服务热线: 0510-88155119
13301510675@163.com
Language
项目案例 Case
Case 激光位移

基于光谱共焦位移传感器的非接触式回转误差测量系统

日期: 2022-02-22
浏览次数: 84

摘要:为了实现50nm左右回转误差测量,设计了一种新型非接触式测量系统,该系统采用光谱共焦位移传感器,通过反向法获得回转轴系径向回转误差、标准球圆度误差。标准球圆度误差测量值与标称值的最大差值为5nm,表明该测量系统的测量精度能够满足设计要求。


关键词:回转误差;光谱共焦位移传感器;反向法;非接触式;超精密回转轴系


0   引言

空气静压主轴在超精密机床中有着越来越广泛的应用,是超精密机床的关键功能部件之一,其回转误差对机床加工质量有着重要影响,机床的精度越高,工件圆度误差中由主轴回转误差所造成的比例越大。通过回转误差的测量,获取主轴径向回转误差形貌,有助于优化空气静压主轴的加工、研磨和装配工艺,对提高主轴回转精度具有重要意义。


回转误差测量技术,按照传感器类型,可分为接触式和非接触式。接触式传感器主要应用于精度低、转速低的回转轴系,非接触式传感器主要应用于超精密回转轴系。空气静压主轴的回转精度通常可达到50nm以下,接触式传感器的接触力会随机改变回转误差形貌,测量重复性差,应采用非接触式传感器测量。常见的非接触式测量传感器有电容位移传感器、电涡流位移传感器、激光位移传感器、CCD传感器、扫描隧道显微镜、原子力显微镜、激光干涉仪等。电容位移传感器、电涡流位移传感器需要一定面积(电容极板、电涡流片)去测量与距离呈相应关系的电容/电感值,反映了面与面的间隙,间距小于面宽的测量点将被均化;这两类传感器还需要采取严格的电磁干扰屏蔽措施,才能获得nm级分辨率。


激光位移传感器的精度较低,难以满足50nm以下回转误差测试。激光干涉仪需要增加额外的光路,光学镜组调节较难,受环境和人为影响大。基于CCD传感器的测量法需要进行图像处理,且受限于CCD分辨率,无法用于50nm以下回转误差测量。扫描隧道显微镜、原子力显微镜的分辨率小于01nm,但价格昂贵;而且这两类仪器的采样率一般在100Hz以下,只能实现低速测量,为了保护价格昂贵的扫描头,往往需要将转速限制到1r/min以下。为构建一套转速在300r/min以下、回转误差在50nm以下的主轴回转误差测量系统,采用非接触式光谱共焦位移传感器作为高度测量,非接触式圆光栅作为角度测量,通过标准球反向法,分离出回转误差。


1     测量原理

11标准球反向法测量原理

如图1所示,标准球轮廓中心O1绕回转中心参考点O旋转,参考点O相对传感器是不变的,距离为常量C,标准球轮廓为R(θ),轴系回转误差为ε(θ),传感器反向前测量值为H1(θ),反向后测量值为H2(θ),相对起始点A的回转轴变化角度为θB点旋转180°后位于C点。

基于光谱共焦位移传感器的非接触式回转误差测量系统


H1(θ)+(θ)+ε(θ)C          (1)

将标准球、传感器反向后,O点与传感器的相对距离发生改变,增量记为ΔC。回转轴不动,故角度θ不变。

H2(θ)+(θ)+ε(θ)=C+ΔC     (2)

由式(1)(2)可得,

(θ)=1/2(2C+ΔCH1(θ)H2(θ))       (3)

ε(θ)=1/2(H2(θ)H1(θ)ΔC)            (4)

标准球圆度误差记为Δ(θ),测量起始点A的轮廓尺寸为R(0)

(θ)=(θ)-R(0)                  (5)

ΔR(θ)=1/2(H1(0)+H2(0)H1(θ)H2(θ))   (6)


1.    2光谱共焦位移传感器(CCS)测量原理

如图2所示,当挡板小孔与光源相对半透镜成镜面对称关系时,白光点光源经平面镜照射到透镜上,形成汇聚点。折射率的差异,导致汇聚点沿光轴方向的距离不同。只有恰好汇聚到样品表面的单色光可原路返回,经平面镜反射,穿过挡板小孔处,到达频谱仪,由频谱仪测量出单色光对应的波长λ

