服务热线: 0510-88155119
13301510675@163.com
Language
项目案例 Case
Case 光谱共聚焦

破局“阴影效应”与多层介质干扰:光谱共焦技术在 PCB 高密度封装中的计量学突破

日期: 2026-01-28
浏览次数: 0

引言:电子制造微观战场的测量危机

在工业 4.0 的宏大叙事下,电子制造产业正经历着一场静默而剧烈的微观变革。随着 5G 通信模组、高算力半导体芯片以及消费电子内部架构的极致压缩,印制电路板(PCB)的集成度正以摩尔定律衍生的速度向微小型化、高密度化跨越。

然而,这种物理尺寸的极致压缩给制程质量控制带来了前所未有的挑战。根据 IPC-TM-650 等行业标准,Class 3 级别的高可靠性板卡对局部共面度(Coplanarity)和立碑(Tombstoning)风险的控制要求已进入微米级。在 SMT(表面贴装技术)产线中,微小的焊膏厚度偏差或元器件离板高度异常,在回流焊的热冲击下,极易转化为肉眼不可见的电气隐患——从虚焊、连锡到后期服役中的焊点疲劳断裂。

传统的 2D 视觉甚至激光三角测量法,在面对这种复杂的“微观地貌”时,正遭遇物理光学的“天花板”。如何在高低错落的电容、电阻森林中,实现无死角、抗干扰、亚微米级精度的 3D 测量,不仅是工艺难题,更是决定良率的关键与测量技术的必争之地。

破局“阴影效应”与多层介质干扰:光谱共焦技术在 PCB 高密度封装中的计量学突破

一、 物理限制:高密度结构下的测量壁垒

要理解新一代测量技术的必要性,首先必须剖析传统技术在 PCB 场景下的失效机理。根据一线制程反馈,目前的两大核心痛点在于几何光学的“阴影效应”与材料光学的“伪影干扰”。

1. 空间几何与“阴影效应”的死角

在精密 PCB 布局中,高大的电解电容与微小的贴片电阻往往比邻而居。传统的激光三角测量法依赖光束的入射角与反射角构成三角关系来计算位移。当检测光束以特定倾斜角度照射时,高耸的元件会像山峰阻挡夕阳一样,遮挡相邻低矮区域的光路,形成物理上的“盲区”或“阴影区”。

这意味着,在元器件高密度排布的区域,传感器无法获取完整的轮廓数据。这种几何学上的限制导致测量覆盖率无法达到 100%,对于盲孔深度或紧密排列引脚的根部检测更是无能为力。

2. 材质多元性带来的信号伪影

PCB 表面是一个极其复杂的光学场,涵盖了半透明的阻焊油墨(绿油)、高反光的镀金焊盘、深色的塑封芯片以及各种纹理的基板。

  • 多重反射(Ghosting): 尤其是阻焊绿油,其半透明的化学特性会导致光线产生多重反射:一部分在油墨表面反射,另一部分则穿透油层在铜箔表面反射。

  • 扩宽与多峰: 这种现象会导致接收端的波形产生严重的扩宽和多峰现象。若算法无法精准剔除油墨内部的漫反射信号,高度测量结果将产生巨大的随机误差,彻底丧失微米级的参考意义。


破局“阴影效应”与多层介质干扰:光谱共焦技术在 PCB 高密度封装中的计量学突破


二、 技术重构:光谱共焦技术的底层逻辑

针对上述物理限制,光谱共焦(Chromatic Confocal)技术凭借其独特的轴向色散物理机制,提供了一种“降维打击”式的解决方案。而在此领域,** 泓川科技(Chuantec)** 研发的 LTC 系列光谱共焦位移传感器,展现了该技术在工业落地中的极致性能。

1. 同轴光路:终结“阴影”

与三角法不同,光谱共焦技术采用同轴光路设计。发射光与反射光处于同一垂直光轴上。

  • 原理: 通俗地讲,它像一根极细的“光探针”,垂直射入,垂直返回。

  • 优势: 这种同轴性从物理层面规避了阴影区问题。即便是深宽比极大的盲孔,或者紧贴高大电容的焊盘,只要光线能射入,LTC 系列传感器就能捕获有效信号。根据 LTC100B 探头的实测数据,其光斑直径仅为 2.7μm,这意味着它能够深入到极微小的引脚间隙中进行精确取样,彻底消除了视场死角。

