服务热线: 0510-88155119
13301510675@163.com
Language
项目案例 Case
Case 激光位移

基于光谱共焦位移传感器的非接触式回转误差测量系统

日期: 2022-02-22
浏览次数: 85

摘要:为了实现50nm左右回转误差测量,设计了一种新型非接触式测量系统,该系统采用光谱共焦位移传感器,通过反向法获得回转轴系径向回转误差、标准球圆度误差。标准球圆度误差测量值与标称值的最大差值为5nm,表明该测量系统的测量精度能够满足设计要求。


关键词:回转误差;光谱共焦位移传感器;反向法;非接触式;超精密回转轴系


0   引言

空气静压主轴在超精密机床中有着越来越广泛的应用,是超精密机床的关键功能部件之一,其回转误差对机床加工质量有着重要影响,机床的精度越高,工件圆度误差中由主轴回转误差所造成的比例越大。通过回转误差的测量,获取主轴径向回转误差形貌,有助于优化空气静压主轴的加工、研磨和装配工艺,对提高主轴回转精度具有重要意义。


回转误差测量技术,按照传感器类型,可分为接触式和非接触式。接触式传感器主要应用于精度低、转速低的回转轴系,非接触式传感器主要应用于超精密回转轴系。空气静压主轴的回转精度通常可达到50nm以下,接触式传感器的接触力会随机改变回转误差形貌,测量重复性差,应采用非接触式传感器测量。常见的非接触式测量传感器有电容位移传感器、电涡流位移传感器、激光位移传感器、CCD传感器、扫描隧道显微镜、原子力显微镜、激光干涉仪等。电容位移传感器、电涡流位移传感器需要一定面积(电容极板、电涡流片)去测量与距离呈相应关系的电容/电感值,反映了面与面的间隙,间距小于面宽的测量点将被均化;这两类传感器还需要采取严格的电磁干扰屏蔽措施,才能获得nm级分辨率。


激光位移传感器的精度较低,难以满足50nm以下回转误差测试。激光干涉仪需要增加额外的光路,光学镜组调节较难,受环境和人为影响大。基于CCD传感器的测量法需要进行图像处理,且受限于CCD分辨率,无法用于50nm以下回转误差测量。扫描隧道显微镜、原子力显微镜的分辨率小于01nm,但价格昂贵;而且这两类仪器的采样率一般在100Hz以下,只能实现低速测量,为了保护价格昂贵的扫描头,往往需要将转速限制到1r/min以下。为构建一套转速在300r/min以下、回转误差在50nm以下的主轴回转误差测量系统,采用非接触式光谱共焦位移传感器作为高度测量,非接触式圆光栅作为角度测量,通过标准球反向法,分离出回转误差。


1     测量原理

11标准球反向法测量原理

如图1所示,标准球轮廓中心O1绕回转中心参考点O旋转,参考点O相对传感器是不变的,距离为常量C,标准球轮廓为R(θ),轴系回转误差为ε(θ),传感器反向前测量值为H1(θ),反向后测量值为H2(θ),相对起始点A的回转轴变化角度为θB点旋转180°后位于C点。

基于光谱共焦位移传感器的非接触式回转误差测量系统


H1(θ)+(θ)+ε(θ)C          (1)

将标准球、传感器反向后,O点与传感器的相对距离发生改变,增量记为ΔC。回转轴不动,故角度θ不变。

H2(θ)+(θ)+ε(θ)=C+ΔC     (2)

由式(1)(2)可得,

(θ)=1/2(2C+ΔCH1(θ)H2(θ))       (3)

ε(θ)=1/2(H2(θ)H1(θ)ΔC)            (4)

标准球圆度误差记为Δ(θ),测量起始点A的轮廓尺寸为R(0)

(θ)=(θ)-R(0)                  (5)

ΔR(θ)=1/2(H1(0)+H2(0)H1(θ)H2(θ))   (6)


1.    2光谱共焦位移传感器(CCS)测量原理

如图2所示,当挡板小孔与光源相对半透镜成镜面对称关系时,白光点光源经平面镜照射到透镜上,形成汇聚点。折射率的差异,导致汇聚点沿光轴方向的距离不同。只有恰好汇聚到样品表面的单色光可原路返回,经平面镜反射,穿过挡板小孔处,到达频谱仪,由频谱仪测量出单色光对应的波长λ