基于光谱共焦位移传感器的非接触式回转误差测量系统


对于理想小孔(孔径无限小),样品表面测量点位于高度H(a)处,单色光λa(单线标示)能穿过小孔;测量点位于高度H(b)处,单色光λb(双线标示)能穿过小孔;测量点位于高度H(c)处,单色光λc(三线标示)能穿过小孔。Hλ呈一一对应关系。通过纳米光栅尺或者标准纳米台阶样件校准即可得到相应的函数关系。实际小孔的孔径有大小误差Δr,测量时从频谱仪上可以看到一定宽度Δλ的复色光λ+Δλ)


当小孔与光源相对平面镜不呈镜面对称关系时,只有成像点在样品前或后的某个位置的单色光才能通过小孔,原路返回的单色光反而不能通过小孔。能通过小孔的单色光,在样品表面无法汇聚成一点,若其宽度过大,有可能形成非理想反射,部分光线将偏离理想路径,Δλ变大,导致测量误差变大。


2     测量系统

2.    1测量系统组成

根据标准球反向法和CCS控制器特性,构建非接触式测量系统。系统由工控机、驱动、角度测量、高度测量、夹持工装调整单元组成,如图3所示。

基于光谱共焦位移传感器的非接触式回转误差测量系统


工控机单元实现Z轴、C轴运动控制、参数设置、数据采集、结果显示等功能。工控机单元配有PCI轴控制卡,可控制电动机运动。驱动单元由C轴驱动器、Z轴驱动器组成。角度测量单元由回转轴、增量式图光栅组成。回转轴C轴采用皮带驱动方式,电动机选用伺服电动机。高度测量单元由CCS控制器和CCS传感器组成。CCS控制器将圆光栅的原点信号作为CCS数据采集的启动信号,保证每次测量起始点都在圆光栅原点处。CCS控制器通过USB口或RS232接口将采集的角度、高度数据传输给工控机,由工控机上位软件进行数据处理。Z轴实现CCS传感器Z(竖向)粗调心,夹持工装的XYZ向精调心采用手动调节机构实现。主轴回转误差测量系统实物见图4

基于光谱共焦位移传感器的非接触式回转误差测量系统


2.    2同步方式实现信号采集

采用反向法最关键的难点是角度值和高度值的同步,要保证同步误差导致的相位差小于0。同步实现信号采集既可采用软件方式,也可采用硬件方式。当采用软件方式实现时,可采用绝对式圆光栅采集角度信号,由Windows操作系统的高精度定时(1ms或者1μs)中断触发角度、高度采集,由于Win-dows操作系统不是实时操作系统,在测量300r/min的回转误差时,定时中断必须小于55μs,才能保证同步误差在可接收范围内。当采用硬件方式实现时,CCS控制器直接采集圆光栅的正交信号,角度与高度之间的同步触发由CCS控制器内部采样电路实现如图5所示。与软件同步方式相比,硬件同步方式既减小了上位机操作系统同步时钟误差,又减小了CCS控制器通过USB通讯线缆传送高度数据产生的延迟误差,还克服了上位机无法按照严格的等时间隔访问CCS控制器内部采样寄存器数据的缺点,大大减小角度、高度的采样时间差,对于中低速回转误差测量具有非常重要的意义。

基于光谱共焦位移传感器的非接触式回转误差测量系统


由于CCS接收角度信号采用单端接法实现,只用到A+B+Z+信号,信号电缆应采取良好的屏蔽措施。电动机动力线缆与CCS采集信号线缆之间相隔在100mm以上,走向呈正交位置关系。


3     测量软件

3.    1测量流程

启动测量后,连续采集25圈数据(5圈作为一组数据进行处理),生成TXT数据文档,反转标准球和传感器,再连续采集25圈数据(5圈作为一组数据进行处理),生成TXT数据文档。对两组数据进行滤波,由式(4)(6)计算出回转误差ε(θ)、标准球圆度误差Δ(θ)。测量流程,如图6所示。

