服务热线: 0510-88155119
13301510675@163.com
Language
项目案例 Case
Case 光谱共聚焦

BGA/CSP微间距锡球凸点(Bump)三维高精扫描与共面性检测系统解决方案

日期: 2026-01-04
浏览次数: 0


1. 项目背景与工艺挑战分析

1.1 行业背景

随着半导体封装技术向着小型化、高密度化发展,球栅阵列封装(BGA)和芯片级封装(CSP)已成为主流工艺。在这些封装形式中,芯片与基板的电气连接依赖于底部的微小锡球(Solder Bump)。锡球的高度一致性(共面性, Coplanarity)、直径大小以及是否存在缺陷,直接决定了最终焊接的可靠性。

1.2 测量难点分析

在实际生产在线检测(Inline Inspection)中,对BGA/CSP锡球的测量面临以下严峻挑战:

  1. 高反光特性(Specular Reflection): 锡球表面为平滑的曲面金属,具有极强的镜面反射特性。传统激光三角法传感器在照射到锡球顶点或边缘时,容易产生多重反射或高达饱和的噪点,导致测量数据失真。

  2. 大角度曲面(Steep Slope): 锡球是球冠状结构,边缘呈现陡峭的角度。如果传感器接收角度(数值孔径)不足,光线照射到边缘后无法返回接收端,导致边缘数据丢失,无法拟合完整的球体形貌。

  3. 微小尺寸与高密度(Micro & Dense): CSP封装的锡球直径往往在几十微米到几百微米之间,间距极小。光斑尺寸如果过大,会产生“平均效应”,无法分辨锡球的最高点,导致高度测量偏低。

  4. 遮挡与阴影(Shadowing): 高密度的锡球排列容易造成三角法测量的阴影盲区,必须采用同轴测量技术。

2. 核心技术原理:光谱共焦位移测量技术

本方案采用泓川科技(ChuanTec)LTC系列光谱共焦传感器。该技术完美克服了上述挑战,是目前BGA/CSP检测的最佳非接触式测量方案之一。

2.1 测量原理

根据上传资料中的《基本原理》章节:
光谱共焦技术利用光学系统的“色散”现象。

  1. 光源发射: 控制器内的白色LED点光源通过光纤传输,经过探头内的色散透镜组。

  2. 色散聚焦: 透镜组具有特殊的色散设计,将白光分解为不同波长的单色光(红、绿、蓝等),这些不同波长的光聚焦在光轴上不同的垂直距离处,形成一条连续的光谱焦线。

  3. 信号接收: 当被测物体(锡球)的表面处于某一波长光的焦点位置时,该波长的反射光强度最强,能够沿着原光路返回,并高效率地通过特制的“针孔光栏”(Pinhole)。

  4. 光谱分析: 只有聚焦在表面的波长能通过针孔进入光谱仪,其他离焦波长被阻挡。光谱仪通过检测峰值强度的波长,精确计算出对应的距离值。

2.2 针对BGA应用的技术优势(基于PDF资料)

  • 同轴测量,无盲区: 资料显示LTC系列“采用同轴的共焦方式”。这对高密度BGA至关重要,入射光与反射光在同一直线上,彻底消除了三角测量法在密集锡球间产生的阴影盲区。

  • 适应镜面与大角度: 光谱共焦技术对表面反光不敏感,且具有极高的角度特性。资料显示LTC400的接收角度高达**±43°** ,这意味着即使照射到锡球边缘的陡坡,信号也能稳定返回,确保球冠形貌完整。

  • 亚微米级精度: 资料显示LTC系列具备“亚微米测量精度”,分辨率可达纳米级(如LTC400为12nm),足以应对微米级锡球的高度公差要求。

3. 硬件选型与系统架构设计

基于上传的参数表,我们为不同工艺节点推荐两款配置。

3.1 核心传感器选型

方案A:针对超微细间距CSP/晶圆级封装(WLP)—— 型号:LTC400

  • 推荐理由:

    • 测量范围: ±0.2mm(总像程400μm)。对于一般高度在50μm~250μm的微型锡球,此量程既能覆盖锡球高度,又能覆盖基板翘曲变化,且保留了最高的精度。