基于光谱共焦位移传感器的非接触式回转误差测量系统


对于理想小孔(孔径无限小),样品表面测量点位于高度H(a)处,单色光λa(单线标示)能穿过小孔;测量点位于高度H(b)处,单色光λb(双线标示)能穿过小孔;测量点位于高度H(c)处,单色光λc(三线标示)能穿过小孔。Hλ呈一一对应关系。通过纳米光栅尺或者标准纳米台阶样件校准即可得到相应的函数关系。实际小孔的孔径有大小误差Δr,测量时从频谱仪上可以看到一定宽度Δλ的复色光λ+Δλ)


当小孔与光源相对平面镜不呈镜面对称关系时,只有成像点在样品前或后的某个位置的单色光才能通过小孔,原路返回的单色光反而不能通过小孔。能通过小孔的单色光,在样品表面无法汇聚成一点,若其宽度过大,有可能形成非理想反射,部分光线将偏离理想路径,Δλ变大,导致测量误差变大。


2     测量系统

2.    1测量系统组成

根据标准球反向法和CCS控制器特性,构建非接触式测量系统。系统由工控机、驱动、角度测量、高度测量、夹持工装调整单元组成,如图3所示。

基于光谱共焦位移传感器的非接触式回转误差测量系统


工控机单元实现Z轴、C轴运动控制、参数设置、数据采集、结果显示等功能。工控机单元配有PCI轴控制卡,可控制电动机运动。驱动单元由C轴驱动器、Z轴驱动器组成。角度测量单元由回转轴、增量式图光栅组成。回转轴C轴采用皮带驱动方式,电动机选用伺服电动机。高度测量单元由CCS控制器和CCS传感器组成。CCS控制器将圆光栅的原点信号作为CCS数据采集的启动信号,保证每次测量起始点都在圆光栅原点处。CCS控制器通过USB口或RS232接口将采集的角度、高度数据传输给工控机,由工控机上位软件进行数据处理。Z轴实现CCS传感器Z(竖向)粗调心,夹持工装的XYZ向精调心采用手动调节机构实现。主轴回转误差测量系统实物见图4

基于光谱共焦位移传感器的非接触式回转误差测量系统


2.    2同步方式实现信号采集

采用反向法最关键的难点是角度值和高度值的同步,要保证同步误差导致的相位差小于0。同步实现信号采集既可采用软件方式,也可采用硬件方式。当采用软件方式实现时,可采用绝对式圆光栅采集角度信号,由Windows操作系统的高精度定时(1ms或者1μs)中断触发角度、高度采集,由于Win-dows操作系统不是实时操作系统,在测量300r/min的回转误差时,定时中断必须小于55μs,才能保证同步误差在可接收范围内。当采用硬件方式实现时,CCS控制器直接采集圆光栅的正交信号,角度与高度之间的同步触发由CCS控制器内部采样电路实现如图5所示。与软件同步方式相比,硬件同步方式既减小了上位机操作系统同步时钟误差,又减小了CCS控制器通过USB通讯线缆传送高度数据产生的延迟误差,还克服了上位机无法按照严格的等时间隔访问CCS控制器内部采样寄存器数据的缺点,大大减小角度、高度的采样时间差,对于中低速回转误差测量具有非常重要的意义。

基于光谱共焦位移传感器的非接触式回转误差测量系统


由于CCS接收角度信号采用单端接法实现,只用到A+B+Z+信号,信号电缆应采取良好的屏蔽措施。电动机动力线缆与CCS采集信号线缆之间相隔在100mm以上,走向呈正交位置关系。


3     测量软件

3.    1测量流程

启动测量后,连续采集25圈数据(5圈作为一组数据进行处理),生成TXT数据文档,反转标准球和传感器,再连续采集25圈数据(5圈作为一组数据进行处理),生成TXT数据文档。对两组数据进行滤波,由式(4)(6)计算出回转误差ε(θ)、标准球圆度误差Δ(θ)。测量流程,如图6所示。