基于光谱共焦位移传感器的非接触式回转误差测量系统


32测量界面

测量软件后台处理测量流程,测量软件界面(7)显示采集参数设置、测量方法选择、测量数据所生成的图像、测量结果。测量参数设置区可设置电动机转速、单次采集圈数、采样频率。测量方法选择区可选择3种测量方法:单点法、反向法和三点法。图像显示区以笛卡尔坐标显示反向前、后消偏心的高度值曲线,分别以笛卡尔坐标、极坐标显示分离出的主轴回转误差曲线、标准球圆度误差曲线。结果显示区显示5组主轴回转误差值、标准球圆度误差值。

基于光谱共焦位移传感器的非接触式回转误差测量系统


4     测量结果

CCS控制器采样率1kHz,标准球圆度误差出厂值36nm。整套测量系统位于精密空气弹簧隔振台上,隔振台位于精密测量用隔振地基上,测量系统置于封闭外罩内。分别对三套轴(A、轴B、轴C)进行了测量,测量结果如表1、图810所示。

基于光谱共焦位移传感器的非接触式回转误差测量系统

基于光谱共焦位移传感器的非接触式回转误差测量系统

基于光谱共焦位移传感器的非接触式回转误差测量系统

基于光谱共焦位移传感器的非接触式回转误差测量系统

基于光谱共焦位移传感器的非接触式回转误差测量系统

基于光谱共焦位移传感器的非接触式回转误差测量系统



基于光谱共焦位移传感器的非接触式回转误差测量系统



如表1,对每组的连续5圈数据进行均值化处理后,不同轴系分离出的标准球圆度误差平均值分别为003500410037μm,与出厂标称值(36nm)最大差值为5nm。表明该测量系统具有非常高的测量精度和重复性。


5     结语

基于光谱共焦位移传感器的非接触式测量系统,是一种结构简单、测量精度非常高的测量系统。该系统通过反向法获得回转轴径向回转误差、标准球圆度误差。经滤波掉系统性误差(主要为偏心)并进行均值化处理后,不同轴系的回转误差最大差值为8nm,表明该测量系统具有非常高的精度和重复性,可用于回转轴系50nm左右径向回转误差测量。


在不同回转轴系下,分离出的标准球圆度误差平均值相对出厂值的最大差值仅为5nm。该测量系统还可用于50nm以下标准球赤道附近的小范围圆度误差测量。当标准球测量点的纬度较高时,受CCS传感器和标准球轮廓尺寸限制,为了获得最佳的反射效果,需要传感器轴线处于被测纬度的法线上,因此,若要测量标准球完整纬度的圆度误差,还需要增加CCS传感器轴线转轴。



论文标题:A non contact system formeasurement of rotating error based on confocal chromatic displacement sensor