    • 光斑直径: 7μm。极小的光斑可以精确扫描出微小锡球的顶点,避免光斑跨越球顶造成数据平滑。

    • 最大测量角度: ±43° 。这是选型的关键参数。锡球是球体,LTC400的大角度特性确保能扫描到锡球更低的围度,有利于拟合球心算高度。

    • 线性精度: <±0.12μm。

    • 分辨率: 12nm。

方案B:针对标准BGA/Flip Chip封装 —— 型号:LTC1200

  • 推荐理由:

    • 测量范围: ±0.6mm(总像程1.2mm)。适用于锡球直径较大(如0.3mm-0.6mm)或基板翘曲程度较大的场景。

    • 光斑直径: 9.5μm。对于标准BGA锡球,此光斑已足够精细。

    • 最大测量角度: ±32°。虽然小于LTC400,但对于标准锡球的顶部扫描已经足够获取有效的高度数据进行拟合。

    • 工作距离(参考距离): 20mm。较长的工作距离提供了更安全的安装空间,防止运动过程中碰撞昂贵的芯片。

3.2 控制器与数据采集选型

  • 控制器型号: 推荐使用 LT-CCF 或 LT-CCH(多通道)。

  • 采样频率: 资料显示“1通道Max. 10kHz”或CCF系列支持更高频率。对于成千上万个锡球的扫描,速度是产能的关键。

  • 接口: 使用Ethernet (1000Mbps) 或 USB 2.0 High-speed 与工控机通讯,确保海量点云数据实时传输。

  • 触发方式: 必须使用编码器触发(ABZ输入) ,配合高精度运动平台,实现等间距触发采样,保证图像不发生拉伸或压缩变形。

3.3 运动机构

  • 采用高精度龙门式或XY直线电机平台,搭载传感器进行“飞拍”(Flying Scan)模式扫描。由于光谱共焦对Z轴抖动不敏感(只要在量程内),主要考量XY轴的定位精度。

4. 系统集成与检测工艺流程

本方案将传感器集成到自动化AOI(自动光学检测)设备或专用的3D锡球检查机中。

4.1 扫描策略:光栅式扫描(Raster Scan)

由于锡球呈阵列分布,系统采用“弓”字形路径对整个BGA表面进行全覆盖扫描。

  1. 参数设置: 设定扫描间距(Pitch)。为了确保精度,建议扫描间距设定为光斑直径的1/2至1/3。例如使用LTC400(7μm光斑),XY轴的扫描步距可设为2-3μm。

  2. 数据采集: 运动平台携带LTC400探头快速移动,控制器接收编码器脉冲,每移动一个步距采集一个高度数据(Z值)。

  3. 3D重构: 将采集到的海量Z值数据映射到XY坐标上,生成BGA表面的3D点云图或深度图。

4.2 数据处理算法(核心逻辑)

获得3D点云后,软件需执行以下算法步骤:

  1. 基准面拟合(Reticle Plane Fitting):

    • 锡球是焊接在基板(Substrate)上的,基板本身可能存在翘曲。

    • 算法首先识别锡球之间的基板区域数据,利用最小二乘法拟合出一个虚拟的“零平面”(基准面)。

  2. 锡球分割与识别(Blob Analysis):

    • 设置高度阈值,将高出基准面的数据块分割出来,识别为独立的锡球。

  3. 顶点高度计算(Peak Height):

    • 对于每一个锡球的数据簇,可以直接寻找Z轴最大值(Peak Search)。

    • 更优方案(针对LTC400数据): 利用采集到的球冠表面数据,进行球面拟合(Sphere Fitting) 。这能消除单点噪点的影响,计算出理论球顶高度,精度更高。

  4. 共面性计算(Coplanarity Inspection):

    • 根据JEDEC标准,计算“共面性”。通常定义为:所有锡球顶点构成的三点确定的回归平面,各锡球顶点到该平面的最大距离偏差。

    • 如果某颗锡球的高度偏差超过允许公差(如±10μm),则判定为NG(虚焊或应力风险)。

4.3 工艺结合点

该系统可嵌入以下工艺环节:

  • 植球后检测(Post-Balling Inspection): 在回流焊之后,立即检查锡球是否存在漏球、直径大小不一、高度异常。及时剔除不良品,防止流入下一道贴片工序。

  • 基板来料检测(Substrate Inspection): 检查空板的焊盘平整度,利用LTC系列对“坑、段差”无死角的特性,检测阻焊膜厚度和焊盘深度。

5. 方案优势总结与数据支撑

本方案相较于传统视觉或激光方案,具有显著的科学性和技术优势,具体支撑数据如下:

5.1 数据真实性与高信噪比

  • 支撑数据: 根据LTC400参数,光斑7μm线性误差<±0.12μm

  • 分析: 传统激光光斑往往在20-50μm,容易对微小锡球产生平均效应,导致测出的高度值比实际值偏低。LTC400的微米级光斑能真实还原锡球顶点形貌。

5.2 卓越的角度适应性

  • 支撑数据: LTC400测量角度**±43°** (对比LTC100B的±46.5°也极具竞争力,且量程更实用)。

  • 分析: 锡球曲率大,普通激光传感器在超过±20°斜率时信号就会丢失或产生飞点。LTC400能有效采集到锡球球冠大部分区域的数据,为球面拟合提供充足样本,极大地提高了重复精度。资料显示其重复精度达12nm,确保了GR&R(量具重复性和再现性)指标满足半导体行业<10%的要求。

5.3 材质适应性

  • 支撑数据: 资料指出“即使透明、镜面体的测量高度发生变化,也可无位置偏离地测量”。

  • 分析: 锡球不仅反光,而且表面光洁度不一(有的氧化发乌,有的光亮)。光谱共焦是基于波长测量,而非光强,因此受物体表面反射率变化的影响极小,无需针对不同批次的锡球频繁调整参数。

5.4 柔性化与集成便利性

  • 支撑数据: LTC400探头尺寸为Φ40mm,重量仅186g;LTC1200探头尺寸Φ36mm,重量182g。

  • 分析: 轻量化的测头设计允许更高的运动加速度,提升整体CT(Cycle Time)。同时,控制器支持USB/Ethernet/RS485等多种接口,并提供C++/C#开发包(SDK),便于系统集成商快速开发专用的3D检测软件。

6. 结论

综上所述,采用泓川科技LTC400(针对微间距) 或LTC1200(针对通用BGA) 光谱共焦传感器构建的3D扫描系统,是解决BGA/CSP锡球凸点高度及共面性检测的理想方案。

该方案利用光谱共焦技术“同轴测光、大角度适应、纳米级分辨率”的特质,从根本上解决了传统光学手段在高反光曲面微小物体测量上的物理局限。通过结合高频编码器触发与球面拟合算法,该系统不仅能杜绝因高度不一造成的虚焊隐患,还能通过数据反馈优化前端植球工艺参数,是实现半导体封测环节“零缺陷”制造的关键技术手段。这一方案兼具理论深度与工程可实施性,完全符合当前高端电子制造的工艺演进需求。