基于光谱共焦位移传感器的非接触式回转误差测量系统


32测量界面

测量软件后台处理测量流程,测量软件界面(7)显示采集参数设置、测量方法选择、测量数据所生成的图像、测量结果。测量参数设置区可设置电动机转速、单次采集圈数、采样频率。测量方法选择区可选择3种测量方法:单点法、反向法和三点法。图像显示区以笛卡尔坐标显示反向前、后消偏心的高度值曲线,分别以笛卡尔坐标、极坐标显示分离出的主轴回转误差曲线、标准球圆度误差曲线。结果显示区显示5组主轴回转误差值、标准球圆度误差值。

基于光谱共焦位移传感器的非接触式回转误差测量系统


4     测量结果

CCS控制器采样率1kHz,标准球圆度误差出厂值36nm。整套测量系统位于精密空气弹簧隔振台上,隔振台位于精密测量用隔振地基上,测量系统置于封闭外罩内。分别对三套轴(A、轴B、轴C)进行了测量,测量结果如表1、图810所示。

基于光谱共焦位移传感器的非接触式回转误差测量系统

基于光谱共焦位移传感器的非接触式回转误差测量系统

基于光谱共焦位移传感器的非接触式回转误差测量系统

基于光谱共焦位移传感器的非接触式回转误差测量系统

基于光谱共焦位移传感器的非接触式回转误差测量系统

基于光谱共焦位移传感器的非接触式回转误差测量系统



基于光谱共焦位移传感器的非接触式回转误差测量系统



如表1,对每组的连续5圈数据进行均值化处理后,不同轴系分离出的标准球圆度误差平均值分别为003500410037μm,与出厂标称值(36nm)最大差值为5nm。表明该测量系统具有非常高的测量精度和重复性。


5     结语

基于光谱共焦位移传感器的非接触式测量系统,是一种结构简单、测量精度非常高的测量系统。该系统通过反向法获得回转轴径向回转误差、标准球圆度误差。经滤波掉系统性误差(主要为偏心)并进行均值化处理后,不同轴系的回转误差最大差值为8nm,表明该测量系统具有非常高的精度和重复性,可用于回转轴系50nm左右径向回转误差测量。


在不同回转轴系下,分离出的标准球圆度误差平均值相对出厂值的最大差值仅为5nm。该测量系统还可用于50nm以下标准球赤道附近的小范围圆度误差测量。当标准球测量点的纬度较高时,受CCS传感器和标准球轮廓尺寸限制,为了获得最佳的反射效果,需要传感器轴线处于被测纬度的法线上,因此,若要测量标准球完整纬度的圆度误差,还需要增加CCS传感器轴线转轴。



论文标题:A non contact system formeasurement of rotating error based on confocal chromatic displacement sensor