Case / 相关推荐
2025 - 10 - 21
点击次数: 21
序号应用场景(多维度细化)核心需求维度项目难点推荐型号传感器优势(文档依据)选型依据(文档来源)1半导体 - 8 英寸晶圆键合线高度检测(键合线直径 20μm,金属反光)精度 0.05μm;表面金属反光;光斑≤20μm;检测距 8mm键合线微小(20μm),金属反光易导致测量偏移LTPD081. 投受光分离设计,可贴近键合区域无干扰;2. Φ20μm 小光斑精准定位线体;3. 正反射模式抑...
2025 - 06 - 23
点击次数: 38
LTP450W 激光位移传感器在自动打磨设备中的应用方案一、方案背景与需求痛点在铸造工件的自动化打磨场景中,粗糙的表面形貌(如毛边、凹凸不平的铸造纹理)对检测传感器提出了特殊要求:传统点光斑传感器易受表面缺陷干扰导致测量偏差,而大距离检测需求又需兼顾精度与实时性。LTP450W 激光位移传感器凭借宽光斑设计、大测量范围及高精度特性,成为适配自动打磨设备的核心检测元件,可实现从表面位置检测到打磨程度...
2025 - 05 - 28
点击次数: 66
一、行业背景:智能手机摄影技术升级催生精密检测需求随着智能手机摄影技术向高像素、超广角、长焦等多元化方向发展,摄像头模组的微型化与精密化程度显著提升。作为摄像头光学元件的核心承载结构,摄像头支架的平面度精度直接影响镜头光轴对准、感光元件贴合等关键工艺,进而决定成像质量的稳定性。传统人工目视检测或接触式测量方法因主观性强、效率低、易损伤工件等缺陷,已难以满足微米级精度检测需求。如何实现非接触式、高精...
2025 - 05 - 14
点击次数: 43
一、引言在锂电池生产中,电极厚度是影响电池性能的关键参数。基片涂覆活性物质后形成的粗糙表面,使用传统点光斑传感器测量时易受表面微观形貌影响,导致数据波动大、测量精度不足。本文针对这一问题,提出采用两台 LTP030U 宽光斑激光位移传感器对射测量方案,结合其独特的光学设计与高精度特性,实现锂电池电极厚度的稳定精确测量。二、应用挑战与传感器选型依据(一)测量难点分析锂电池电极基片涂粉后,表面粗糙度可...
2025 - 05 - 06
点击次数: 39
一、PCB 生产痛点:超薄板叠片检测难在电子制造中,PCB 板厚度仅 0.1-1.6mm,高速传输时极易出现多层重叠,传统检测手段却力不从心:接触式测量:机械探针易压弯薄板,且每秒仅测百次,跟不上产线速度;视觉检测:依赖稳定光源,机台振动(±50μm 级)让图像模糊,漏检率高达 5%。这些问题导致 3%-5% 的废料率,更可能让不良品流入下工序,引发焊接短路等连锁故障,成为产线效率和质量...
2025 - 03 - 22
点击次数: 62
一、传感器选型与技术优势对比颠覆性成本结构传统激光多普勒测振仪价格区间:¥150,000~¥500,000LTP080系列成本:¥11,000~¥15,000(视配置),降低设备投入90%以上维护成本对比:无光学镜片损耗,寿命>50,000小时,年维护费用低于¥500性能参数解析指标LTP080参数传统测振仪典型值采样频率50kHz(全量程)/160kHz(20%量程)1MHz~10MHz线性度&...
About Us
关于泓川科技
专业从事激光位移传感器,激光焊缝跟踪系统研发及销售的科技公司
中国 · 无锡 · 总部地址:无锡新吴区天山路6号
销售热线:0510-88155119 
图文传真:0510-88152650
Working Time
我们的工作时间
周一至周五:8:00-18:00
周六至周日:9:00-15:00
Shown 企业秀 More
  • 1
    2023 - 02 - 21