Case / 相关推荐
2026 - 01 - 01
点击次数: 2
摘要随着消费电子与半导体封装技术向微型化、高密度化(HDI)发展,印刷电路板(PCB)上元器件的尺寸不断缩小(如01005封装),对表面贴装技术(SMT)后的质量检测提出了极高要求。传统的二维自动光学检测(AOI)难以获取高度信息,而激光三角法受制于阴影效应和多重反射,在密集元器件检测中存在盲区。本文深入探讨了光谱共焦位移传感技术(Chromatic Confocal Microscopy, CC...
2025 - 12 - 03
点击次数: 13
一、项目背景锂电池极片作为动力电池的核心组件,其厚度均匀性直接影响电池的能量密度、循环寿命及安全性能。某锂电池生产企业年产 2GWh 动力电池,极片生产线涵盖正极(三元材料)、负极(石墨材料)两条产线,极片宽幅分别为 1.2m(正极)、1.0m(负极),轧制后目标厚度范围为 80-200μm,公差要求严格控制在 ±1μm 内。此前采用接触式测厚仪,存在极片表面划伤风险(划伤率约 0.8%...
2025 - 11 - 17
点击次数: 16
核心结论:泓川 LTCR4000 探针型光谱共焦传感器(侧面 90° 出光),完美适配 FA 透明材质、安装空间狭小的测量场景,通过底部照射多点测距实现角度矫正,精准保障 FA 平行度达标。一、应用背景与测量痛点应用场景光通讯芯片 FA(光纤组件)作为光信号传输核心部件,其端面与安装基准面的平行度直接影响插损(IL)、回波损耗(RL)等关键性能。FA 采用透明光纤材质,装配时由夹爪夹持固...
2025 - 08 - 30
点击次数: 24
一、案例背景与核心测试需求手机相机镜头模组(以某型号 5P 光学镜头为例)的多镜片安装精度直接决定成像质量 —— 镜片间高度差过大会导致光路偏移,引发画面模糊、畸变;安装深度偏差超出阈值会改变焦距,影响自动对焦性能;镜筒与镜片的配合缝隙过大则易进灰、产生杂散光,甚至导致镜片松动。本案例针对该 5P 镜头模组的外观关键参数展开测量,具体需求如下:镜片间高度差:相邻镜片(如 1# 镜片与 2# 镜片、...
2025 - 08 - 06
点击次数: 36
一、多晶硅太阳能电池厚度:发电效率与柔性的平衡艺术多晶硅太阳能电池作为光伏市场的主流产品,其厚度是影响性能的核心参数 —— 既需满足高效发电,又要适应柔性场景的需求,这种 "平衡" 背后是材料特性与工程技术的深度耦合。1. 厚度与发电效率:并非越厚越好的 "倒 U 型" 关系多晶硅太阳能电池的发电效率依赖于光吸收能力与载流子收集效率的协同。当厚度较小时(如<...
2025 - 07 - 13
点击次数: 49
一、方案背景与需求凸面镜面作为光学系统中的关键元件,其 3D 轮廓精度直接影响光学性能(如成像质量、光路偏转精度)。传统接触式测量易划伤镜面,而普通光学测量受限于角度范围和量程,难以覆盖凸面的曲面变化(大段差、大曲率)。针对这一需求,本方案采用LTC4000F 光谱共焦传感器搭配LT-CCS 单通道控制器,利用其超大测量角度、超大量程及高精度特性,实现凸面镜面 3D 轮廓的非接触式精确扫描。二、方...
About Us
关于泓川科技
专业从事激光位移传感器,激光焊缝跟踪系统研发及销售的科技公司
中国 · 无锡 · 总部地址:无锡新吴区天山路6号
销售热线:0510-88155119 
图文传真:0510-88152650
Working Time
我们的工作时间
周一至周五:8:00-18:00
周六至周日:9:00-15:00
Shown 企业秀 More
  • 1
    2023 - 09 - 11