Case / 相关推荐
2025 - 12 - 23
点击次数: 0
摘要激光三角法测量技术凭借非接触、高精度、高效率的优势,已成为现代制造业中复杂曲面检测的核心手段。本文以LTP系列高速高精度激光三角位移传感器为研究对象,系统梳理激光三角法测量原理,深入分析复杂曲面几何特性(倾角、转角)对测量精度的影响机制,依托马晓帆硕士论文《复杂曲面激光三角法测量的精度提高技术研究》中的实验数据与误差修正模型,结合工业部署案例,论证LTP系列传感器在摆线齿轮等典型复杂曲面测量中...
2025 - 12 - 23
点击次数: 0
基于激光位移测量的动静压主轴回转精度测试技术研究——兼论泓川科技 LTP 激光位移传感器在高端装备中的工程应用价值一、引言:高端制造对主轴回转精度测试提出的新要求在高端数控机床、精密磨床以及超精密加工装备中,主轴回转精度被公认为影响零件加工质量的核心指标之一。主轴的回转精度不仅直接决定了工件的圆度、表面粗糙度和形位公差,还与加工系统的动态稳定性、加工一致性和设备可靠性密切相关。随着制造业向高精度、...
2025 - 12 - 19
点击次数: 3
核心摘要:在一段时期内,日本基恩士(KEYENCE)的LK系列特别是LK-G5000系列定义了高速激光位移传感器的行业基准。然而,随着本土传感器技术从模仿走向创新,中国厂商泓川科技(Chuantec)凭借LTP系列高速高精度激光三角位移传感器,以“技术指标在工业甜蜜区看齐”和“1/2价格的绝对优势”,正在锂电、3C、半导体及重工行业迅速确立“头部平替”的地位。本文将从光路架构、运算控制模式、详细核...
2025 - 12 - 19
点击次数: 2
——深度解构FMCW干涉式激光测距仪在长超程精密测量中的算法与数据逻辑Meta Description: 探索如何在不牺牲精度的情况下摆脱长度限制。本文深度技术解析干涉式激光测距仪利用FMCW光子集成技术,打破百米量程与1nm分辨率的物理矛盾。适用于高端半导体、精密机床与大型自动化领域。如果将工业级位置反馈传感器市场画在一张图表上,我们会看到绝大多数产品都挤在两条轴线上:一条是“短量程极高精度”(...
2025 - 12 - 17
点击次数: 2
摘要动力电池极片辊压后的厚度均匀性直接决定电池能量密度、功率密度及安全性能,微米级的厚度偏差可能导致内阻不一致、热失控风险升高。本文基于无锡泓川科技 LTP 系列激光三角位移传感器,设计一套辊压极片在线厚度实时监测系统,通过双探头对射式安装、160kHz 高速采样与温漂补偿算法,实现极片厚度 0.03μm 级重复精度测量。结合动力电池极片制造工艺需求,详细阐述系统测量原理、结构设计、实施步骤,通过...
2025 - 10 - 21
点击次数: 24
序号应用场景(多维度细化)核心需求维度项目难点推荐型号传感器优势(文档依据)选型依据(文档来源)1半导体 - 8 英寸晶圆键合线高度检测(键合线直径 20μm,金属反光)精度 0.05μm;表面金属反光;光斑≤20μm;检测距 8mm键合线微小(20μm),金属反光易导致测量偏移LTPD081. 投受光分离设计,可贴近键合区域无干扰;2. Φ20μm 小光斑精准定位线体;3. 正反射模式抑...
About Us
关于泓川科技
专业从事激光位移传感器,激光焊缝跟踪系统研发及销售的科技公司
中国 · 无锡 · 总部地址:无锡新吴区天山路6号
销售热线:0510-88155119 
图文传真:0510-88152650
Working Time
我们的工作时间
周一至周五:8:00-18:00
周六至周日:9:00-15:00
Shown 企业秀 More
  • 1
    2024 - 11 - 20
