服务热线: 0510-88155119
13301510675@163.com
Language
项目案例 Case
Case 激光位移传感器案例

基于光谱共焦技术的叶尖间隙测量方法研究

日期: 2022-01-17
浏览次数: 46

[摘要]基于光谱共焦测量技术搭建了叶尖间隙模拟测试平台,将模拟叶盘安装在气浮主轴上,并应用光谱共焦位移传感器实现了叶尖端面的位移变化量的测量,以表征叶尖间隙的变化,分别模拟了叶尖间隙的单次测量和连续测量过程。实验结果表明,应用光谱共焦位移传感器可以完成发动机转子叶尖间隙的测量,而且能够达到很高的测量效率和精度,可以应用于实际的测量现场。


[关键词]叶尖间隙;非接触;光谱共焦;测量


引言

随着科学技术的长足进步,世界航空工业进入了全新的发展时代。在航空领域中,发动机是推进系统的重要组成部分,为飞机提供持续飞行的拉力或推力。作为飞机的核心部件,发动机对于飞行的安全性、可靠性和经济性等都有着重要影响。当前,航空推进系统日益向着高转速、高效率、高推重比、高可靠性和高涡轮前温度的方向发展,这就对发动机的整体性能提出了更高要求,迫切需要压气机、涡轮等关键部件具备更高的工作效率和更宽的稳定工作范围。而要达到这一目标,就需要着力加强在发动机性能测试方面的研究工作。


一般说来,航空发动机是一种高速旋转的热力机械,能够将燃料的化学能转化为飞机的动能,其各级转子主要由叶片、轮盘和转轴等部分组成。在发动机的运行过程中,压气机和涡轮中的转子以很高的转速做定轴回转运动,其中,各级转子叶片的顶端(叶尖)与机匣内壁之间的径向间距被称为叶尖间隙(Tip Clearance)。叶尖间隙是关系到发动机性能的重要参数之一,间隙过大,会使叶尖泄露增大,导致发动机效率下降,甚至造成发动机喘振;而间隙过小,则有可能导致叶片顶端与机匣内壁之间发生碰撞和摩擦,影响发动机的安全运转,甚至造成发动机损坏,给飞行带来巨大的安全隐患。


因此,采取必要的测试手段对发动机的转子叶尖间隙进行实时有效测量,从而掌握叶尖间隙的变化规律,对于监测发动机的工作状态,进而实现发动机整个运行过程的直接监测和故障诊断,都具有着重要而深远的意义。目前,叶尖间隙的测量方法主要有放电探针测量法、电涡流测量法和电容测量法等。放电探针法适用于导电材质的叶片,而且只能测量旋转叶片的最小叶尖间隙;电涡流法要求叶片材质具有导电性,并且叶尖端面要具有一定的厚度;电容法的频率响应性能较差,而且要求叶片材料必须是铁性材料,应用范围受到一定限制。可见,传统的测量方法存在着诸多局限性,不利于叶尖间隙测量任务的完成。


随着光学、电子学和传感技术等学科的发展与进步,许多光电传感器和测量方法被引入到航空领域中,成功地解决了许多传统测量技术难以或者无法解决的问题。其中,光谱共焦位移传感器是近年来新出现的一种非接触式的高精度光电位移传感器,基于光谱色散原理,能够将位移信息编码到波长信息中,再通过光谱分析技术得出被测位移,系统的分辨率可以达到微纳米量级,响应频率能够达到千赫兹量级。与传统的激光三角反射式位移传感器相比,光谱共焦位移传感器对被测表面的要求更低,允许被测表面有较大的倾斜角度。此外,它还具有精度高、绝对式测量、便于小型化以及对杂散光有较强的鲁棒性等特点,应用前景十分广阔。国内的马小军等提出了基于光谱共焦传感器的金属薄膜厚度测量技术,利用相向对顶安装的传感器组、精密位移平台等实现了对厚度为10~100μm的自支撑金属薄膜的厚度及厚度分布的精确测量。朱万彬等研究了将光谱共焦位移传感器用于测量透明材料平板厚度的可行性,并对其产生的误差进行了详细分析,给出了相应的补偿方法。陈挺等在论述光谱共焦技术原理的基础上,列举了光谱共焦传感器在几何量计量测试中的典型应用,探讨了共焦技术在未来精密测量领域中的进一步应用。


