格判定

L1

4.2

2.1

38.5

3.2

合格

L2

3.8

1.7

42.3

2.8

合格

L3

5.1(超差)

2.9

35.7

4.1

不合格

2. 关键性能验证

1)重复精度验证

 L1 样品同一位置重复扫描 5 次,核心参数结果如下:

  • ΔH_max

    4.2→4.1→4.3→4.2→4.2μm,平均值 = 4.2μm,标准差 = 0.08μm
  • ΔD_max

    2.1→2.0→2.2→2.1→2.1μm,平均值 = 2.1μm,标准差 = 0.07μm
  • 结果表明:重复精度远优于需求的≤0.5μm,满足量产一致性要求。

2)透明 / 非透明测量一致性

选取 L2 样品中 “镜片区域(透明)”  “镜筒区域(非透明)”  200 个点,测量距离值标准差:

  • 透明镜片区域:标准差 = 0.09μm
  • 非透明镜筒区域:标准差 = 0.07μm
    两者差异 < 0.03μm,证明     LTC3000 对两种材料的测量稳定性一致,无系统偏差。

3)小尺寸传感器优势验证

对比 LTC3000φ8mm)与某竞品传感器(φ12mm)的安装适配性:

  • LTC3000

    :可深入镜头模组周边元器件(如马达、排线)间隙(最小间隙 5mm),无干涉;
  • 竞品传感器:因直径过大,需调整样品摆放角度,导致测量效率下降 30%,且易产生角度偏差;
    验证了 LTC3000 小尺寸设计对手机微型模组的适配性。

3. 结果可视化输出

LT-CPS 配套 Studio 软件生成 3 类核心报告:

  1. 2D 环形灰度图

    :用灰度值表示距离(亮区为高,暗区为低),直观显示镜片高度差与缝隙分布(L3 样品的 ΔH_max=5.1μm 处呈明显亮斑,标记为超差区域);
  2. 3D 镜头地形图

    :还原镜筒、镜片的三维形貌,清晰呈现镜片安装倾斜(如     L3 样品 1# 镜片存在 0.5° 倾斜,导致 ΔH 超差);
  3. 参数统计报告

    :输出每 1° 圆周的缝隙宽度、每片镜片的深度偏差,自动标记超差项(如 L3 样品的 ΔH_max=5.1μm,标注 “高度差超差)。

七、案例总结

本案例通过国产泓川 LTC3000 光谱共焦传感器的小尺寸(φ8×38.7mm)、高精度(0.1μm 重复精度)、多材料兼容性 LT-CPS 控制器的高速采样(32kHz,成功实现手机相机镜头模组 “高度差 - 深度 - 缝隙” 的一体化测量,核心价值如下:

  1. 精度达标

    :测量误差 <±0.6μm,重复精度 < 0.1μm,可精准识别 5μm 级的高度差超差;
  2. 效率适配

    :单次扫描耗时≤8 秒,满足量产线 “每小时检测 450 ” 的效率需求;
  3. 环境适应

    IP67 防护等级可应对产线粉尘、少量油污环境,传感器寿命达 20000 小时以上;
  4. 国产化优势

    :相比进口同类产品,成本降低 40%,且技术支持响应时间缩短至 24 小时内。

后续可优化方向:结合 AI 算法实现超差原因自动诊断(如 L3 样品高度差超差源于镜片倾斜,AI 可自动识别倾斜角度并反馈至组装工序),进一步提升产线智能化水平。