    在当今精密制造与检测领域,对微小尺寸变化的精确测量需求日益增长。特别是在半导体制造、微纳加工、光学元件检测等高端应用中,对测量误差的严格要求往往达到纳米级。面对这一挑战,国内自主研发的LTC100光谱共焦位移传感器以其卓越的性能脱颖而出,不仅实现了30nm以下的测量误差,还保证了光斑直径小于2μm,为高精度测量领域树立了新的国产标杆。技术亮点:超高精度测量:LTC100采用先进的光谱共焦技术,通过精确控制光源发射的多波长光束与被测物体表面反射光之间的干涉现象,实现位移的高精度测量。其核心算法通过复杂的光谱分析与相位解调技术,有效消除了环境干扰和系统误差,确保测量误差稳定控制在30nm以下。微小光斑设计:传感器内置的精密光学系统采用高数值孔径物镜,结合优化的光束整形技术,实现了小于2μm的光斑直径,使得在微小结构或特征上的测量成为可能,显著提高了测量的空间分辨率。测试数据与算法公式:LTC100的性能验证基于严格的实验室测试与现场应用反馈。以下为其关键测试数据:线性度:在0-10mm测量范围内,线性偏差小于±5nm,确保测量的稳定性和可靠性。重复性:连续测量同一位置100次,标准差小于10nm,证明其高重复性和一致性。分辨率:理论上可达0.1nm,实际测量中受环境因素影响,但依旧保持在1nm左右,远超行业平均水平。核心算法公式简述如下:d=2λ0⋅2πΔϕ其中,d为被测位移...
  • 2
    2025 - 06 - 22
    一、国产化背景与战略意义在全球供应链竞争加剧的背景下,激光位移传感器作为工业自动化核心测量部件,其国产化生产对打破技术垄断、保障产业链安全具有重要战略意义。泓川科技 LTP 系列依托国内完整的光学、电子、机械产业链体系,实现了从核心零部件到整机制造的全流程国产化,彻底解决了接口卡脖子问题,产品精度与稳定性达到国际先进水平,同时具备更强的成本竞争力与定制化服务能力。二、核心部件全国产化组成体系(一)光学系统组件激光发射单元激光二极管:采用深圳镭尔特光电 655nm 红光 PLD650 系列(功率 0.5-4.9mW)及埃赛力达 905nm 红外三腔脉冲激光二极管,支持准直快轴压缩技术,波长稳定性 ±0.1nm,满足工业级高稳定性需求。准直透镜:选用杭州秋籁科技 KEWLAB CL-UV 系列,表面粗糙度 光学滤光片:深圳激埃特光电定制窄带滤光片,红外截止率 99.9%,有效消除环境光干扰。激光接收单元光电探测器:上海欧光电子代理 OTRON 品牌 PSD 位置敏感探测器,分辨率达 0.03μm(如 LTPD08 型号),北京中教金源量子点探测器正在实现自主替代。聚焦透镜组:福州合创光电高精度分光棱镜,偏振消光比 1000:1,配合广州明毅电子阳极氧化支架,确保光路同轴度≤5μm。(二)电子电路组件信号处理模块微处理器:龙芯中科 3A5000 工业级芯片,支持 - 40℃...
  • 3
    2023 - 09 - 30
    引言:在搬送薄片材料时,准确辨别材料的单双张对于生产流程的顺利进行至关重要。即使材料的材质发生了变化,我们仍然可以利用非接触传感器实现稳定的检测。本文介绍了两种常用方式:激光位移传感器和超声波传感器,在机械搬运过程中通过测量材料的厚度来判断其单双张状态。主体:1. 激光位移传感器方案:(a)准备工作:安装两个激光位移传感器,使其形成对射式布置。在中间放置一张标准厚度的材料,并通过上位机软件进行校准设定。(b)测量与校准:激光位移传感器通过测量材料的厚度,获得距离总和,并与设定的固定差值进行比较。当机械搬运过程中出现误差导致厚度与之前的距离数据明显不同时,激光位移传感器将发出错误信号,指示材料为双张状态。2. 超声波传感器方案:(a)准备工作:使用对射式超声波传感器,并先安装一张标准材料来校准基准能量。(b)测量与判断:超声波传感器利用能量穿透原理,通过测量接收端收取到的能量来判断材料的状态。当材料为单张时,接收端将收到接近基准值的能量;而当材料为双张或多张时,接收端收到的能量明显小于标准值,此时超声波传感器将发出报警信号。3. 激光位移传感器方案的优势:- 高精度测量:激光位移传感器具有高精度,可以精确测量材料的厚度变化,从而能够准确判断材料的单双张状态。- 实时监测:传感器反应速度快,并可以实时检测材料的厚度变化,确保在搬运过程中能够及时发现错误信号并进行处理。- 非接触式:激光...
  • 4
    2024 - 12 - 22