为了实现航空发动机转子叶尖间隙的实时精确测量,本文提出了一种基于光谱共焦技术的叶尖间隙测量方法。搭建了叶尖间隙模拟测试系统,将模拟叶盘零件安装在气浮主轴上,以模拟发动机转子,并将光谱共焦位移传感器固定在刚性支架上,通过支架的调整使传感器处于正确的工作位置。在实验过程中,首先进行单次测试,完成了单个叶片顶端位移变化量的测量;然后进行连续测试,旋转模拟叶盘,完成了该叶盘周向上36个叶片顶端位移变化量的连续测量,从而模拟了在发动机环境中的实际应用效果。实验结果表明,本文选用的光谱共焦位移传感器具有很高的测量精度和响应频率,并且体积小、便于安装,能够满足发动机叶尖间隙的测量需求。


1光谱共焦位移传感器的基本原理

光谱共焦测量技术最早由Molesini等人提出,并成功应用于表面轮廓仪。随后,许多科研人员都对基于光谱共焦原理的测量技术开展了深入研究,并在宏观和微观测量领域衍生出了许多应用实例。目前,国外的工业级光谱共焦位移传感器的测量精度已达到亚微米级,响应频率已达到几千赫兹。

基于光谱共焦技术的叶尖间隙测量方法研究

1光谱共焦位移传感器的工作原理


光谱共焦位移传感器是在共焦显微镜的基础上发展起来的,其原理类似于共焦显微镜,但又有所不同。如图1所示,传感器主要由探头和光谱分析仪两部分组成,二者可通过光纤连接进行信号传输。其中,探头主要由光源和光学透镜组等构成。光源采用宽光谱的复色点光源(呈白光),其出射光束经过前置透镜组后变为多色平行光;然后通过后面的色散透镜组进行光谱分光,形成一系列波长不同的单色光,并将其进行同轴聚焦。由此产生光谱色散,将不同波长的光的焦点分散在光轴上的不同位置,从而在有效量程范围内形成了一系列焦点,每个焦点处的单色光波长都对应一个轴向位置,由此将位移信息转换为波长信息。最后,聚焦于被测物体表面的单色光被反射回来,通过分光镜进入成像透镜组并最终成像在针孔像面上。在此过程中,对应被测表面位置并满足共焦条件的单色光将进入针孔到达光谱分析仪,以进行后续处理;而离焦反射的其它光谱则被针孔遮挡,不能进入光谱分析仪。


进入针孔的单色光到达光谱分析仪后,可以根据光信号确定出此单色光的波长。由于每个波长都对应着一个距离值,因而根据波长就可以推算出相应的位移量,实现位移的精确分辨。光谱分析仪得到的光谱响应曲线如图2所示,横坐标表示波长λ,纵坐标表示对比度I。对于得到的光谱响应曲线,其峰值波长在555nm处,如果被测物体发生微小位移,那么在光谱分析仪上就可以得到另外一条光谱响应曲线,从而获得另一个峰值,这两个峰值之差所代表的位移可以根据色散和波长的关系得出。

基于光谱共焦技术的叶尖间隙测量方法研究

2光谱响应曲线(长波/nm


正是基于这种独特原理,使得光谱共焦位移传感器在位移测量上能够达到很高的分辨率和精度。对于单层和多层的透明物体,除了能准确测量该物体位移之外,还可以对其厚度进行单方向测量。如在测量薄玻璃片时,其前后表面都会反射特定波长的光,在光谱分析仪上能够获得具有两个峰值的光谱曲线,通过这两个峰值就可以推算出玻璃的厚度,这在检测一些很薄的物体时非常有效,如检测玻璃纸的厚度等。如果将光谱共焦位移传感器配置在二维扫描装置上,还可以用于测量物体的表面形貌,而普通的共焦显微镜则需要三维扫描装置才能够实现物体形貌的测量。


2叶尖间隙模拟测试系统

由于压气机的工作温度不是很高,而且光学环境较好,因此特别适合采用光电传感器对叶尖间隙进行测量。在测量过程中,将传感器固定在静子机匣的内壁上,通过传感器可以获得叶尖与传感器之间径向距离d1,再与传感器到机匣内壁之间的距离d2相加,即可得到待测的叶尖间隙d的值,即d=d1+d2,如图3所示。而在实际使用过程中,由于传感器与静子机匣的相对位置固定,因而d2的数值不会发生变化,因此叶尖间隙的变化量可以通过d1来表征。