2. 波长编码:穿透“伪影”

光谱共焦的核心在于利用特殊透镜组产生的轴向色散,将白光分解为不同波长的单色光,并使不同波长的光聚焦在光轴上不同的距离点。

  • 光谱解码: 只有聚焦在物体表面的那个特定波长的光,才能高强度地反射回光谱仪的针孔并被检测到。

  • 材质鲁棒性: 这种机制意味着传感器是通过识别“波长”而非单纯的“光强”来计算距离。对于半透明的绿油,LTC 系列控制器能够通过峰值选择算法,精准分离表面反射信号与底层反射信号,从而实现对复合材料的稳定测量,甚至可以直接应用于油膜厚度透明涂层厚度的测量。


破局“阴影效应”与多层介质干扰:光谱共焦技术在 PCB 高密度封装中的计量学突破


三、 性能实证:基于泓川科技 LTC 系列的实验数据分析

为了验证该技术在严苛工业环境下的真实表现,我们引入 泓川科技 LTC 系列 产品的技术规格与实验室测试数据进行深度分析。这不仅仅是参数的堆砌,而是对测量置信度的量化证明。

1. 纳米级分辨率与亚微米级线性度

在高端半导体封装中,共面度误差通常要求控制在 10μm 以内,这对传感器的线性度提出了挑战。

  • 实验数据: 参考 LTC100B 型号探头,其量程为 0.3mm(±0.15mm),但其线性误差被控制在惊人的 <±0.03μm 以内,分辨率更是达到了 3nm

  • 技术解读: 这意味着在测量 PCB 上微小的金手指高度差时,LTC100B 能够提供接近干涉仪级别的基准数据,完全满足 Class 3 级别产品对微小形变的捕捉需求。即使是大量程的 LTC4000F(量程 8mm),其线性误差依然保持在 <±0.8μm,确保了在 PCB 整体翘曲度测量中的全局精度。

2. 也是速度的博弈:32kHz 动态扫描

工业 4.0 产线要求由“抽检”转为“全检”,这对采样频率提出了极高要求。

  • 控制器性能: 泓川科技的 LT-CPS/CPD 系列控制器,在单通道模式下最高支持 32kHz 的采样频率。

  • 应用场景: 在 PCB 动态扫描过程中,由于基材与元件的热膨胀系数不一致,回流焊后板卡会发生宏观扭曲。高频采样允许传感器配合高速运动平台,快速构建 PCB 的 3D 地形图。

  • 多通道同步: 针对大板或多点共面度检测,** LT-CCH** 控制器支持最多 16 个探头 同时连接。虽然随着通道数增加采样率有所分流(16通道时为 4kHz),但对于静态或低速产线的多点同步监测(如 16 个关键点位的共面度计算),其效率远超单头扫描模式,且各通道间无串扰。

3. 环境适应性与角度特性

PCB 上的焊锡往往呈曲面状,大角度的反射能力至关重要。

  • 角度极限: 数据显示,** LTC2400** 型号探头具备高达 ±60° 的测量角度能力。这在测量 BGA 锡球的球冠高度或圆角焊点时至关重要,普通的激光传感器在超过 30° 时往往因光强不足而丢失信号,而 LTC2400 依然能保持稳定的波峰回传。

  • 热稳定性: 考虑到车间环境波动,传感器的工作温度范围覆盖 0 至 +50°C,且温度漂移系数极低(如 LTC10000 系列小于 0.03% F.S./°C),保证了长期运行的数据一致性。

破局“阴影效应”与多层介质干扰:光谱共焦技术在 PCB 高密度封装中的计量学突破

四、 典型应用场景与工艺闭环

结合泓川科技 LTC 系列的技术特性,我们可以在以下关键工艺环节构建数据闭环:

1. 元器件离板高度与共面度检测

这是 SMT 工艺中最核心的指标。对于 BGA 和 QFN 等底部贴装器件,LTC 传感器可以精确测量组件底面与 PCB 基板表面的间隙。

  • 痛点解决: 避免因高度过低导致焊剂残留物无法清洗(引发电化学迁移短路),或因高度过高导致虚焊。

  • 方案: 使用 LT-CCF 控制器搭配 LTC600 探头(光斑 8μm),对引脚最高点与最低点进行扫描,直接输出共面度数值,误差控制在 0.1mm 的行业标准内绰绰有余。