    激光位移传感器是一种用于测量距离和轮廓表面的自动光学传感技术。它的工作原理是发射激光束,激光束被目标表面或区域反射,然后光束返回所需的时间被转换为距离测量。它的主要应用是尺寸计量,可以精确测量长度、距离和粗糙度轮廓。激光位移传感器也用于工业自动化、机器人和机器视觉应用。什么是激光位移传感器?       激光位移传感器是一种用于测量距离和轮廓表面的自动光学传感技术。该系统通过从激光源发射激光来工作。然后,该激光束从目标表面或区域反射回来。然后,光束覆盖距离和返回所花费的时间被转换为距离测量或轮廓。激光位移传感器通常由三个主要部分组成:*激光源*光学探测器*处理器      激光源通常是激光二极管,其波长适合于目标区域及其光学特性。激光二极管产生激光束,该激光束被引导到目标表面或区域上。然后光束被反射回检测器。根据应用,可以用一定范围的脉冲频率调制光束。光束由光学检测器检测。检测器将光转换成电信号,然后将其发送到处理器。然后处理器处理信息并将测量数据发送到数字显示器或计算机。然后,数据可用于进一步分析或控制自动化过程。历史:       激光位移传感器最初是在20世纪70年代开发的,是麻省理工学院研究项目的一部分。这项研究由美国陆军研究实验室和美国空军赖特实验室赞助。该技术最...
  • 2
    2025 - 01 - 09
    一、光谱共焦传感技术解密光谱共焦技术的起源,要追溯到科学家们对传统成像精度局限的深刻洞察。在 20 世纪 70 年代,传统成像在精密测量领域遭遇瓶颈,为突破这一困境,基于干涉原理的光谱共焦方法应运而生,开启了高精度测量的新篇章。进入 80 年代,科研人员不断改进仪器设计,引入特殊的分光元件,如同给传感器装上了 “精密滤网”,精准分辨不同波长光信号;搭配高灵敏度探测器,将光信号转化为精确数字信息。同时,计算机技术强势助力,实现数据快速处理、动态输出测量结果,让光谱共焦技术稳步走向成熟。90 年代,纳米技术、微电子学蓬勃发展,对测量精度要求愈发苛刻。科研团队迎难而上,开发新算法、模型优化测量,减少误差;增设温度控制、机械振动抑制功能,宛如为传感器打造 “稳定护盾”,确保在复杂实验环境下结果稳定可靠,至此,光谱共焦技术成为精密测量领域的关键力量。添加图片注释,不超过 140 字(可选)二、HCY 光谱共焦传感器工作原理(一)核心原理阐释HCY 光谱共焦传感器的核心在于巧妙运用光学色散现象。当内部的白光点光源发出光线后,光线会迅速射向精密的透镜组。在这里,白光如同被解开了神秘面纱,依据不同波长被精准地色散开来,形成一道绚丽的 “彩虹光带”。这些不同波长的光,各自沿着独特的路径前行,最终聚焦在不同的高度之上,构建起一个精密的测量范围 “标尺”。当光线抵达物体表面,会发生反射,其中特定波长的光...
  • 3
    2025 - 09 - 02
    泓川科技激光位移传感器产品技术报告尊敬的客户: 感谢您对泓川科技激光位移传感器产品的关注与信任。为帮助您全面了解我司产品,现将激光位移传感器相关技术信息从参数指标、设计原理、结构设计等八大核心维度进行详细说明,为您的选型、使用及维护提供专业参考。一、参数指标我司激光位移传感器涵盖 LTP400 系列与 LTP450 系列,各型号核心参数经纳米级高精度激光干涉仪标定验证,确保数据精准可靠,具体参数如下表所示:表 1:LTP400EA参数表参数类别具体参数LTP400EA备注基础测量参数测量中心距离400mm以量程中心位置计算(*1)量程200mm-重复精度(静态)3μm测量标准白色陶瓷样件,50kHz 无平均,取 65536 组数据均方根偏差(*2)线性度±0.03%F.S.(F.S.=200mm)采用纳米级激光干涉仪标定(*3)光源与光斑光源类型-激光功率可定制,部分型号提供 405nm 蓝光版本(*4)光束直径聚焦点光斑 Φ300μm中心位置直径,两端相对变大(*5)电气参数电源电压DC9-36V-功耗约 2.5W-短路保护反向连接保护、过电流保护-输出与通信模拟量输出(选配)电压:0-5V/010V/-1010V;电流:420mA探头可独立提供电压、电流与 RS485 输出(*6)通讯接口RS485 串口、TCP/IP 网口可选配模拟电压 / 电流输出模块(*7)响应...
  • 4
    2023 - 10 - 20