基于光谱共焦技术的叶尖间隙测量方法研究

3叶尖间隙的计算示意图


为模拟实际的测量现场,本文搭建了叶尖间隙模拟测试系统,如图4所示,主要包括光谱共焦位移传感器、刚性支架、模拟叶盘、气浮主轴、减振底座以及工控机等。首先,将刚性支架和气浮主轴固定在减振底座上,并调整它们之间的相互位置。其次,应用工装夹具将光谱共焦传感器安装在刚性支架上,由于该传感器采用侧向出光方式,其位移测量的方向与自身轴线垂直,因此应通过微调机构调整其空间方位,使传感器的轴线与气浮主轴的轴线平行。然后,将模拟叶盘安装在气浮主轴上,由于发动机转子的转速很高,因而整个气浮主轴系统在使用前需要经过动平衡调节,以使其在高速状态下稳定运转,不发生危险。最后,调整光谱共焦传感器的轴向位置,使其测量光束能够照射到模拟叶盘零件的叶尖上,在叶尖端面上形成测量点,并处于量程范围内。另外,在气浮主轴上还安装有转速同步器,以用于监测主轴的转速和转角位置,并将其作为光谱共焦传感器的同步信号。

基于光谱共焦技术的叶尖间隙测量方法研究

4叶尖间隙模拟测试系统的结构简图


在间隙传感器方面,如图5所示,主要由控制器和探头组成,它们由一根光纤连接,控制器通过光纤向探头提供光源,探头再通过光纤将光信号传输到控制器中进行光谱分析。该测量系统可以对漫反射或镜面反射物体进行高精度的位移测量,还可以对透明物体的厚度进行测量。

基于光谱共焦技术的叶尖间隙测量方法研究

5光谱共焦测量系统


控制器具有优异的信噪比,能够满足高精度测量的需求,测量速率可以达到10kHz,并且具有快速表面补光功能,可以通过控制曝光时间来达到较高的信号稳定性。数据输出可以通过EthernetEtherCATRS422或模拟量输出来实现。探头为光谱共焦式复合探头,采用无磨损透镜系统设计,可以进行径向测量,还能用于有防爆要求的工作领域与真空环境。该探头应用梯度指数透镜与光纤的复合技术,具有更大的数值孔径,因此可有效增大安全距离并加大安装倾斜角度。


3     实验验证

本文选取的光谱共焦位移传感器具有较小的尺寸结构和较高的响应频率,非常适合于航空发动机内狭小而恶劣的工作环境,因此在叶尖间隙测量方面具有很大的应用潜力。为了验证该型传感器在发动机叶尖间隙测量中的应用效果,本文在所搭建的叶尖间隙模拟测试系统上进行了单次和连续的测试实验,完成了传感器应用效果的综合验证。


3.1   单次测试

在本文搭建的模拟测试系统中,没有设计发动机机匣的模拟零件,因此间隙传感器通过刚性支架来模拟在机匣内壁上的安装状态。在叶片划过测量区域的过程中,传感器的输出为叶尖端面与传感器之间位移值,即d1。由于叶尖端面的厚度很小,因而叶尖间隙值可通过单个叶片划过时传感器的输出量的平均值来表征,实验现场如图6所示。

基于光谱共焦技术的叶尖间隙测量方法研究

6单次测量实验现场


通过变频器控制气浮主轴的转速,使其以缓慢速度带动模拟叶盘匀速转动。当叶片顶端进入光谱共焦传感器的测量范围内时,触发传感器开始数据采集;当叶片顶端转出传感器的测量范围时,传感器停止数据采集。在叶片顶端划过传感器测量范围的过程中,传感器采集到的测量数据如图7所示。

基于光谱共焦技术的叶尖间隙测量方法研究

7单个叶尖间隙的测量数据


从图7中可以看出,传感器在被测叶片顶端划过的过程中共采集到580个数据点,被测叶片顶端的位移变化量的范围为0.8311~0.8411mm,变化量的均值为0.8374mm,方差为0.0020mm。实验结果表明,应用光谱共焦位移传感器能够满足单个叶片叶尖间隙的测量,可以达到较高的测量精度。


3.2   连续测试

通过控制变频器调节气浮主轴的转速,使其带动模拟叶盘以1000r/min的速度回转。应用光谱共焦位移传感器进行模拟叶盘周向上的36个叶片的叶片顶端位移变化量的数据采集,并以平均值作为每个叶片最终的叶尖间隙值,动态测试的实验现场如图8所示。

基于光谱共焦技术的叶尖间隙测量方法研究

8连续测量实验现场


计算得到的模拟叶盘周向上的36个叶片的叶尖间隙的实验数据如表1所示,同时为了便于观察叶尖间隙的变化趋势,将这些数据显示在同一坐标系中,如图9所示。可以看出,在本文所搭建的叶尖间隙模拟测试系统中,应用光谱共焦位移传感器可以完成对模拟叶盘全部叶片的叶尖间隙的测量。传感器能够达到很高的测量精度和响应频率。从表1和图9中可以看出,该模拟叶盘上36个叶片的叶尖间隙值的变化范围为0.7137~0.8438mm,并且呈现为近似正弦曲线的形状,这主要是由于在将模拟叶盘安装在气浮主轴上时,存在一定的偏心误差造成的。由此可以看出,发动机转子不同轴会对叶尖间隙造成影响,因而在发动机的装配过程中,应控制转子系统的不同轴误差在允许的范围内。