2. 在线 PCB 翘曲度监测

在回流焊炉后,板卡受热形变是不可避免的。

  • 方案: 利用 LTC系列 的大量程探头(如 LTC20000,量程 20mm),对 PCB 的对角线进行快速轮廓扫描。

  • 价值: 实时将翘曲数据反馈给贴片机,修正贴装 Z 轴高度参数,实现动态的工艺补偿,这是实现智能工厂“自适应制造”的关键一环。

3. 涂覆层与油膜厚度测量

除了几何尺寸,LTC 系列凭借光谱共焦的层析特性,还可应用于三防漆涂覆厚度或助焊剂油膜厚度的测量。

  • 能力: 能够区分上表面与下表面的反射峰,直接计算透明材质的物理厚度,监控涂覆工艺的均匀性,防止因涂层过薄导致的防护失效。


结语:从“定性检查”到“定量数据化”的跃迁

总结而言,面对电子制造日益严苛的微型化与高可靠性需求,传统的测量手段已难以招架。以 泓川科技(Chuantec)LTC 系列 为代表的光谱共焦技术,通过同轴光路设计与波长编码机制,成功打破了空间几何与材料光学的双重限制。

其实验数据所展现的一致性、亚微米级精度以及对复杂材质的鲁棒性,不仅解决了“测不到”和“测不准”的工程难题,更为智能工厂提供了高质量的制程数据流。这使得 PCB 质量管理真正实现了从人工目检的“定性”时代,向数据驱动、闭环控制的“定量”时代的跨越。在未来的精密制造中,这种如同“微观手术刀”般的测量技术,将成为保障良率与可靠性的核心基石。