    面对反射率不同的目标物时,激光位移传感器需要调整以下方面以确保测量的稳定性:根据目标物的反射率变化,调整接收光量。反射率较高的目标物可能导致光量饱和,而反射率较低的目标物可能无法获得足够的接收光量。因此,需要根据目标物的反射特性,适时调整激光位移传感器的接收光量,以使其处于最佳工作状态。使用光量控制范围调整功能。这种功能可以预先决定接收光量的上限和下限,缩短获取最佳光量的时间,从而可以更快地调整光量。针对反射率较高的目标物,需要减小激光功率和缩短发射时间,以避免光量饱和。而对于反射率较低的目标物,则应增大激光功率和延长发射时间,以确保获得足够的接收光量。在调整过程中,需要注意测量反射率急剧变化位置的稳定程度,以及使用光量调整功能以外功能时的稳定程度。如果无法稳定测量反射率不同的目标物,可能是由于目标物的反射光因颜色、反光、表面状况(粗度、倾斜度)等因素而发生变化,导致感光元件(接收光波形)上形成的光点状态也会随之变化。这种情况下,需要通过反复试验和调整,找到最佳的激光位移传感器工作参数。总结来说,激光位移传感器需要根据目标物的反射率变化,调整接收光量、激光发射时间、激光功率和增益等参数,以确保测量的稳定性和准确性。同时,需要注意目标物的反射特性及其变化情况,以便及时调整激光位移传感器的参数。
  • 5
    2025 - 01 - 19
    一、引言1.1 研究背景与意义在科技飞速发展的当下,半导体和电子部件制造行业正经历着深刻的变革。随着电子产品的功能不断增强,尺寸却日益缩小,对半导体和电子部件的性能、精度以及可靠性提出了极为严苛的要求。从智能手机、平板电脑到高性能计算机、物联网设备,无一不依赖于先进的半导体和电子部件技术。而这些部件的质量与性能,在很大程度上取决于制造过程中的测量、检测和品质管理环节。光学测量技术作为一种先进的测量手段,凭借其高精度、非接触、快速测量等诸多优势,在半导体和电子部件制造领域中发挥着愈发关键的作用。它能够精确测量微小尺寸、复杂形状以及表面形貌等参数,为制造过程提供了不可或缺的数据支持。举例来说,在半导体芯片制造中,芯片的线宽、间距等关键尺寸的精度要求已经达到了纳米级别,光学测量技术能够准确测量这些尺寸,确保芯片的性能符合设计标准。再如,在电子部件的封装过程中,光学测量可以检测焊点的形状、尺寸以及位置,保障封装的可靠性。光学测量技术的应用,不仅能够有效提高产品的质量和性能,还能显著降低生产成本,增强企业在市场中的竞争力。通过实时监测和精确控制制造过程,能够及时发现并纠正生产中的偏差,减少废品率和返工率,提高生产效率。因此,深入研究光学测量在半导体和电子部件制造中的典型应用,对于推动行业的发展具有重要的现实意义。1.2 研究目的与方法本报告旨在深入剖析光学测量在半导体和电子部件制造测量、检测...
  • 6
    2025 - 01 - 14
    一、引言1.1 激光位移传感器概述激光位移传感器,作为工业测量领域的关键设备,凭借其卓越的非接触测量特性,正日益成为众多行业实现高精度测量与自动化控制的核心技术。它主要利用激光的反射特性,通过精确测量反射光的相关参数,实现对目标物体的位移、距离、厚度等几何量的精准测定。这一技术的诞生,为现代制造业、科研实验以及诸多工业生产过程,提供了高效、可靠且精准的测量手段。其工作原理基于激光三角测量法和激光回波分析法。激光三角测量法常用于高精度、短距离测量场景。在该方法中,激光位移传感器发射出一束激光,射向被测物体表面,物体表面反射的激光经由特定的光学系统,被传感器内部的探测器接收。根据激光发射点、反射点以及探测器接收点之间所构成的三角几何关系,通过精密的计算,能够精确得出物体与传感器之间的距离 。激光回波分析法更适用于远距离测量,传感器以每秒发射大量激光脉冲的方式,向被测物体发送信号,随后依据激光脉冲从发射到被接收的时间差,精确计算出物体与传感器之间的距离。在工业测量领域,激光位移传感器的重要地位不容小觑。在汽车制造行业,它被广泛应用于车身零部件的尺寸检测、装配精度控制等环节。通过对汽车零部件的精确测量,能够确保各个部件的尺寸符合设计要求,从而提升整车的装配质量和性能。在电子制造领域,激光位移传感器可用于检测芯片的尺寸、平整度以及电子元件的贴装精度等。在芯片制造过程中,其微小的尺寸和极高的精...