    引言光谱共焦传感器凭借非接触、高精度、高效率等优势,成为几何量精密测量的前沿技术。本文将从原理到应用,系统解析这一技术的核心价值与发展趋势。一、核心工作原理:当光波成为标尺1.1 光波与位移的精准映射通过色散物镜将宽光谱光源分解为不同波长的光,各波长光在轴向形成阶梯状焦点阵列。当物体表面反射特定波长时,光谱仪捕捉该波长,通过预设的波长-位移对应模型实现亚微米级定位。1.2 关键技术突破轴向色散线性度:通过组合SKIO、H-ZLAF52A等特殊玻璃材料,实现波长与位移判定系数R²0.97的线性关系衍射极限优化:ZEMAX仿真优化后,焦点RMS半径低至1.552μm(文献案例)抗干扰设计:棱镜-光栅分光技术消除谱线弯曲,提升检测稳定性二、核心组件架构组件功能特性技术指标案例宽光谱光源覆盖450-700nm波段色散范围达3.9mm(超大量程型号)色散物镜正负透镜组分离结构2mm量程下数值孔径0.3,FWHM光谱检测仪高速CCD/CMOS传感器线扫描速率达24mm/s,分辨率0.8μm三、扫描方式演进3.1 点扫描(传统方案)优势:单点精度达纳米级局限:10mm线长扫描耗时分钟级,数据重构复杂3.2 线扫描(革新方案)效率提升:单次扫描覆盖24mm线长,较点扫描提速300%工业适配:3mm轴向量程满足多数工业件检测需求四、应用场景全景图4.1 当前主流应用微观检测:半导体晶圆表面...
  • 5
    2025 - 06 - 19
    有!LTM 系列三款国产激光位移传感器满足需求在工业检测领域,量程 1 米、精度误差 1mm、频率 5KHz 以上的激光位移传感器是高端测量的刚需,而国产传感器常因精度或频率不足被进口品牌垄断。无锡泓川科技的 LTM2-800W、LTM3-800W、LTM5-800W 三款产品,不仅全面覆盖上述指标,更以进口品牌一半的成本优势,成为国产替代的优选方案。以下从性能参数、优劣分析、场景适配及成本对比展开详细介绍。一、核心性能参数对比型号LTM2-800WLTM3-800WLTM5-800W参考距离800mm800mm800mm测量范围±500mm(总量程 1000mm)±500mm(总量程 1000mm)±500mm(总量程 1000mm)光斑尺寸450×6000μm450×6000μm450×6000μm重复精度45μm45μm45μm线性误差采样频率5KHz10KHz31.25KHz工业接口485 串口 / 模拟信号(二选一)以太网 / 485 串口 / 模拟信号以太网 / 485 串口 / 模拟信号光源660nm,Max.50mW660nm,Max.50mW660nm,Max.50mW防护等级IP67IP67IP67工作温度0~+50℃0~+50℃0~+50℃功耗约 2.0W约 2.0W约 2.0W二、产品优势分析(一)...
  • 6
    2025 - 01 - 20
    一、引言1.1 研究背景与意义在当今数字化时代,IC 芯片作为现代电子设备的核心部件,其重要性不言而喻。从智能手机、电脑到汽车电子、工业控制,乃至新兴的人工智能、物联网等领域,IC 芯片无处不在,如同电子设备的 “大脑”,掌控着设备的运行与功能实现。其发展水平不仅是衡量一个国家科技实力的重要标志,更在全球经济竞争中占据着关键地位。近年来,IC 芯片产业呈现出蓬勃发展的态势。随着摩尔定律的持续推进,芯片的集成度不断提高,尺寸愈发微小,性能却实现了质的飞跃。与此同时,5G、人工智能、大数据等新兴技术的迅猛发展,为 IC 芯片产业注入了强大的发展动力,市场对芯片的需求呈现出爆发式增长。在 IC 芯片制造的复杂流程中,精确测量起着举足轻重的作用,如同工匠手中精准的量具,确保每一个环节都达到极高的精度标准。从芯片设计阶段的版图测量,到制造过程中的光刻、蚀刻、沉积等工艺的尺寸控制,再到封装测试阶段对芯片外形、引脚等的精确测量,每一步都离不开高精度测量技术的支撑。只有通过精确测量,才能保证芯片的性能、良率以及可靠性,满足市场对高质量芯片的严苛要求。光谱共焦传感器作为一种先进的测量技术,凭借其独特的工作原理和卓越的性能优势,在 IC 芯片测量领域展现出了巨大的潜力。它能够实现对芯片表面形貌、厚度、尺寸等参数的高精度非接触测量,为芯片制造提供了可靠的数据支持。这种高精度测量对于提高芯片制造工艺的精度...