    在真空环境下应用光谱共焦位移传感器的可行性一直是一个备受关注的问题。真空环境的特殊性决定了对传感器的要求与常规环境有所不同。本篇文章将围绕真空环境下光谱共焦位移传感器的应用可行性展开讨论,并进一步深入探讨传感器在不同真空环境下的要求和变化。首先,真空环境下的应用对传感器的热产生要求较高。由于真空环境的热传导性能较差,传感器不能产生过多的热量,以避免影响传感器的正常工作和对样品的测量。光谱共焦位移传感器由于采用了被动元件,不会产生热量,因此非常适合在真空环境中应用。其次,在真空环境下使用传感器时,配件的耐真空能力也是一个重要的考虑因素。传感器配件如胶水、光纤、线缆等都必须能够耐受真空环境的特殊条件,例如低压和缺氧。为此,无锡泓川科技提供了专门用于真空环境的配件,以确保传感器的正常运行和稳定性。这些配件经过特殊处理,具有耐真空的特性,可以在真空环境中长时间使用。此外,从高真空(HV)环境到超高真空(UHV)环境,传感器对环境的要求也会发生变化。在HV环境下,传感器必须具备抗气压、抗水汽和抗粒子沉积等特性。而在UHV环境中,由于气氛更为稀薄,传感器还需要具备更高的抗气压和更低的气体释放性能。因此,传感器在HV到UHV环境的过渡中,需要经过更严格的测试和优化,以保证其在不同真空级别下的稳定性和可靠性。综上所述,真空环境下应用光谱共焦位移传感器具有可行性。传感器需要满足不产生热量的要求,并配...
  • 2
    2025 - 03 - 04
    在工业自动化领域,激光位移传感器是精密测量的核心器件,而进口品牌长期占据市场主导地位。然而,国产传感器技术近年来飞速发展,无锡泓川科技推出的 LTP系列激光位移传感器,凭借不输国际品牌基恩士LK-G系列的性能表现,以及仅为其一半的成本优势,为国产替代提供了极具竞争力的选择。本文将从核心技术、性能参数、应用场景及综合成本四大维度,对两者进行深度对比分析。 一、核心技术对比:自主创新突破瓶颈技术维度泓川LTP系列基恩士LK-G系列光学设计投受光分离型设计,支持同轴测量与镜面材料检测Li-CCD接收技术,优化像素边缘误差抗干扰能力蓝宝石防护镜+特殊滤波,抗强光(20000Lux)ND滤镜选件,适应镜面/高反光环境光斑控制宽光斑/聚焦光斑可选,适配粗糙表面与微小目标小光斑(最小20μm)与宽光斑(圆柱镜头扩展)算法优化半透明材料漫反射算法,消除内部散射干扰RPD/MRC算法,处理多重反射与透明材料分层测量光源定制405nm蓝光定制,适用于有机材料与红热金属标准655nm红光,可选ND滤镜适配高反射场景    技术亮点: LTP系列通过投受光分离设计实现与执行器(如工业相机、点胶针头)的同轴集成,解决了传统传感器空间干涉问题;其蓝光定制技术针对基恩士红光方案的局限性,在透明/半透明材料(如薄膜、玻璃)及高温金属表面测量中表现更优。二、性能参数对标:...
  • 3
    2020 - 09 - 14
    现如今在很多的行业里面都离不开激光位移传感器的应用,因为这种特殊激光位移传感器特点‍是能够对长度以及方位等来进行高精度的准确测量,而且用起来简便且很耐用所以受到了无数用户们的认可。而面对市场上众多的激光位移传感器品牌用户们究竟该怎么去选择呢?一、根据需要测量的目标结构与材质进行选择激光位移传感器虽然有着强大的测量功能,但是对于测量的目标结构与材质也是有着相应的需求的,因为激光位移传感器的测量过程是需要一个完整三角光路的,如果被测量目标的表面凹入不平就会造成三角光路无法形成,这样的话自然也就无法顺利的得到测量数据了。如果被测量目标的表面吸光这样也是无法形成完整三角光路进而无法完成测量工作的,因此用户们在选择激光位移传感器产品之时应着重考虑到这些问题才行。二、根据参数指标的实际要求进行选择激光位移传感器如今在制造业内有着很多的应用特别是对电子行业更是如此,而在选择这种产品时也应当根据具体所需的参数指标的来进行针对性选择才行。事实上这里所说的参数及指包含的面比较广比如说分辨率还有测量的速率等,因为对零部件生产的要求越是精密那么对它的要求也自然要更高也只有这样才能生产制造出真正的好产品。虽然激光位移传感器功能众多在生产过程当中的重要性是很明显的,但是在选择激光位移传感器的时候还是不能盲目应当遵循着上述这两个方面的原则,只有这样才能在众多的激光位移传感器品牌当中顺利地找到更能够满足自身实际需...
  • 4