Case / 相关推荐
2026 - 01 - 01
点击次数: 13
摘要随着消费电子与半导体封装技术向微型化、高密度化(HDI)发展,印刷电路板(PCB)上元器件的尺寸不断缩小(如01005封装),对表面贴装技术(SMT)后的质量检测提出了极高要求。传统的二维自动光学检测(AOI)难以获取高度信息,而激光三角法受制于阴影效应和多重反射,在密集元器件检测中存在盲区。本文深入探讨了光谱共焦位移传感技术(Chromatic Confocal Microscopy, CC...
2025 - 12 - 03
点击次数: 20
一、项目背景锂电池极片作为动力电池的核心组件,其厚度均匀性直接影响电池的能量密度、循环寿命及安全性能。某锂电池生产企业年产 2GWh 动力电池,极片生产线涵盖正极(三元材料)、负极(石墨材料)两条产线,极片宽幅分别为 1.2m(正极)、1.0m(负极),轧制后目标厚度范围为 80-200μm,公差要求严格控制在 ±1μm 内。此前采用接触式测厚仪,存在极片表面划伤风险(划伤率约 0.8%...
2025 - 11 - 17
点击次数: 25
核心结论:泓川 LTCR4000 探针型光谱共焦传感器(侧面 90° 出光),完美适配 FA 透明材质、安装空间狭小的测量场景,通过底部照射多点测距实现角度矫正,精准保障 FA 平行度达标。一、应用背景与测量痛点应用场景光通讯芯片 FA(光纤组件)作为光信号传输核心部件,其端面与安装基准面的平行度直接影响插损(IL)、回波损耗(RL)等关键性能。FA 采用透明光纤材质,装配时由夹爪夹持固...
2025 - 08 - 30
点击次数: 27
一、案例背景与核心测试需求手机相机镜头模组(以某型号 5P 光学镜头为例)的多镜片安装精度直接决定成像质量 —— 镜片间高度差过大会导致光路偏移,引发画面模糊、畸变;安装深度偏差超出阈值会改变焦距,影响自动对焦性能;镜筒与镜片的配合缝隙过大则易进灰、产生杂散光,甚至导致镜片松动。本案例针对该 5P 镜头模组的外观关键参数展开测量,具体需求如下:镜片间高度差:相邻镜片(如 1# 镜片与 2# 镜片、...
2025 - 08 - 06
点击次数: 44
一、多晶硅太阳能电池厚度:发电效率与柔性的平衡艺术多晶硅太阳能电池作为光伏市场的主流产品,其厚度是影响性能的核心参数 —— 既需满足高效发电,又要适应柔性场景的需求,这种 "平衡" 背后是材料特性与工程技术的深度耦合。1. 厚度与发电效率:并非越厚越好的 "倒 U 型" 关系多晶硅太阳能电池的发电效率依赖于光吸收能力与载流子收集效率的协同。当厚度较小时(如<...
2025 - 07 - 13
点击次数: 58
一、方案背景与需求凸面镜面作为光学系统中的关键元件,其 3D 轮廓精度直接影响光学性能(如成像质量、光路偏转精度)。传统接触式测量易划伤镜面,而普通光学测量受限于角度范围和量程,难以覆盖凸面的曲面变化(大段差、大曲率)。针对这一需求,本方案采用LTC4000F 光谱共焦传感器搭配LT-CCS 单通道控制器,利用其超大测量角度、超大量程及高精度特性,实现凸面镜面 3D 轮廓的非接触式精确扫描。二、方...
About Us
关于泓川科技
专业从事激光位移传感器,激光焊缝跟踪系统研发及销售的科技公司
中国 · 无锡 · 总部地址:无锡新吴区天山路6号
销售热线:0510-88155119 
图文传真:0510-88152650
Working Time
我们的工作时间
周一至周五:8:00-18:00
周六至周日:9:00-15:00
Shown 企业秀 More
  • 1
    2023 - 02 - 21
    激光位移传感器是一种用于测量距离和轮廓表面的自动光学传感技术。它的工作原理是发射激光束,激光束被目标表面或区域反射,然后光束返回所需的时间被转换为距离测量。它的主要应用是尺寸计量,可以精确测量长度、距离和粗糙度轮廓。激光位移传感器也用于工业自动化、机器人和机器视觉应用。什么是激光位移传感器?       激光位移传感器是一种用于测量距离和轮廓表面的自动光学传感技术。该系统通过从激光源发射激光来工作。然后,该激光束从目标表面或区域反射回来。然后,光束覆盖距离和返回所花费的时间被转换为距离测量或轮廓。激光位移传感器通常由三个主要部分组成:*激光源*光学探测器*处理器      激光源通常是激光二极管,其波长适合于目标区域及其光学特性。激光二极管产生激光束,该激光束被引导到目标表面或区域上。然后光束被反射回检测器。根据应用,可以用一定范围的脉冲频率调制光束。光束由光学检测器检测。检测器将光转换成电信号,然后将其发送到处理器。然后处理器处理信息并将测量数据发送到数字显示器或计算机。然后,数据可用于进一步分析或控制自动化过程。历史:       激光位移传感器最初是在20世纪70年代开发的,是麻省理工学院研究项目的一部分。这项研究由美国陆军研究实验室和美国空军赖特实验室赞助。该技术最...