基于光谱共焦技术的叶尖间隙测量方法研究

9连线测量的实验数据(叶片序号)


136个叶片的叶尖间隙的实验数据

基于光谱共焦技术的叶尖间隙测量方法研究


4     结论

针对航空发动机转子叶尖间隙的测量问题,本文探索了光谱共焦位移传感器在此方面的应用效果。光谱共焦位移传感器基于光谱色散原理,探头体积小、安装方便,并且能够达到很高的测量精度和响应频率,能够满足叶尖间隙的测量需求。本文搭建了叶尖间隙模拟测试系统,应用光谱共焦位移传感器对安装在气浮主轴上的模拟叶盘进行测量,采集叶片顶端位移变化量的数据。在实验验证过程中,本文既通过单次测量完成了单个叶片逐个检测,又通过连续测量完成了旋转状态下的每个叶片叶尖间隙的数据采集,系统具有良好的应用性能。实验结果表明,光谱共焦位移传感器可以用于发动机转子叶尖间隙的测量,从而为我国航空发动机技术的进步提供了一项测试技术支持。



Case / 相关推荐
2023 - 12 - 10
点击次数: 0
随着科技的不断发展,高精度激光位移传感器作为一种先进的测量工具,正在被广泛应用于各种领域,包括金属加工、汽车制造、航天航空等。特别是在测量薄钢材厚度方面,激光位移传感器展现出了独特的优势。本文将通过一个实际案例,详细介绍激光位移传感器在测量钢板厚度方面的应用及其带来的效益。在传统的测量方法中,通常采用卡尺或千分尺等接触式测量工具来测量钢板厚度。然而,这种方法的精度容易受到操作人员技术水平、主观因素...
2023 - 10 - 20
点击次数: 12
超声焊接质量监控方案泓川科技激光测振传感器的超声焊接质量监控方案旨在提供一种全面、有效的监控方法,以确保超声焊接过程的质量和可靠性。概览泓川科技激光测振传感器的方案提供了一种独特的视角和解决方案,以确保超声焊接的精确性和一致性。通过非接触式激光多普勒测量技术,可以实时监测超声振动频率和振动幅度,同时直接测量焊接物获得的等效超声焊接能量。此外,智能传感器可以通过modbus/工业以太网等和PLC实时...
2023 - 10 - 13
点击次数: 13
大家好,在现在的工业自动化市场中,激光位移传感器是自动化设备检测环节中必不可少的组成部分,它可以检测和监测生产工件,工装位置的各个尺寸和状态,可是市场的的激光位移传感器品牌和种类太多,可谓是五花八门,我们小白又该如何选择呢?今天小编就带领着大家深度学习下如何选择合适自己使用的激光位移传感器。注意本次内用主要是面对激光三角回差原理的激光位移传感器,因为这种激光位移传感器占用市场中60%以上的份额,它...
2023 - 10 - 11
点击次数: 10
近年来,随着制造业的发展,对工件表面平整度和倾斜度的要求越来越高。为了实现对工件表面质量的准确评估,我们可以采用高精度激光位移传感器进行测量。下面将介绍一个基于激光位移传感器的测量方法,并解释其原理和应用领域。首先,我们需要准备3到5只高精度激光位移传感器,并将它们分别打在待测表面上。在开始测量之前,我们需要使用一个非常标准的平面来进行校准,并对所有传感器的位置进行归零。这样可以确保在测量过程中得...
2023 - 10 - 11
点击次数: 12
方案概述:本方案利用三个高精度近距离激光测距传感器分布在薄板材料宽度方向的三个位置,以底部的辊轴为基准点,通过归零测距传感器,可以测量材料上表面的高度位置信息,从而间接计算材料的厚度。具体步骤如下:1. 安装传感器:将三个激光测距传感器按照预先确定的位置安装在辊轴上,确保传感器与材料表面之间的距离适当且稳定。2. 归零传感器:在材料未经过时,对三个传感器进行归零操作,使其读数为零。这样可以消除传感...
2023 - 09 - 27
点击次数: 7
一、引言在辊轮车间中,辊轮研磨是一个十分关键的步骤,其质量直接影响到产品的性能和生产效率。为了准确测量辊轮的凸面尺寸,光谱共焦传感器被广泛使用。该方法非接触,高精度且不受环境影响,适合于各种光滑度要求高的镜面辊轮的检测。二、检测过程对于镜面辊轮来说,必须有一个高精确度且稳定的测量方法以确定其凸面尺寸。光谱共焦传感器是理想的选择。在测量过程中,传感头发出的光束被分成参考光束和测量光束。测量光束射到被...
About Us