  • 7
    2025 - 01 - 29
    五、光谱共焦传感器测量厚度的局限性及解决措施5.1 局限性分析5.1.1 测量范围限制光谱共焦传感器的测量范围相对有限,一般在几毫米到几十毫米之间。这是由于其测量原理基于色散物镜对不同波长光的聚焦特性,测量范围主要取决于色散物镜的轴向色差范围以及光谱仪的工作波段。在实际应用中,对于一些大尺寸物体的厚度测量,如厚壁管材、大型板材等,可能需要多次测量拼接数据,增加了测量的复杂性和误差来源。例如,在测量厚度超过传感器量程的大型金属板材时,需要移动传感器进行多次测量,然后将测量数据进行拼接处理,但在拼接过程中可能会因测量位置的定位误差、测量角度的变化等因素导致测量结果的不准确。5.1.2 对被测物体表面状态的要求虽然光谱共焦传感器对多种材料具有良好的适用性,但被测物体表面的粗糙度、平整度等因素仍会对测量精度产生一定影响。当被测物体表面粗糙度较大时,表面的微观起伏会导致反射光的散射和漫反射增强,使得反射光的强度分布不均匀,从而影响光谱仪对反射光波长的准确检测,导致测量误差增大。对于表面平整度较差的物体,如存在明显翘曲或弯曲的板材,会使传感器与物体表面的距离在不同位置发生变化,超出传感器的测量精度范围,进而影响厚度测量的准确性。例如,在测量表面粗糙的橡胶板材时,由于橡胶表面的微观纹理和不规则性,测量精度会明显下降,难以达到对光滑表面测量时的高精度水平。5.1.3 成本相对较高光谱共焦传感器作为...
  • 8
    2023 - 02 - 26
    今天我为大家展示安全激光扫描仪产品,安全激光扫描仪适用于各种应用技术领域,      在设备开发期间我们给予了特别关注,以确保它能够在广泛应用中发挥最佳功能,尤其重视大型工作区域的防护,例如机床正面区域或机器人工作区域。      其他应用包括移动车辆的防护,例如侧向滑动装置或移动运输设备,无人驾驶运输系统。甚至垂直安装激光扫描仪的出入口保护系统。尽管我们在安全激光扫描与领域,已经有数10年的经验了,但该应用领域仍然面对许多挑战。不过我们的激光安全扫描仪具有独一无二的功能属性,例如具有8.25米检测距离和270度扫描范围。       属于目前市场上的高端设备,非常适合侧向滑动装置正面区域等大型区域或长距离的防护。该设备的另一个亮点就是能够同时监测两个保护功能。这在许多应用领域中,独具优势以前需要使用两个设备,如今只需要使用一台这样的安全激光扫描仪,即可完成两台设备的功能。               实践中遇到的一项挑战是设计一款异常强骨的激光安全扫描仪。能够适应周围环境中可能存在的灰尘和颗粒等恶劣条件,因此我们提供了较分辨率达到0.1度的设备。它在目前市场上具有非常高的价值。   ...
Message 最新动态
蓝光光源激光位移传感器:优势、原理与特殊场景解决方案 —— 泓川科技 LTP 系列 405nm 定制... 2025 - 10 - 21 在工业精密测量中,传统红光激光位移传感器常受高反射、半透明、高温红热等特殊场景限制,而蓝光光源(405nm 波长)凭借独特物理特性实现突破。以下通过 “一问一答” 形式,详解蓝光传感器的优势、原理构造,并结合泓川科技 LTP 系列定制方案,看其如何解决特殊环境测量难题。1. 蓝光光源激光位移传感器相比传统红光,核心优势是什么?蓝光传感器的核心优势源于 405nm 波长的物理特性,相比传统 655nm 左右的红光,主要体现在三方面:更高横向分辨率:根据瑞利判据,光学分辨率与波长成反比。蓝光波长仅为红光的 62%(405nm/655nm≈0.62),相同光学系统下横向分辨率可提升约 38%,能形成更小光斑(如泓川 LTP025 蓝光版光斑最小达 Φ18μm),适配芯片针脚、晶圆等微米级结构测量。更强信号稳定性:蓝光单光子能量达 3.06eV,远高于红光的 2.05eV。在低反射率材料(如橡胶、有机涂层)表面,能激发出更强散射信号;同时穿透性更低,仅在材料表层作用,避免内部折射干扰,适合表面精准测量。更优抗干扰能力:蓝光波段与红热辐射(500nm 以上)、户外强光(可见光为主)重叠度低,搭配专用滤光片后,可有效隔绝高温物体自发光、阳光直射等干扰,这是红光难以实现的。2. 蓝光激光位移传感器的原理构造是怎样的?为何能实现高精度测量?蓝光传感器的高精度的核心是 “光学设计 + 信号处理 + ...