  • 2
    2025 - 01 - 09
    一、光谱共焦传感技术解密光谱共焦技术的起源,要追溯到科学家们对传统成像精度局限的深刻洞察。在 20 世纪 70 年代,传统成像在精密测量领域遭遇瓶颈,为突破这一困境,基于干涉原理的光谱共焦方法应运而生,开启了高精度测量的新篇章。进入 80 年代,科研人员不断改进仪器设计,引入特殊的分光元件,如同给传感器装上了 “精密滤网”,精准分辨不同波长光信号;搭配高灵敏度探测器,将光信号转化为精确数字信息。同时,计算机技术强势助力,实现数据快速处理、动态输出测量结果,让光谱共焦技术稳步走向成熟。90 年代,纳米技术、微电子学蓬勃发展,对测量精度要求愈发苛刻。科研团队迎难而上,开发新算法、模型优化测量,减少误差;增设温度控制、机械振动抑制功能,宛如为传感器打造 “稳定护盾”,确保在复杂实验环境下结果稳定可靠,至此,光谱共焦技术成为精密测量领域的关键力量。添加图片注释,不超过 140 字(可选)二、HCY 光谱共焦传感器工作原理(一)核心原理阐释HCY 光谱共焦传感器的核心在于巧妙运用光学色散现象。当内部的白光点光源发出光线后,光线会迅速射向精密的透镜组。在这里,白光如同被解开了神秘面纱,依据不同波长被精准地色散开来,形成一道绚丽的 “彩虹光带”。这些不同波长的光,各自沿着独特的路径前行,最终聚焦在不同的高度之上,构建起一个精密的测量范围 “标尺”。当光线抵达物体表面,会发生反射,其中特定波长的光...
  • 3
    2025 - 09 - 02
    泓川科技激光位移传感器产品技术报告尊敬的客户: 感谢您对泓川科技激光位移传感器产品的关注与信任。为帮助您全面了解我司产品,现将激光位移传感器相关技术信息从参数指标、设计原理、结构设计等八大核心维度进行详细说明,为您的选型、使用及维护提供专业参考。一、参数指标我司激光位移传感器涵盖 LTP400 系列与 LTP450 系列,各型号核心参数经纳米级高精度激光干涉仪标定验证,确保数据精准可靠,具体参数如下表所示:表 1:LTP400EA参数表参数类别具体参数LTP400EA备注基础测量参数测量中心距离400mm以量程中心位置计算(*1)量程200mm-重复精度(静态)3μm测量标准白色陶瓷样件,50kHz 无平均,取 65536 组数据均方根偏差(*2)线性度±0.03%F.S.(F.S.=200mm)采用纳米级激光干涉仪标定(*3)光源与光斑光源类型-激光功率可定制,部分型号提供 405nm 蓝光版本(*4)光束直径聚焦点光斑 Φ300μm中心位置直径,两端相对变大(*5)电气参数电源电压DC9-36V-功耗约 2.5W-短路保护反向连接保护、过电流保护-输出与通信模拟量输出(选配)电压:0-5V/010V/-1010V;电流:420mA探头可独立提供电压、电流与 RS485 输出(*6)通讯接口RS485 串口、TCP/IP 网口可选配模拟电压 / 电流输出模块(*7)响应...
  • 4
    2023 - 10 - 20
    面对反射率不同的目标物时,激光位移传感器需要调整以下方面以确保测量的稳定性:根据目标物的反射率变化,调整接收光量。反射率较高的目标物可能导致光量饱和,而反射率较低的目标物可能无法获得足够的接收光量。因此,需要根据目标物的反射特性,适时调整激光位移传感器的接收光量,以使其处于最佳工作状态。使用光量控制范围调整功能。这种功能可以预先决定接收光量的上限和下限,缩短获取最佳光量的时间,从而可以更快地调整光量。针对反射率较高的目标物,需要减小激光功率和缩短发射时间,以避免光量饱和。而对于反射率较低的目标物,则应增大激光功率和延长发射时间,以确保获得足够的接收光量。在调整过程中,需要注意测量反射率急剧变化位置的稳定程度,以及使用光量调整功能以外功能时的稳定程度。如果无法稳定测量反射率不同的目标物,可能是由于目标物的反射光因颜色、反光、表面状况(粗度、倾斜度)等因素而发生变化,导致感光元件(接收光波形)上形成的光点状态也会随之变化。这种情况下,需要通过反复试验和调整,找到最佳的激光位移传感器工作参数。总结来说,激光位移传感器需要根据目标物的反射率变化,调整接收光量、激光发射时间、激光功率和增益等参数,以确保测量的稳定性和准确性。同时,需要注意目标物的反射特性及其变化情况,以便及时调整激光位移传感器的参数。