关于泓川科技
专业从事激光位移传感器,激光焊缝跟踪系统研发及销售的科技公司
中国 · 无锡 · 总部地址:无锡新吴区天山路6号
销售热线:0510-88155119 
图文传真:0510-88152650
Working Time
我们的工作时间
周一至周五:8:00-18:00
周六至周日:9:00-15:00
Shown 企业秀 More
  • 1
    2023 - 03 - 07
    本次应用报告旨在介绍超声波测距传感器在锂电池生产过程中测量卷绕直径的应用情况。首先,本文将介绍超声波测距传感器的基本工作原理和特点,然后详细介绍其在锂电池生产中的应用情况,并对其应用效果进行评估和总结。一、超声波测距传感器的基本工作原理和特点超声波测距传感器是一种通过超声波测量距离的传感器,其测量原理非常简单,就是利用超声波在空气中的传播速度快,而且与环境中的温度、湿度等因素无关的特点。具体来说,超声波测距传感器通过发射超声波信号,当这些信号遇到物体时就会反射回来,传感器通过感受这些反射信号的到达时间,从而计算出物体与传感器之间的距离。超声波测距传感器具有响应速度快、距离测量范围广、测量精度高和使用方便等特点。因此,在工业自动化、机器人、汽车和航空等领域已经广泛应用。二、超声波测距传感器在锂电池生产中的应用锂电池的核心部件是电芯,而电芯的生产过程中就需要进行锂电池卷绕。卷绕的直径大小对于电芯的性能有很大的影响。因此,测量卷绕直径是电芯生产过程中非常重要的环节。传统的测量方法是利用拉尺、卡尺等工具进行物理测量,但是由于电芯内部结构复杂、精度要求高、测量效率低等因素,往往会出现误差较大的情况。超声波测距传感器可以很好地解决这个问题。具体来说,在电芯卷绕时,只需要将超声波测距传感器置于卷绕机上方,然后通过发射超声波信号测量卷绕轴的直径大小即可。由于超声波的反射信号可以穿透物体,因此不会对...
  • 2
    2023 - 09 - 30
    国产LTP系列激光位移传感器具备一系列突出的特点,如光量自适应算法、高速高灵敏度的测量性能、高精度长距离非接触测量、高可靠性一体化传感器结构等。然而,在面对进口品牌如松下、基恩士、欧姆龙、米铱和奥泰斯等的竞争时,国产激光位移传感器仍面临着挑战。主体:国产LTP系列激光位移传感器的突出特点:1. 光量自适应算法:通过动态调整激光功率、曝光时间等参数,实现1000000:1的光量动态调整范围,适应不同被测表面的测量,包括胶水、PCB、碟片、陶瓷和金属等多种材料。2. 高速高灵敏度测量性能:借助像素宽度和数量提升的CMOS及高速驱动与低噪声信号读取技术,国产LTP系列激光位移传感器能够实现最高160kHz的测量速度和亚微米级的测量精度,满足压电陶瓷等物体的极端测量需求。3. 高精度长距离非接触测量:专门设计开发的高分辨物镜可最小化被测物体表面光斑变化对测量结果的影响,并降低光学畸变。可根据需要选择测量工作距离在30-2250mm之间,满足了高温、窗口限制等远距离测量的场景需求。4. 高可靠性一体化传感器结构:国产LTP系列激光位移传感器经过高低温、振动、冲击等测试,能够适应大多数工业应用场景。此外,常用的工业接口(如以太网、485、模拟量输出等)可直接从探头接出,便于集成。国产激光位移传感器面临的挑战:1. 进口品牌把持高端市场:目前国内高端的激光位移传感器几乎都被进口品牌如松下、基恩士...
  • 3
    2023 - 03 - 08
    一、概述随着现代工业的不断发展和进步,精度对于工业生产过程中所需要的各种测试测量技术要求也越来越高。而激光测量技术则是在这种背景下得以应用的,这是利用激光作为工具进行测量分析的一种方法。激光测量可以分为非接触式和接触式两种方式。二、非接触激光测量非接触激光测量技术是指激光束在不与被测物体表面发生接触的情况下,对被测物体进行测量操作。它主要利用激光的高亮度、高单色性、高方向性等特点,将测量对象和激光之间的无线电辐射或光辐射联系起来,通过对测量信号的处理,来获得被测物体的相关参数。可以广泛应用于自动化制造、工业检测、生命科学、质量控制检测等领域。2.1 非接触式测量优点(1)不会对被测物体造成损伤。