Case / 相关推荐
2025 - 08 - 30
点击次数: 0
一、案例背景与核心测试需求手机相机镜头模组(以某型号 5P 光学镜头为例)的多镜片安装精度直接决定成像质量 —— 镜片间高度差过大会导致光路偏移,引发画面模糊、畸变;安装深度偏差超出阈值会改变焦距,影响自动对焦性能;镜筒与镜片的配合缝隙过大则易进灰、产生杂散光,甚至导致镜片松动。本案例针对该 5P 镜头模组的外观关键参数展开测量,具体需求如下:镜片间高度差:相邻镜片(如 1# 镜片与 2# 镜片、...
2025 - 08 - 06
点击次数: 8
一、多晶硅太阳能电池厚度:发电效率与柔性的平衡艺术多晶硅太阳能电池作为光伏市场的主流产品,其厚度是影响性能的核心参数 —— 既需满足高效发电,又要适应柔性场景的需求,这种 "平衡" 背后是材料特性与工程技术的深度耦合。1. 厚度与发电效率:并非越厚越好的 "倒 U 型" 关系多晶硅太阳能电池的发电效率依赖于光吸收能力与载流子收集效率的协同。当厚度较小时(如<...
2025 - 07 - 13
点击次数: 25
一、方案背景与需求凸面镜面作为光学系统中的关键元件,其 3D 轮廓精度直接影响光学性能(如成像质量、光路偏转精度)。传统接触式测量易划伤镜面,而普通光学测量受限于角度范围和量程,难以覆盖凸面的曲面变化(大段差、大曲率)。针对这一需求,本方案采用LTC4000F 光谱共焦传感器搭配LT-CCS 单通道控制器,利用其超大测量角度、超大量程及高精度特性,实现凸面镜面 3D 轮廓的非接触式精确扫描。二、方...
2025 - 06 - 05
点击次数: 12
一、行业挑战与泓川科技解决方案在医用玻璃瓶生产领域,透明 / 茶色瓶底的倾斜度检测一直是技术难点:传统接触式传感器(如电感式)因物理接触易划伤瓶底,且采样频率低(≤2kHz),无法满足高速产线需求;激光位移传感器则因光穿透性问题,对透明材料测量失效。泓川科技凭借 LTC7000 系列光谱共焦位移传感器与 LT-CPS/LT-CPS-L 控制器的创新组合,突破了上述瓶颈,为医用玻璃瓶质量管控提供了非...
2025 - 06 - 04
点击次数: 17
一、工艺挑战与技术需求在手机制造领域,油墨涂刷工序需完成 7 次精密涂布,单次涂层厚度控制在微米级(典型值 50-200μm),且要求各层平整度误差≤±5μm。传统接触式测量存在划伤风险,而普通光学传感器因光能利用率低(0.1% F.S/°C),难以满足高速在线全检需求。泓川科技基于LTC400 系列光谱共焦位移传感器与LT-CPS 控制器的组合方案,以0.012μm 静态重复...
2025 - 05 - 21
点击次数: 35
一、玻璃管管壁单边测厚应用场景适用于透明玻璃管(如医用输液管、实验室玻璃器皿)的管壁厚度快速检测,尤其适合小管径、薄壁结构的单边非接触式测量。测试方案设备配置传感器:LTC7000S 激光位移传感器(聚焦光斑 Φ25μm,适合微小尺寸测量)。控制器:LT-CPF 系列控制器(单通道模式,采样频率≥1Hz,满足每秒 1 次数据采集需求)。测量模式:折射率模式(默认 K9 光学玻璃折射率,n=1.51...
About Us
关于泓川科技
专业从事激光位移传感器,激光焊缝跟踪系统研发及销售的科技公司
中国 · 无锡 · 总部地址:无锡新吴区天山路6号
销售热线:0510-88155119 
图文传真:0510-88152650
Working Time
我们的工作时间
周一至周五:8:00-18:00
周六至周日:9:00-15:00
Shown 企业秀 More
  • 1
    2022 - 12 - 03