  • 5
    2025 - 01 - 19
    一、引言1.1 研究背景与意义在科技飞速发展的当下,半导体和电子部件制造行业正经历着深刻的变革。随着电子产品的功能不断增强,尺寸却日益缩小,对半导体和电子部件的性能、精度以及可靠性提出了极为严苛的要求。从智能手机、平板电脑到高性能计算机、物联网设备,无一不依赖于先进的半导体和电子部件技术。而这些部件的质量与性能,在很大程度上取决于制造过程中的测量、检测和品质管理环节。光学测量技术作为一种先进的测量手段,凭借其高精度、非接触、快速测量等诸多优势,在半导体和电子部件制造领域中发挥着愈发关键的作用。它能够精确测量微小尺寸、复杂形状以及表面形貌等参数,为制造过程提供了不可或缺的数据支持。举例来说,在半导体芯片制造中,芯片的线宽、间距等关键尺寸的精度要求已经达到了纳米级别,光学测量技术能够准确测量这些尺寸,确保芯片的性能符合设计标准。再如,在电子部件的封装过程中,光学测量可以检测焊点的形状、尺寸以及位置,保障封装的可靠性。光学测量技术的应用,不仅能够有效提高产品的质量和性能,还能显著降低生产成本,增强企业在市场中的竞争力。通过实时监测和精确控制制造过程,能够及时发现并纠正生产中的偏差,减少废品率和返工率,提高生产效率。因此,深入研究光学测量在半导体和电子部件制造中的典型应用,对于推动行业的发展具有重要的现实意义。1.2 研究目的与方法本报告旨在深入剖析光学测量在半导体和电子部件制造测量、检测...
  • 6
    2025 - 01 - 14
    一、引言1.1 激光位移传感器概述激光位移传感器,作为工业测量领域的关键设备,凭借其卓越的非接触测量特性,正日益成为众多行业实现高精度测量与自动化控制的核心技术。它主要利用激光的反射特性,通过精确测量反射光的相关参数,实现对目标物体的位移、距离、厚度等几何量的精准测定。这一技术的诞生,为现代制造业、科研实验以及诸多工业生产过程,提供了高效、可靠且精准的测量手段。其工作原理基于激光三角测量法和激光回波分析法。激光三角测量法常用于高精度、短距离测量场景。在该方法中,激光位移传感器发射出一束激光,射向被测物体表面,物体表面反射的激光经由特定的光学系统,被传感器内部的探测器接收。根据激光发射点、反射点以及探测器接收点之间所构成的三角几何关系,通过精密的计算,能够精确得出物体与传感器之间的距离 。激光回波分析法更适用于远距离测量,传感器以每秒发射大量激光脉冲的方式,向被测物体发送信号,随后依据激光脉冲从发射到被接收的时间差,精确计算出物体与传感器之间的距离。在工业测量领域,激光位移传感器的重要地位不容小觑。在汽车制造行业,它被广泛应用于车身零部件的尺寸检测、装配精度控制等环节。通过对汽车零部件的精确测量,能够确保各个部件的尺寸符合设计要求,从而提升整车的装配质量和性能。在电子制造领域,激光位移传感器可用于检测芯片的尺寸、平整度以及电子元件的贴装精度等。在芯片制造过程中,其微小的尺寸和极高的精...
  • 7
    2025 - 01 - 29
    五、光谱共焦传感器测量厚度的局限性及解决措施5.1 局限性分析5.1.1 测量范围限制光谱共焦传感器的测量范围相对有限,一般在几毫米到几十毫米之间。这是由于其测量原理基于色散物镜对不同波长光的聚焦特性,测量范围主要取决于色散物镜的轴向色差范围以及光谱仪的工作波段。在实际应用中,对于一些大尺寸物体的厚度测量,如厚壁管材、大型板材等,可能需要多次测量拼接数据,增加了测量的复杂性和误差来源。例如,在测量厚度超过传感器量程的大型金属板材时,需要移动传感器进行多次测量,然后将测量数据进行拼接处理,但在拼接过程中可能会因测量位置的定位误差、测量角度的变化等因素导致测量结果的不准确。5.1.2 对被测物体表面状态的要求虽然光谱共焦传感器对多种材料具有良好的适用性,但被测物体表面的粗糙度、平整度等因素仍会对测量精度产生一定影响。当被测物体表面粗糙度较大时,表面的微观起伏会导致反射光的散射和漫反射增强,使得反射光的强度分布不均匀,从而影响光谱仪对反射光波长的准确检测,导致测量误差增大。对于表面平整度较差的物体,如存在明显翘曲或弯曲的板材,会使传感器与物体表面的距离在不同位置发生变化,超出传感器的测量精度范围,进而影响厚度测量的准确性。例如,在测量表面粗糙的橡胶板材时,由于橡胶表面的微观纹理和不规则性,测量精度会明显下降,难以达到对光滑表面测量时的高精度水平。5.1.3 成本相对较高光谱共焦传感器作为...