    2023 - 08 - 21
    摘要:本报告提出了一种利用高精度激光位移传感器测量物体振动的方案。通过测量被测物的位移量,并确定振动的时间点,可以计算出振动频率和振动模式。相比多普勒测振仪,激光位移传感器具有更低的成本,在低频范围内(1000Hz以下)可以进行振动测量。本方案详细介绍了方案设计、设备选择、实验验证以及成本核算,并通过实验数据和算法验证了方案的可行性和准确性。引言物体振动是许多领域的重要研究对象,包括机械、汽车、航空航天等。传统的多普勒测振仪可以用于高频振动测量,但其成本较高,对于低频振动测量(1000Hz以下)不适用。因此,本方案提出了一种利用高精度激光位移传感器测量物体振动的方案,以满足低频振动测量的需求。方案设计利用高精度激光位移传感器测量物体振动的方案设计如下:2.1 设备选择选择一台高精度激光位移传感器,具备以下特点:高测量精度:具备亚微米级的测量精度,满足振动测量的要求。高响应频率:能够以高速响应的方式进行位移测量,捕捉到物体振动的细微变化。宽测量范围:具备较大的测量范围,适应不同物体振动的需求。2.2 传感器布置与测量原理将激光位移传感器布置在被测物体附近,并对其进行校准和调试。在物体振动过程中,传感器测量物体的位移量。传感器工作原理基于激光光束照射到物体表面,测量光斑的位置随时间的变化,从而获得物体的位移信息。2.3 数据处理与振动频率计算根据传感器测得的位移量数据,通过数据处理和信...
  • 5
    2024 - 01 - 21
    在制造业、航空航天、光学制造等行业中,准确地测量工件表面的平整度和倾斜度对于产品质量、设备性能和工程安全至关重要。为了适应这一需求,本文将详细介绍运用高精度激光位移传感器进行非接触测量工件倾斜度的具体操作步骤、应用领域以及如何通过实例演示其测量原理和效果。首先,测量设备的配置环节。需要准备3到5个高精度激光位移传感器,并配合用于数据分析处理的微机软件。在开始测量之前,传感器需要先行进行标定,以一个已知的标准平面作为参照进行校准,并让所有传感器的数值归零。这一步骤保证了测量过程的准确性,也为后续的数据分析奠定了基础。进行实测时,将待测工件放置在需要测量的表面上。根据物体表面的倾斜情况,每个传感器所显示的数值会出现差距。后续,我们可以通过微机软件读取这些二次数据,进行处理,从而精确地得出倾斜度和平整度等参数。值得注意的是,我们选择3-5个传感器进行测量的原因是,三个传感器可以保证确定一个平面的最少需求。在成本允许的情况下,增加到五个传感器进行多点测量,可以有效提高测量的准确性和稳定性。另外,在使用过程中,对传感器的同步性有很高的要求,尤其是采样速度。最好达到5k以上,以便实时调整待测表面,使得调整结果更精准,并且满足实时性的需求。当然,高精度激光位移传感器的应用领域非常广泛。在制造业,尤其是汽车制造业和机械加工行业中,通过测量工件表面的倾斜度和平整度,可以有效进行质量控制和生产过程优化...
  • 6
    2025 - 03 - 14
    泓川科技LTP系列激光位移传感器全面匹配您的技术需求尊敬的客户: 感谢您对泓川科技产品的关注!针对您提出的高精度激光位移传感器需求,我司LTP系列产品凭借卓越性能与灵活定制能力,可完全满足您的技术要求,具体对应如下:一、核心参数精准匹配需求项LTP400(200mm)LTP450(500mm)量程200mm(±100mm)500mm(±250mm)线性度±0.03%F.S.(优于要求)±0.05%F.S.(达标)重复精度(静态)±0.03%F.S.±0.05%F.S.采样频率50kHz全量程(达标)50kHz全量程(达标)输出信号-10V~10V(选配模块)-10V~10V(选配模块)技术优势说明:超高采样频率:LTP400/LTP450全量程下支持50kHz采样(48kHz),且可缩短量程至20%时提升至160kHz,满足高速动态测量需求(如振动检测、高速产线)。响应时间最低6.25μs(通过参数表*6可选配置),确保实时数据捕获能力。纳米级标定精度:基于纳米级激光干涉仪标定技术(参数表*3),线性度与重复性指标通过严格验证,确保长期稳定性。多输出模式兼容:支持**-10V~10V模拟输出**(需选配模块)、4~20mA电流输出、RS485及TCP/IP通讯,适配各类工业控制系统。48kHz、±0.05%线性度...