激光测量技术是无损伤性的,测量过程中不会对被测物体造成任何损伤,也不会影响被测物体的结构、形状和性能。(2)精度高。非接触激光测量技术具有高精密性、高灵敏性和高分辨力,能够以亚微米级的精度获得被测物体的相关参数,减小了人为误差和测量结果的不确定性。(3)高速度。非接触激光测量技术具有快速高效的特点,对于一些需要进行即时在线检测或高频率的质检要求,非接触激光测量技术具有独特的优势。(4)测量安全。由于非接触激光测量技术可以在安全距离的范围内进行,因此保障了测量人员的身体健康和安全。2.2 非接触式测量缺点(1)不适用于暗面测量。非接触激光测量技术无法对于有光线被挡住的部位进行测量,因此适用于透...
  • 4
    2023 - 10 - 11
    激光测距传感器对射技术在自动化生产线上的应用愈发广泛,今天我们将介绍一个基于两台激光测距传感器上下对射来检测橡胶带接缝的案例。在橡胶带的生产过程中,橡胶带的接缝是一个非常关键的部位。由于橡胶带在运输行走的过程中,其厚度会随着接缝的存在而变化。接缝是由两个橡胶带重叠在一起形成的,因此接缝的厚度显然会大于橡胶带本身。为了保证产品质量和生产效率,我们需要及时准确地检测并计数橡胶带的接缝。我们采用了两台激光测距传感器进行上下对射的方式来实现这一目标。具体操作如下:首先,将一台激光测距传感器安装在橡胶带上方,另一台安装在橡胶带下方,使得两台传感器之间垂直对射。通过激光束的反射和接收时间的测量,可以获取到橡胶带表面和接缝的距离信息。当橡胶带的接缝位置经过测距传感器时,根据上文提到的厚度大于阈值的特点,我们可以通过一个内部的比较器来判断是否检测到了接缝。当橡胶带的厚度数据高于预设的阈值时,比较器将输出一个开关量信号,表示接缝位置被检测到。通过这种方式,我们不需要具体测量接缝的厚度数值,只需要一个开关量信号,就可以实现对橡胶带接缝位置质量的检测和接缝数量的计数。这对于保证产品质量、提高生产效率具有重要意义。总结起来,利用两台激光测距传感器上下对射的方法,结合内部的比较器功能,我们可以实现对橡胶带接缝位置的检测。这种技术应用既简单又有效,可以在自动化生产线中广泛应用,提高生产效率并确保产品质量的稳定...
  • 5
    2023 - 03 - 09
    激光位移传感器被广泛应用于各种领域中。其中一个很有用的应用是测量薄膜厚度。这种传感器可以在离表面很近的距离下进行高精度测量,因此非常适合这种应用。本文将介绍激光位移传感器如何用于测量薄膜厚度,包括测量方法、测量原理和市场应用。一、测量方法测量薄膜厚度的基本思路是利用激光位移传感器测量薄膜前后表面的距离差,然后通过几何公式计算出薄膜厚度。在实际操作中,测量方法大致可分为以下几种:1. 手持式测量手持式测量通常用于快速的现场检测。用户只需要将激光位移传感器靠近待测表面,然后通过读取显示屏上的数值判断薄膜厚度是否符合要求。这种方法不需要复杂的设备和步骤,非常易于使用。但是由于人手的震动和误差等因素,手持式测量的精度相对较低,只适用于需求不是特别高的场合。2. 自动化在线测量自动化在线测量一般用于工业生产线上的质量控制。这种方法需要将激光位移传感器与自动化设备相连接,将测量数据传递给计算机进行分析。在这种情况下,测量过程可以完全自动化,精度也可以得到保证。但是相对于手持式测量来说,这种方法需要的设备和技术要求更高,成本也更高。3. 显微镜下测量显微镜下测量常用于对细小薄膜厚度的测量。在这种情况下,用户需要将激光位移传感器与显微镜相结合进行测量。由于显微镜的存在,可以大大增强测量精度。但是相对于其他两种方法,这种方法需要的设备更多,并且技巧要求也更高。二、测量原理激光位移传感器利用的是激光三...
  • 6
    2023 - 10 - 20