    无论是半导体加工过程中还是锂电池制造过程中总是伴随着腐蚀,高温振动等恶劣环境,为了保证生产的高效稳定,无锡泓川科技推出了多种具有不同钢铁不锈钢金属外壳的激光位移传感器,具有高防护性,可以从容的面对各种复杂的环境。在生产过程中总是在恶劣的环境中进行。在当今的环境中,自动化解决方案有时会暴露在非常困难的生产条件下。而且还必须具有可靠的功能,这对传感器技术来说是一个挑战。无锡泓川科技有限公司广泛的测试程序,确保了我们的激光位移传感器能够承受恶劣的环境要求。例如在电子行业中电子产品在我们日常生活中扮演着重要的角色。无论是在电动巴士和汽车的电池中,还是在太阳能发电模块中。自动化生产在电子工业的许多领域都是非常复杂的。真空和高温环境是随处可见的。使用的化学物质具有腐蚀性。这不仅影响生产条件和机器在许多应用领域,传感器解决方案也面临着新的挑战。那么能满足这些挑战的出色的激光位移传感器是什么样的呢?在某些情况他必须能抗抵抗至少70度到100度的高温。或者他必须能承受真空环境并且具有腐蚀性,化学物质的过程中也能抗拒。他应该有特别耐用的材料制成如不锈钢甚至特氟龙材料。无锡泓川科技有限公司提供范围广泛的激光位移传感器和激光位移传感器技术,尤其适用于恶劣环境。
  • 2
    2024 - 01 - 21
    摘要:本文将详细阐述高精度激光测距传感器在锂电池极片厚度测量中的应用情况。我们使用的激光测距传感器能够准确测量涂层厚度在1-10μm之间的极片,而且其精度能达到0.15μm。并且,通过特殊的同步计算过程和测厚技术,我们成功解决了由于极片在制造过程中的起伏变动带来的测量误差。我们的传感器还具有定制化的宽光斑特性,能够应对涂层厚度不均匀的情况,从而得到极片全表面的平均值。1. 导言锂电池在移动设备、电动汽车等领域的应用日益广泛,其中极片的涂层厚度对电池性能影响显著。传统的接触式和机械式测量方法经常无法满足需求,而我们的高精度激光测距传感器正好拥有非接触测量和高精度测量的优势。2. 测量系统与技术我们使用的是一种高精度激光测距传感器,它可以准确测量出微米级别的厚度,并且精度能够达到0.15μm。我们通过使用专业的同步运算程序和射测厚技术,成功地解决了由于极片在制造过程中的起伏变动带来的测量误差问题。此外,该传感器还具有定制化的宽光斑特性,能够应对涂层厚度不均匀的情况,从而得到极片全表面的平均值。3. 实验结果与效果分析多次实验结果证明,我们使用的激光测距传感器在锂电池极片厚度测量中展现出了可靠性和准确性。实验结果显示,该传感器能够稳定地测量出微米级别的涂层厚度。通过专业的同步运算程序和射测厚技术,我们成功地解决了测量误差问题。定制化的宽光斑特性使得传感器可以应对涂层厚度不均匀的情况,从而...
  • 3
    2025 - 04 - 07
    在大型工件检测、锂电池极片测厚、航空航天等高精度长距测量场景中,传感器需兼具大范围扫描能力与微米级精度,同时解决多设备空间协同难题。无锡泓川科技LTPD50激光位移传感器创新采用中空分体式结构设计,以50mm超长参考距离、0.05μm重复精度及进口半价成本,突破进口设备在长距高精度领域的垄断,为工业用户提供“远距精准测量+多设备同轴集成”的国产化标杆方案。核心优势:中空架构+超长量程,重构工业检测边界中空同轴设计,赋能多设备协同φ25mm贯通孔:传感器主体中空,支持工业相机、激光打标头等外设直接穿过,实现测量点与操作中心零偏差同轴,解决传统长距传感器体积大、遮挡视野的痛点。超薄机身:紧凑型设计(74205110mm),适配机器人导轨、自动化产线等空间受限场景,安装灵活性提升60%。长距高精度,性能对标进口50mm参考距离±0.8mm量程:覆盖锂电池极片、金属板材等大尺寸工件的高精度厚度检测需求,减少传感器移动频次。0.05μm重复精度:媲美基恩士LK-G系列,线性误差**成本颠覆:售价仅为进口同类产品的40%~50%,且无需外置控制器,综合成本降低70%。硬核参数:长距测量的性能标杆参数LTPD50(无锡泓川)进口竞品(如基恩士LK-G500)参考距离50mm50mm测量范围±0.8mm±0.5mm重复精度0.05μm(无平均)0.1μm采样频率160...
  • 4
    2023 - 09 - 30