  • 7
    2025 - 01 - 14
    一、引言1.1 研究背景与意义在工业制造、科研等众多领域,精密测量技术如同基石,支撑着产品质量的提升与科学研究的深入。光谱共焦传感器作为精密测量领域的关键技术,正以其独特的优势,在诸多行业中发挥着无可替代的作用。它能精确测量物体的位移、厚度、表面轮廓等参数,为生产过程的精确控制与产品质量的严格把控提供了关键数据支持。基恩士作为传感器领域的佼佼者,其推出的光谱共焦传感器在市场上备受瞩目。基恩士光谱共焦传感器凭借卓越的性能,如高精度、高稳定性、快速响应等,在精密测量领域中脱颖而出。在半导体制造过程中,芯片的生产对精度要求极高,基恩士光谱共焦传感器可精准测量芯片的厚度、线宽等关键参数,保障芯片的性能与质量。在光学元件制造领域,其能够精确测量透镜的曲率、厚度等参数,助力生产出高质量的光学元件。研究基恩士光谱共焦传感器,对于推动精密测量技术的发展具有重要意义。通过深入剖析其原理、结构、性能以及应用案例,能够为相关领域的技术创新提供参考,促进测量技术的不断进步。在实际应用中,有助于用户更合理地选择和使用该传感器,提高生产效率,降低生产成本。在汽车制造中,利用基恩士光谱共焦传感器对零部件进行精密测量,可优化生产流程,减少废品率。 1.2 研究现状在国外,光谱共焦传感器的研究起步较早,技术也相对成熟。法国的STIL公司作为光谱共焦传感器的发明者,一直处于该领域的技术前沿。其研发的光谱共焦...
  • 8
    2025 - 02 - 19
    一、测量原理与技术框架高精度激光位移传感器实现1μm以下精度的核心在于三角测量法的深度优化。如图1所示,当激光束投射到被测表面时,散射光斑经接收透镜在CMOS/CCD阵列上形成位移图像。根据几何关系:\Delta x = \frac{L \cdot \sinθ}{M \cdot \cos(α±θ)}Δx=M⋅cos(α±θ)L⋅sinθ其中L为基距,θ为接收角,M为放大倍数。要实现亚微米分辨率需突破传统三角法的三个技术瓶颈:光斑质量退化、环境噪声干扰、信号处理延迟。二、关键算法突破1. 光斑中心定位算法采用改进型高斯混合模型(GMM)结合小波变换降噪,可有效抑制散斑噪声。研究显示[1],基于Marr小波的边缘检测算法可使定位精度提升至0.12像素(对应0.05μm)。2. 动态补偿算法LTP系列采用专利技术(CN202310456789.1)中的自适应卡尔曼滤波:PYTHONclass AdaptiveKalman:    def update(self, z):        # 实时调整过程噪声协方差Q        se...
Message 最新动态
蓝光光源激光位移传感器:优势、原理与特殊场景解决方案 —— 泓川科技 LTP 系列 405nm 定制... 2025 - 10 - 21 在工业精密测量中,传统红光激光位移传感器常受高反射、半透明、高温红热等特殊场景限制,而蓝光光源(405nm 波长)凭借独特物理特性实现突破。以下通过 “一问一答” 形式,详解蓝光传感器的优势、原理构造,并结合泓川科技 LTP 系列定制方案,看其如何解决特殊环境测量难题。1. 蓝光光源激光位移传感器相比传统红光,核心优势是什么?蓝光传感器的核心优势源于 405nm 波长的物理特性,相比传统 655nm 左右的红光,主要体现在三方面:更高横向分辨率:根据瑞利判据,光学分辨率与波长成反比。蓝光波长仅为红光的 62%(405nm/655nm≈0.62),相同光学系统下横向分辨率可提升约 38%,能形成更小光斑(如泓川 LTP025 蓝光版光斑最小达 Φ18μm),适配芯片针脚、晶圆等微米级结构测量。更强信号稳定性:蓝光单光子能量达 3.06eV,远高于红光的 2.05eV。在低反射率材料(如橡胶、有机涂层)表面,能激发出更强散射信号;同时穿透性更低,仅在材料表层作用,避免内部折射干扰,适合表面精准测量。更优抗干扰能力:蓝光波段与红热辐射(500nm 以上)、户外强光(可见光为主)重叠度低,搭配专用滤光片后,可有效隔绝高温物体自发光、阳光直射等干扰,这是红光难以实现的。2. 蓝光激光位移传感器的原理构造是怎样的?为何能实现高精度测量?蓝光传感器的高精度的核心是 “光学设计 + 信号处理 + ...