    面对反射率不同的目标物时,激光位移传感器需要调整以下方面以确保测量的稳定性:根据目标物的反射率变化,调整接收光量。反射率较高的目标物可能导致光量饱和,而反射率较低的目标物可能无法获得足够的接收光量。因此,需要根据目标物的反射特性,适时调整激光位移传感器的接收光量,以使其处于最佳工作状态。使用光量控制范围调整功能。这种功能可以预先决定接收光量的上限和下限,缩短获取最佳光量的时间,从而可以更快地调整光量。针对反射率较高的目标物,需要减小激光功率和缩短发射时间,以避免光量饱和。而对于反射率较低的目标物,则应增大激光功率和延长发射时间,以确保获得足够的接收光量。在调整过程中,需要注意测量反射率急剧变化位置的稳定程度,以及使用光量调整功能以外功能时的稳定程度。如果无法稳定测量反射率不同的目标物,可能是由于目标物的反射光因颜色、反光、表面状况(粗度、倾斜度)等因素而发生变化,导致感光元件(接收光波形)上形成的光点状态也会随之变化。这种情况下,需要通过反复试验和调整,找到最佳的激光位移传感器工作参数。总结来说,激光位移传感器需要根据目标物的反射率变化,调整接收光量、激光发射时间、激光功率和增益等参数,以确保测量的稳定性和准确性。同时,需要注意目标物的反射特性及其变化情况,以便及时调整激光位移传感器的参数。
  • 7
    2023 - 03 - 20
    介绍工业光电传感器是现代制造业中最常用的检测设备之一,广泛应用于自动化生产线、机械加工、装配、物流搬运等行业。随着国民经济的不断发展,中国的工业光电传感器制造业也不断发展壮大,成为制造业的一支重要力量。本文旨在对中国产的工业光电传感器现状进行描述。发展历史20世纪80年代初期,我国的工业自动化程度比较低,大部分生产线仍采用人力操作,制造业存在高人力成本、低效率、品质难以保证等问题。为了提高制造业的效率和品质,中国开始引入外国的工业自动化设备,其中就包括工业光电传感器。80年代中后期,国内开始试水制造工业光电传感器,并逐步发展壮大。90年代初期,随着国民经济的增长和工业自动化的加速推进,中国的工业光电传感器制造业进入快速发展期。如今,中国的工业光电传感器制造业已经处于全球领先地位,成为世界闻名的光电传感器生产基地之一。产业链分析商业模式中国的工业光电传感器制造业商业模式主要是以生产销售为主,较少采用研发生产销售一体化模式。生产企业主要供应给自动化设备制造商,然后这些自动化设备制造商销售给最终用户,最终用户则使用这些设备来自动化生产线。除此之外,还有一些企业将工业光电传感器产品应用到自己的设备制造中,以提高自己产品的品质和效率,然后再将自己的产品销售给最终用户。在商业模式上,中国的工业光电传感器制造业与欧美等发达国家还存在一定的差距。技术研发中国的工业光电传感器制造业在技术研发方面逐渐...
  • 8
    2023 - 10 - 20
    当目标物的反射率发生急剧变化时,激光位移传感器的测量稳定性会受到影响。反射率较高的目标物可能会达到光饱和状态,这会导致无法正确检测接收光光点位置,从而影响测量的稳定性。对于反射率较低的目标物,可能会因为接收到的光量不足而无法正确检测接收光光点位置,进而影响测量的稳定性。在这种情况下,激光位移传感器需要根据反射率的变化,将接收光量调整到最佳状态后,才能进行稳定的测量。具体来说,针对反射率较高的目标物,可以减小激光功率和缩短发射时间;针对反射率较低的目标物,可以增大激光功率和延长发射时间。这种方法可以帮助调整激光位移传感器的精度,以适应目标物反射率的变化。然而,调整也并非一个简单的过程,需要考虑到测量反射率急剧变化位置的稳定程度以及使用光量调整功能以外功能时的稳定程度。因此,在实际操作过程中,可能需要多次取样和调整才能获取最佳的测量效果。
Message 最新动态
光伏压延玻璃厚度监测中光谱共焦传感器的应用案例 2023 - 12 - 08 现代科技日新月异的发展,为我们带来了种种便利。光伏产业就是其中的一员。压延玻璃作为光伏电池板的关键材料,其厚度的精确控制直接影响到电池板性能。然而,传统的手动检测方法难以满足高精度测量的需要,光谱共焦传感器的出现彻底改变了这一问题。光谱共焦传感器,顾名思义,它利用光谱学原理和共焦技术,实现对物体的高精度,迅速,无损检测。在压延玻璃的生产过程中,我们可以使用它进行厚度的实时监测。具体步骤如下:首先,我们应该注意的是,由于压延玻璃两面的表面状态不同,一面平整光滑,另外一面则是由无数微小的半球面拼接而成。因此,在进行光学测量时,我们需要遵循激光的透光原理,从平整表面那一侧打光。这样做可以确保我们获得的数据稳定而准确。