    1. 引言:随着科技的迅猛发展和市场需求的不断提升,对建材板的厚度与宽度尺寸精确测量变得越来越关键。因此,选用高精度激光位移传感器来实现,既可以提高产量,又能保证质量。2. 技术原理:激光位移传用光干涉测量技术,发出红外激光束并接收反射回仪器的光阴影,通过光敏元件将其转换成电信号,经过放大处理后输出相应的标准信号来实现位移的测量。其中,红外激光束可以达到丝级别的精度,准确度极高。3. 技术方案:- 挤出流程结束后,立即利用激光位移传感器进行厚度和宽度的测量,效率高;厚度调整功能的使用,可以显著缩短安装和产品更换所需的工时。- 高精度激光位移传感器设置于生产线上,根据实际产品的厚度和宽度需要,选定合适的光束焦距和安装位置。传感器投射出激光束,反射回传感器的发射率会随着测量对象的位移变化而变动。- 传感器内部的电路系统将接收到的电信号进行处理,根据预设的参数,输出标准信号。- 通过对数据的实时监测和分析,可以找出生产中存在的问题并及时进行调整,以确保建材板的质量。4. 应用行业:因为对射的高精度激光位移传感器具有精度和效率高、可靠性强等优点,被广泛用于建材、塑料制品、金属材料、石材加工、生物医疗、微电子等范围。特别是在板材生产等领域,可以有效提高产品质量与生产效率,满足市场对精密制造的需求。结论:利用激光位移传感器在建材板的厚度和宽度测量中,可以实现精准测量,促进生产效率,同时保证产品...
  • 5
    2024 - 12 - 11
    摘要光谱共焦位移传感器是一种高精度、非接触式的光电位移传感器,广泛应用于光学镜片检测、半导体制造、医疗器械生产等多个领域。本文详细阐述了光谱共焦位移传感器的制造技术,包括生产技术细节、工艺流程以及需要注意的具体事项,为相关领域的研发和生产提供参考。引言随着精密仪器制造业的发展,对于工业生产测量的要求越来越高。光谱共焦位移传感器以其高精度、非接触式、实时无损检测等特性,成为解决这一问题的有效手段。本文旨在详细介绍光谱共焦位移传感器的制造技术,包括关键零部件的选择、生产工艺流程以及制造过程中需要注意的事项。一、光谱共焦位移传感器的基本原理光谱共焦位移传感器由光源、分光镜、光学色散镜头组、小孔以及光谱仪等部分组成。传感器通过色散镜头将位移信息转换成波长信息,再利用光谱仪进行光谱分解,反解得出被测位移。其中,色散镜头作为光学部分完成了波长和位移的一一映射,是传感器的核心部件。二、关键零部件的选择1. 光源选择白光LED作为光源,其光谱分布范围广泛,能够满足不同测量需求。同时,白光LED具有寿命长、稳定性好等优点,适合用于工业生产环境。2. 色散镜头色散镜头是光谱共焦位移传感器的关键部件,其性能直接影响传感器的测量精度和分辨率。在选择色散镜头时,需要考虑其轴向色散与波长之间的线性度、色散范围以及镜头材料等因素。3. 光谱仪光谱仪用于接收通过小孔的光信号,并确定其波长,从而实现位移分辨。在选择...
  • 6
    2025 - 04 - 13
    在工业自动化领域,精密测量是保障产品质量与生产效率的核心环节。泓川科技 HC8-050 与松下 HG-C1050 作为两款主流的中短距离激光位移传感器,在电子制造、精密加工、自动化检测等领域应用广泛。本文将从技术参数、核心性能、应用场景等维度展开深度对比,揭示 HC8-050 在特定场景下的显著优势及高性价比。一、基础技术参数:精准定位性能差异参数HC8-050HG-C1050差异分析测量范围50±15mm(35-65mm)50±15mm(35-65mm)两者一致,覆盖中短距离精密测量场景。重复精度15μm30μmHC8-050 的重复精度比 HG-C1050 提升 50%,适用于对微小位移敏感的精密检测(如芯片封装、精密轴承测量)。光点直径70μm约 70μm光斑尺寸相同,但 HC8-050 通过光学优化,在低反射率表面的光斑识别能力更强。线性度±0.1%F.S.±0.1%F.S.线性度一致,满足工业级测量精度要求。温度特性±0.05%F.S/℃±0.03%F.S/℃HG-C1050 理论温漂略优,但 HC8-050 通过硬件散热与软件温补算法,实际在高温环境(如 80℃)下稳定性更优。工作温度-10~50℃(支持 80℃长期使用)-10~45℃HC8-050 突破行业常规,通过特殊设计可在 80℃高温环境稳定运行,而 ...