泓川科技国产系列光谱共焦/激光位移传感器/白光干涉测厚产品性能一览 2025 - 09 - 05 高精度测量传感器全系列:赋能精密制造,适配多元检测需求聚焦半导体、光学膜、机械加工等领域的精密检测核心痛点,我们推出全系列高性能测量传感器,覆盖 “测厚、对焦、位移” 三大核心应用场景,以 “高精准、高速度、高适配” 为设计核心,为您的工艺控制与质量检测提供可靠技术支撑。以下为各产品系列的详细介绍:1.LTS-IR 红外干涉测厚传感器:半导体材料测厚专属核心用途:专为硅、碳化硅、砷化镓等半导体材料设计,精准实现晶圆等器件的厚度测量。性能优点:精度卓越:±0.1μm 线性精度 + 2nm 重复精度,确保测量数据稳定可靠;量程适配:覆盖 10μm2mm 测厚范围,满足多数半导体材料检测需求;高效高速:40kHz 采样速度,快速捕捉厚度数据,适配在线检测节奏;灵活适配:宽范围工作距离设计,可灵活匹配不同规格的检测设备与场景。2. 分体式对焦传感器:半导体 / 面板缺陷检测的 “高速对焦助手”核心用途:针对半导体、面板领域的高精度缺陷检测场景,提供高速实时对焦支持,尤其适配显微对焦类检测设备。性能优点:对焦速度快:50kHz 高速对焦,同步匹配缺陷检测的实时性需求;对焦精度高:0.5μm 对焦精度,保障缺陷成像清晰、检测无偏差;设计灵活:分体式结构,可根据检测设备的安装空间与布局灵活调整,降低适配难度。3. LT-R 反射膜厚仪:极薄膜厚检测的 “精密管家”核心用途:专注于极薄膜...
多方面研究泓川科技LTP系列大量程全国产激光位移传感器 2025 - 09 - 02 泓川科技激光位移传感器产品技术报告尊敬的客户: 感谢您对泓川科技激光位移传感器产品的关注与信任。为帮助您全面了解我司产品,现将激光位移传感器相关技术信息从参数指标、设计原理、结构设计等八大核心维度进行详细说明,为您的选型、使用及维护提供专业参考。一、参数指标我司激光位移传感器涵盖 LTP400 系列与 LTP450 系列,各型号核心参数经纳米级高精度激光干涉仪标定验证,确保数据精准可靠,具体参数如下表所示:表 1:LTP400EA参数表参数类别具体参数LTP400EA备注基础测量参数测量中心距离400mm以量程中心位置计算(*1)量程200mm-重复精度(静态)3μm测量标准白色陶瓷样件,50kHz 无平均,取 65536 组数据均方根偏差(*2)线性度±0.03%F.S.(F.S.=200mm)采用纳米级激光干涉仪标定(*3)光源与光斑光源类型-激光功率可定制,部分型号提供 405nm 蓝光版本(*4)光束直径聚焦点光斑 Φ300μm中心位置直径,两端相对变大(*5)电气参数电源电压DC9-36V-功耗约 2.5W-短路保护反向连接保护、过电流保护-输出与通信模拟量输出(选配)电压:0-5V/010V/-1010V;电流:420mA探头可独立提供电压、电流与 RS485 输出(*6)通讯接口RS485 串口、TCP/IP 网口可选配模拟电压 / 电流输出模块(*7)响应...
Copyright ©2005 - 2013 无锡泓川科技有限公司

1

犀牛云提供企业云服务
Our Link
X
3

SKYPE 设置

4

阿里旺旺设置

等待加载动态数据...

等待加载动态数据...

5

电话号码管理

  • 0510-88155119
6

二维码管理

等待加载动态数据...

等待加载动态数据...

展开