其次,由于压延玻璃在生产过程中可能会出现轻微的抖动,因此,我们需要选择具有较大测量范围的光谱共焦传感器,以弥补生产过程中的这种不确定性。一般来说,压延玻璃的厚度在2-3.5mm之间,因此我们尽量选用量程大于8mm的传感器。最后,光谱共焦传感器具有良好的穿透性能和大角度检测能力。我们可以通过检测透明物体的正反两面,以此来获取压延玻璃的厚度值。同时,由于其可以进行大角度测量,所以,即使玻璃表面存在凹凸不平的情况,也能得出稳定、准确的测量结果。本案例给我们展示了科技与生产的完美结合,使得生产过程更加精细,更加高效。我们有理由相信,随着科技的不断进步,未来生产出的光伏压延玻璃将更加完...
高速高精度激光位移传感器在音响振动频率测量中的应用实例 2023 - 12 - 08 随着科技的不断发展和进步,传感器技术得到了广泛的应用,尤其是在音响设备的振动频率测量方面。为了解决传统多普勒激光振动测量仪在成本上的投入问题,我们引入了一种低成本且高精度的解决方案--我们的高精度高速激光位移传感器LTP080系列。LTP080系列是一款卓越的激光位移传感器,它具有最高160K赫兹的采样频率,可以轻松处理100赫兹以下的低频振动测量。这使得它非常适合在音响设备的振动频率测量中使用。首先,必须将激光位移传感器准确地定位在音响设备的振动部分。然后,启动传感器进行数据采集。传感器将会收集音响设备振动的位移数据,这些数据通过微积分运算计算得出速度信息。然后,再对速度数据进行二次微积分运算,便可获取加速度信息。这样,我们便可以通过经济的方式获得音响设备的振动速度和加速度信息,无需购买昂贵的多普勒激光振动测量仪。值得注意的是,这种测量方式并不完美。它需要通过数学运算将位移数据转换为速度和加速度信息,并且对于高频振动测量可能存在局限性。然而,正是这种方法的低成本和高精度特性,使其在音响设备振动频率测量方面发挥了非凡的作用。此外,激光位移传感器还有其他一些优点,例如强大的抗干扰能力,可以适应各种环境条件,包括高温、低温、湿热等环境,以及不受照射材料、颜色及表面粗糙度的影响等。总的来说,LTP080系列高速激光位移传感器在音响设备的振动频率测量中的应用,提供了一种经济实惠且准确的解决...
有没有一种非接触测量的传感器,可以不受被测物体颜色、材质、透明度和反光量影响的? 2023 - 11 - 22 标题:光谱共焦位移传感器:实现非接触测量的无影响性能摘要:光谱共焦位移传感器是一种先进的测量设备,利用共焦技术和光谱分析相结合,能够实现对被测物体的非接触测量,并且不受被测物体材质、颜色、透明度、反光度等因素的影响。本文将详细介绍光谱共焦位移传感器的原理和优越性,展示它在各个领域的广泛应用前景。引言:传统的非接触测量方法往往会受到被测物体材质、颜色、透明度、反光度等因素的干扰,导致测量结果的准确性下降。光谱共焦位移传感器作为一种新型的测量设备,成功解决了这一难题。它基于共焦技术和光谱分析原理,具有高精度、高灵敏度和多参数同时测量等优势,被广泛应用于工业、生命科学、环境监测等领域。一、光谱共焦位移传感器的原理光谱共焦位移传感器利用共焦技术,通过快速成像和光谱分析的方法,实现对被测物体的位移测量。传感器通过发送一束激光到被测物体上,并收集反射回来的光信号。然后,利用光谱分析技术将这些光信号解析成不同波长的频谱图像。根据频谱图像的变化,可以计算出被测物体的位移信息。二、光谱共焦位移传感器的优越性1. 无受材质影响:光谱共焦位移传感器采用光谱分析技术,可以将不同波长的光信号进行解析,不受被测物体的材质影响。无论是金属、塑料、液体还是透明物体,传感器都能够准确测量其位移信息。2. 无受颜色影响:传统的传感器常常受到被测物体颜色的影响,导致测量结果的误差增加。而光谱共焦位移传感器通过分析光信号...
Copyright ©2005 - 2013 无锡泓川科技有限公司

1

犀牛云提供企业云服务
Our Link
X
3

SKYPE 设置

4

阿里旺旺设置

等待加载动态数据...

等待加载动态数据...

5

电话号码管理

  • 0510-88155119
6

二维码管理

等待加载动态数据...

等待加载动态数据...

展开