  • 7
    2025 - 09 - 05
    高精度测量传感器全系列:赋能精密制造,适配多元检测需求聚焦半导体、光学膜、机械加工等领域的精密检测核心痛点,我们推出全系列高性能测量传感器,覆盖 “测厚、对焦、位移” 三大核心应用场景,以 “高精准、高速度、高适配” 为设计核心,为您的工艺控制与质量检测提供可靠技术支撑。以下为各产品系列的详细介绍:1.LTS-IR 红外干涉测厚传感器:半导体材料测厚专属核心用途:专为硅、碳化硅、砷化镓等半导体材料设计,精准实现晶圆等器件的厚度测量。性能优点:精度卓越:±0.1μm 线性精度 + 2nm 重复精度,确保测量数据稳定可靠;量程适配:覆盖 10μm2mm 测厚范围,满足多数半导体材料检测需求;高效高速:40kHz 采样速度,快速捕捉厚度数据,适配在线检测节奏;灵活适配:宽范围工作距离设计,可灵活匹配不同规格的检测设备与场景。2. 分体式对焦传感器:半导体 / 面板缺陷检测的 “高速对焦助手”核心用途:针对半导体、面板领域的高精度缺陷检测场景,提供高速实时对焦支持,尤其适配显微对焦类检测设备。性能优点:对焦速度快:50kHz 高速对焦,同步匹配缺陷检测的实时性需求;对焦精度高:0.5μm 对焦精度,保障缺陷成像清晰、检测无偏差;设计灵活:分体式结构,可根据检测设备的安装空间与布局灵活调整,降低适配难度。3. LT-R 反射膜厚仪:极薄膜厚检测的 “精密管家”核心用途:专注于极薄膜...
  • 8
    2023 - 02 - 20
    1、激光位移传感器在轮胎转速测量中有重要作用。通常,一台汽车的轮胎都包含有激光位移传感器,它可以准确地测量出车轮的输出速度。该传感器利用轮胎上绕着水平或垂直线的激光点来测量轮胎行驶距离和变速器输出转速,从而确定变速比。此外,它还能准确地测量车轮上的前后运动,特别是对于汽车行驶的直线行驶和转弯的控制都有着重要的作用。2、激光位移传感器在防撞技术中也得到了广泛应用。它通常会被安装在前脸和侧面,通过测量前脸物体和周围物体的距离来调整外防撞车身和限速 门控驾驶,从而有效地防止汽车发生碰撞,保护汽车行驶的安全。 3、激光位移传感器在停车技术中也得到了广泛应用。它不仅可以测量汽车行驶距离、角度和速度,还可以准确地记录汽车在停车时的位置,并在遇到障 害的情况下立即触发保护电路或自动脱离,从而避免发生碰撞事故。 4、激光位移传感器也被广泛用于汽车行驶辅助系统中,它可以准确地测量出汽车行驶距离、方向及车速, 为汽车驾驶员提供实时信息,以增加驾驶操控质量,帮助驾驶员进行准确的行驶安排和调整。 5、激光位移传感器也在汽车悬挂系统中得到应用,它可以测量每个车轮的距离及方向,并建立一个三维的实时图像 。这种三维的实时图像可以非常准确地反映出汽车悬挂系统的表现,从而使汽车行驶的平稳性和操控性都大大提高。6、激光位移传感器还可用于汽车智能辅助驾驶系统中, 这种系统结合了导航、安全显...
Message 最新动态
蓝光光源激光位移传感器:优势、原理与特殊场景解决方案 —— 泓川科技 LTP 系列 405nm 定制... 2025 - 10 - 21 在工业精密测量中,传统红光激光位移传感器常受高反射、半透明、高温红热等特殊场景限制,而蓝光光源(405nm 波长)凭借独特物理特性实现突破。以下通过 “一问一答” 形式,详解蓝光传感器的优势、原理构造,并结合泓川科技 LTP 系列定制方案,看其如何解决特殊环境测量难题。1. 蓝光光源激光位移传感器相比传统红光,核心优势是什么?蓝光传感器的核心优势源于 405nm 波长的物理特性,相比传统 655nm 左右的红光,主要体现在三方面:更高横向分辨率:根据瑞利判据,光学分辨率与波长成反比。蓝光波长仅为红光的 62%(405nm/655nm≈0.62),相同光学系统下横向分辨率可提升约 38%,能形成更小光斑(如泓川 LTP025 蓝光版光斑最小达 Φ18μm),适配芯片针脚、晶圆等微米级结构测量。