  • 7
    2025 - 01 - 20
    一、引言1.1 研究背景与意义在当今数字化时代,IC 芯片作为现代电子设备的核心部件,其重要性不言而喻。从智能手机、电脑到汽车电子、工业控制,乃至新兴的人工智能、物联网等领域,IC 芯片无处不在,如同电子设备的 “大脑”,掌控着设备的运行与功能实现。其发展水平不仅是衡量一个国家科技实力的重要标志,更在全球经济竞争中占据着关键地位。近年来,IC 芯片产业呈现出蓬勃发展的态势。随着摩尔定律的持续推进,芯片的集成度不断提高,尺寸愈发微小,性能却实现了质的飞跃。与此同时,5G、人工智能、大数据等新兴技术的迅猛发展,为 IC 芯片产业注入了强大的发展动力,市场对芯片的需求呈现出爆发式增长。在 IC 芯片制造的复杂流程中,精确测量起着举足轻重的作用,如同工匠手中精准的量具,确保每一个环节都达到极高的精度标准。从芯片设计阶段的版图测量,到制造过程中的光刻、蚀刻、沉积等工艺的尺寸控制,再到封装测试阶段对芯片外形、引脚等的精确测量,每一步都离不开高精度测量技术的支撑。只有通过精确测量,才能保证芯片的性能、良率以及可靠性,满足市场对高质量芯片的严苛要求。光谱共焦传感器作为一种先进的测量技术,凭借其独特的工作原理和卓越的性能优势,在 IC 芯片测量领域展现出了巨大的潜力。它能够实现对芯片表面形貌、厚度、尺寸等参数的高精度非接触测量,为芯片制造提供了可靠的数据支持。这种高精度测量对于提高芯片制造工艺的精度...
  • 8
    2022 - 12 - 05
    今天我们讨论的是条码阅读器的性能冗余,高性能条码阅读器有哪些优势呢?有时在使用中条码阅读器在调试时。不能很好的对准。或者条码阅读器在使用一段时间后出现故障和校准错误。纸箱和包裹也可能出现大幅度变形或者倾斜。或者定义范围不合适。或者超出质量标准,甚至有时还会达到,没有达到标准的class a,条码标准。例如条码印刷不清晰或者褪色。在所有的这种条件情况下,我们的条码阅读器的性能冗余就派上用场了。       条码阅读器达到参数限制时。通常需要性的目的,也就是说即使阅读条件不在标准范围内,足够高的读取质量也能解决这个问题。即使在极端条件下,我们专门开发的光学和模拟电子装置也能可靠读取条码信息。我给大家演示一下,在这个简单的装置中,条码阅读器通过以太网连接到PC,可以使用web对口激活调节模式,然后通过图表显示质量,如果条码印刷质量较好,清洁角度高达±30度,也能保证实现可靠性,但您可以看到我们产品的检测范围远远超过低级的限制。我们将这个产品功能,称为性能荣誉,该功能可以实现非常高的录取质量和应用可靠性。您在应用中遇到哪些问题呢?请联系我们。
Message 最新动态
泓川科技发布 LT-CP 系列 ETHERCAT 总线高光谱共焦控制器,32KHz 高速采样引领工业... 2025 - 08 - 30 泓川科技发布 LT-CP 系列 ETHERCAT 总线高光谱共焦控制器,32KHz 高速采样引领工业高精度测量革新近日,工业高精度测量领域迎来技术突破 —— 泓川科技正式推出LT-CP 系列 ETHERCAT 总线高光谱共焦传感器控制器(含单通道 LT-CPS、双通道 LT-CPD、四通道 LT-CPF 三款型号,含普通光源与高亮激光光源版本)。该系列产品以 “32KHz 高速采样” 与 “ETHERCAT 工业总线” 为核心亮点,填补了行业内 “高频响应 + 实时协同” 兼具的技术空白,为新能源、半导体、汽车制造等高端领域的动态高精度测量需求提供了全新解决方案。一、核心突破:32KHz 高速采样,破解 “多通道降速” 行业痛点光谱共焦技术的核心竞争力在于 “高精度” 与 “响应速度” 的平衡,而 LT-CP 系列在速度维度实现了关键突破 ——单通道模式下最高采样频率达 32KHz,意味着每秒可完成 32000 次精准距离 / 厚度测量,相当于对动态移动的被测物体(如高速传输的电池极片、晶圆)实现 “无遗漏” 的高频捕捉,测量分辨率与动态响应能力远超行业常规 10-20KHz 级别控制器。更具稀缺性的是,该系列打破了 “多通道即降速” 的传统局限:即使在双通道模式(最高 16KHz)、四通道模式(最高 8KHz)下,仍保持高频响应的稳定性。以四通道 LT-CPF 为例,其每通道 8...