泓川科技国产系列光谱共焦/激光位移传感器/白光干涉测厚产品性能一览 2025 - 09 - 05 高精度测量传感器全系列:赋能精密制造,适配多元检测需求聚焦半导体、光学膜、机械加工等领域的精密检测核心痛点,我们推出全系列高性能测量传感器,覆盖 “测厚、对焦、位移” 三大核心应用场景,以 “高精准、高速度、高适配” 为设计核心,为您的工艺控制与质量检测提供可靠技术支撑。以下为各产品系列的详细介绍:1.LTS-IR 红外干涉测厚传感器:半导体材料测厚专属核心用途:专为硅、碳化硅、砷化镓等半导体材料设计,精准实现晶圆等器件的厚度测量。性能优点:精度卓越:±0.1μm 线性精度 + 2nm 重复精度,确保测量数据稳定可靠;量程适配:覆盖 10μm2mm 测厚范围,满足多数半导体材料检测需求;高效高速:40kHz 采样速度,快速捕捉厚度数据,适配在线检测节奏;灵活适配:宽范围工作距离设计,可灵活匹配不同规格的检测设备与场景。2. 分体式对焦传感器:半导体 / 面板缺陷检测的 “高速对焦助手”核心用途:针对半导体、面板领域的高精度缺陷检测场景,提供高速实时对焦支持,尤其适配显微对焦类检测设备。性能优点:对焦速度快:50kHz 高速对焦,同步匹配缺陷检测的实时性需求;对焦精度高:0.5μm 对焦精度,保障缺陷成像清晰、检测无偏差;设计灵活:分体式结构,可根据检测设备的安装空间与布局灵活调整,降低适配难度。3. LT-R 反射膜厚仪:极薄膜厚检测的 “精密管家”核心用途:专注于极薄膜...
多方面研究泓川科技LTP系列大量程全国产激光位移传感器 2025 - 09 - 02 泓川科技激光位移传感器产品技术报告尊敬的客户: 感谢您对泓川科技激光位移传感器产品的关注与信任。为帮助您全面了解我司产品,现将激光位移传感器相关技术信息从参数指标、设计原理、结构设计等八大核心维度进行详细说明,为您的选型、使用及维护提供专业参考。一、参数指标我司激光位移传感器涵盖 LTP400 系列与 LTP450 系列,各型号核心参数经纳米级高精度激光干涉仪标定验证,确保数据精准可靠,具体参数如下表所示:表 1:LTP400EA参数表参数类别具体参数LTP400EA备注基础测量参数测量中心距离400mm以量程中心位置计算(*1)量程200mm-重复精度(静态)3μm测量标准白色陶瓷样件,50kHz 无平均,取 65536 组数据均方根偏差(*2)线性度±0.03%F.S.(F.S.=200mm)采用纳米级激光干涉仪标定(*3)光源与光斑光源类型-激光功率可定制,部分型号提供 405nm 蓝光版本(*4)光束直径聚焦点光斑 Φ300μm中心位置直径,两端相对变大(*5)电气参数电源电压DC9-36V-功耗约 2.5W-短路保护反向连接保护、过电流保护-输出与通信模拟量输出(选配)电压:0-5V/010V/-1010V;电流:420mA探头可独立提供电压、电流与 RS485 输出(*6)通讯接口RS485 串口、TCP/IP 网口可选配模拟电压 / 电流输出模块(*7)响应...
Copyright ©2005 - 2013 无锡泓川科技有限公司

1

犀牛云提供企业云服务
Our Link
X
3

SKYPE 设置

4

阿里旺旺设置

等待加载动态数据...

等待加载动态数据...

5

电话号码管理

  • 0510-88155119
6

二维码管理

等待加载动态数据...

等待加载动态数据...

展开