更强信号稳定性:蓝光单光子能量达 3.06eV,远高于红光的 2.05eV。在低反射率材料(如橡胶、有机涂层)表面,能激发出更强散射信号;同时穿透性更低,仅在材料表层作用,避免内部折射干扰,适合表面精准测量。更优抗干扰能力:蓝光波段与红热辐射(500nm 以上)、户外强光(可见光为主)重叠度低,搭配专用滤光片后,可有效隔绝高温物体自发光、阳光直射等干扰,这是红光难以实现的。2. 蓝光激光位移传感器的原理构造是怎样的?为何能实现高精度测量?蓝光传感器的高精度的核心是 “光学设计 + 信号处理 + ...
泓川科技国产系列光谱共焦/激光位移传感器/白光干涉测厚产品性能一览 2025 - 09 - 05 高精度测量传感器全系列:赋能精密制造,适配多元检测需求聚焦半导体、光学膜、机械加工等领域的精密检测核心痛点,我们推出全系列高性能测量传感器,覆盖 “测厚、对焦、位移” 三大核心应用场景,以 “高精准、高速度、高适配” 为设计核心,为您的工艺控制与质量检测提供可靠技术支撑。以下为各产品系列的详细介绍:1.LTS-IR 红外干涉测厚传感器:半导体材料测厚专属核心用途:专为硅、碳化硅、砷化镓等半导体材料设计,精准实现晶圆等器件的厚度测量。性能优点:精度卓越:±0.1μm 线性精度 + 2nm 重复精度,确保测量数据稳定可靠;量程适配:覆盖 10μm2mm 测厚范围,满足多数半导体材料检测需求;高效高速:40kHz 采样速度,快速捕捉厚度数据,适配在线检测节奏;灵活适配:宽范围工作距离设计,可灵活匹配不同规格的检测设备与场景。2. 分体式对焦传感器:半导体 / 面板缺陷检测的 “高速对焦助手”核心用途:针对半导体、面板领域的高精度缺陷检测场景,提供高速实时对焦支持,尤其适配显微对焦类检测设备。性能优点:对焦速度快:50kHz 高速对焦,同步匹配缺陷检测的实时性需求;对焦精度高:0.5μm 对焦精度,保障缺陷成像清晰、检测无偏差;设计灵活:分体式结构,可根据检测设备的安装空间与布局灵活调整,降低适配难度。3. LT-R 反射膜厚仪:极薄膜厚检测的 “精密管家”核心用途:专注于极薄膜...
多方面研究泓川科技LTP系列大量程全国产激光位移传感器 2025 - 09 - 02 泓川科技激光位移传感器产品技术报告尊敬的客户: 感谢您对泓川科技激光位移传感器产品的关注与信任。为帮助您全面了解我司产品,现将激光位移传感器相关技术信息从参数指标、设计原理、结构设计等八大核心维度进行详细说明,为您的选型、使用及维护提供专业参考。一、参数指标我司激光位移传感器涵盖 LTP400 系列与 LTP450 系列,各型号核心参数经纳米级高精度激光干涉仪标定验证,确保数据精准可靠,具体参数如下表所示:表 1:LTP400EA参数表参数类别具体参数LTP400EA备注基础测量参数测量中心距离400mm以量程中心位置计算(*1)量程200mm-重复精度(静态)3μm测量标准白色陶瓷样件,50kHz 无平均,取 65536 组数据均方根偏差(*2)线性度±0.03%F.S.(F.S.=200mm)采用纳米级激光干涉仪标定(*3)光源与光斑光源类型-激光功率可定制,部分型号提供 405nm 蓝光版本(*4)光束直径聚焦点光斑 Φ300μm中心位置直径,两端相对变大(*5)电气参数电源电压DC9-36V-功耗约 2.5W-短路保护反向连接保护、过电流保护-输出与通信模拟量输出(选配)电压:0-5V/010V/-1010V;电流:420mA探头可独立提供电压、电流与 RS485 输出(*6)通讯接口RS485 串口、TCP/IP 网口可选配模拟电压 / 电流输出模块(*7)响应...
Copyright ©2005 - 2013 无锡泓川科技有限公司

1

犀牛云提供企业云服务
Our Link
X
3

SKYPE 设置

4

阿里旺旺设置

等待加载动态数据...

等待加载动态数据...

5

电话号码管理

  • 0510-88155119
6

二维码管理

等待加载动态数据...

等待加载动态数据...

展开