泓川科技的光学楞镜如何解决光谱共焦传感器在狭小空间中大量程测量的难题? 2025 - 08 - 12 在半导体芯片制造、精密电子组装等高端工业场景中,一个棘手的矛盾始终存在:一方面,设备内部空间日益紧凑,毫米级的安装高度都可能成为 “禁区”;另一方面,随着产品结构复杂化,对测量量程的需求不断提升,5mm 以上的大量程检测已成为常态。如何在狭小空间内实现大量程精密测量?无锡泓川科技给出了突破性答案 ——光学转折镜,以创新设计让光谱共焦传感器的测量方向 “直角转向”,既节省安装空间,又兼容大量程需求,重新定义精密测量的空间可能性。传统方案的痛点:空间与量程难以两全在精密测量领域,侧出光传感器曾是狭小空间的 “救星”。泓川科技旗下 LTCR 系列作为 90° 侧向出光型号,凭借紧凑设计广泛应用于深孔、内壁等特征测量。但受限于结构设计,其量程多集中在 2.5mm 以内(如 LTCR4000 量程为 ±2mm),难以满足半导体晶圆厚度、大型精密构件高度差等大量程场景的需求。若选择传统端面出光的大量程传感器(如 LTC10000 量程 ±5mm、LTC20000 量程 ±10mm、LTC50000 量程 ±25mm),虽能覆盖测量需求,却因轴向出光设计需预留足够安装高度,在半导体设备的密闭腔室、精密仪器的紧凑模组中 “寸步难行”。空间与量程,似乎成了不可调和的矛盾。光学转折镜:让大量程探头 “直角转身”,释放空间潜力泓川科技创新研发的光学转折镜...
泓川科技 LTP 系列激光位移传感器全国产化制造流程细节全披露 2025 - 06 - 22 一、国产化背景与战略意义在全球供应链竞争加剧的背景下,激光位移传感器作为工业自动化核心测量部件,其国产化生产对打破技术垄断、保障产业链安全具有重要战略意义。泓川科技 LTP 系列依托国内完整的光学、电子、机械产业链体系,实现了从核心零部件到整机制造的全流程国产化,彻底解决了接口卡脖子问题,产品精度与稳定性达到国际先进水平,同时具备更强的成本竞争力与定制化服务能力。二、核心部件全国产化组成体系(一)光学系统组件激光发射单元激光二极管:采用深圳镭尔特光电 655nm 红光 PLD650 系列(功率 0.5-4.9mW)及埃赛力达 905nm 红外三腔脉冲激光二极管,支持准直快轴压缩技术,波长稳定性 ±0.1nm,满足工业级高稳定性需求。准直透镜:选用杭州秋籁科技 KEWLAB CL-UV 系列,表面粗糙度 光学滤光片:深圳激埃特光电定制窄带滤光片,红外截止率 99.9%,有效消除环境光干扰。激光接收单元光电探测器:上海欧光电子代理 OTRON 品牌 PSD 位置敏感探测器,分辨率达 0.03μm(如 LTPD08 型号),北京中教金源量子点探测器正在实现自主替代。聚焦透镜组:福州合创光电高精度分光棱镜,偏振消光比 1000:1,配合广州明毅电子阳极氧化支架,确保光路同轴度≤5μm。(二)电子电路组件信号处理模块微处理器:龙芯中科 3A5000 工业级芯片,支持 - 40℃...
Copyright ©2005 - 2013 无锡泓川科技有限公司

1

犀牛云提供企业云服务
Our Link
X
3

SKYPE 设置

4

阿里旺旺设置

等待加载动态数据...

等待加载动态数据...

5

电话号码管理

  • 0510-88155119
6

二维码管理

等待加载动态数据...

等待加载动态数据...

展开