  • 8
    2023 - 02 - 26
    今天我为大家展示安全激光扫描仪产品,安全激光扫描仪适用于各种应用技术领域,      在设备开发期间我们给予了特别关注,以确保它能够在广泛应用中发挥最佳功能,尤其重视大型工作区域的防护,例如机床正面区域或机器人工作区域。      其他应用包括移动车辆的防护,例如侧向滑动装置或移动运输设备,无人驾驶运输系统。甚至垂直安装激光扫描仪的出入口保护系统。尽管我们在安全激光扫描与领域,已经有数10年的经验了,但该应用领域仍然面对许多挑战。不过我们的激光安全扫描仪具有独一无二的功能属性,例如具有8.25米检测距离和270度扫描范围。       属于目前市场上的高端设备,非常适合侧向滑动装置正面区域等大型区域或长距离的防护。该设备的另一个亮点就是能够同时监测两个保护功能。这在许多应用领域中,独具优势以前需要使用两个设备,如今只需要使用一台这样的安全激光扫描仪,即可完成两台设备的功能。               实践中遇到的一项挑战是设计一款异常强骨的激光安全扫描仪。能够适应周围环境中可能存在的灰尘和颗粒等恶劣条件,因此我们提供了较分辨率达到0.1度的设备。它在目前市场上具有非常高的价值。   ...
Message 最新动态
蓝光光源激光位移传感器:优势、原理与特殊场景解决方案 —— 泓川科技 LTP 系列 405nm 定制... 2025 - 10 - 21 在工业精密测量中,传统红光激光位移传感器常受高反射、半透明、高温红热等特殊场景限制,而蓝光光源(405nm 波长)凭借独特物理特性实现突破。以下通过 “一问一答” 形式,详解蓝光传感器的优势、原理构造,并结合泓川科技 LTP 系列定制方案,看其如何解决特殊环境测量难题。1. 蓝光光源激光位移传感器相比传统红光,核心优势是什么?蓝光传感器的核心优势源于 405nm 波长的物理特性,相比传统 655nm 左右的红光,主要体现在三方面:更高横向分辨率:根据瑞利判据,光学分辨率与波长成反比。蓝光波长仅为红光的 62%(405nm/655nm≈0.62),相同光学系统下横向分辨率可提升约 38%,能形成更小光斑(如泓川 LTP025 蓝光版光斑最小达 Φ18μm),适配芯片针脚、晶圆等微米级结构测量。更强信号稳定性:蓝光单光子能量达 3.06eV,远高于红光的 2.05eV。在低反射率材料(如橡胶、有机涂层)表面,能激发出更强散射信号;同时穿透性更低,仅在材料表层作用,避免内部折射干扰,适合表面精准测量。更优抗干扰能力:蓝光波段与红热辐射(500nm 以上)、户外强光(可见光为主)重叠度低,搭配专用滤光片后,可有效隔绝高温物体自发光、阳光直射等干扰,这是红光难以实现的。2. 蓝光激光位移传感器的原理构造是怎样的?为何能实现高精度测量?蓝光传感器的高精度的核心是 “光学设计 + 信号处理 + ...
泓川科技国产系列光谱共焦/激光位移传感器/白光干涉测厚产品性能一览 2025 - 09 - 05 高精度测量传感器全系列:赋能精密制造,适配多元检测需求聚焦半导体、光学膜、机械加工等领域的精密检测核心痛点,我们推出全系列高性能测量传感器,覆盖 “测厚、对焦、位移” 三大核心应用场景,以 “高精准、高速度、高适配” 为设计核心,为您的工艺控制与质量检测提供可靠技术支撑。以下为各产品系列的详细介绍:1.LTS-IR 红外干涉测厚传感器:半导体材料测厚专属核心用途:专为硅、碳化硅、砷化镓等半导体材料设计,精准实现晶圆等器件的厚度测量。性能优点:精度卓越:±0.1μm 线性精度 + 2nm 重复精度,确保测量数据稳定可靠;量程适配:覆盖 10μm2mm 测厚范围,满足多数半导体材料检测需求;高效高速:40kHz 采样速度,快速捕捉厚度数据,适配在线检测节奏;灵活适配:宽范围工作距离设计,可灵活匹配不同规格的检测设备与场景。2. 分体式对焦传感器:半导体 / 面板缺陷检测的 “高速对焦助手”核心用途:针对半导体、面板领域的高精度缺陷检测场景,提供高速实时对焦支持,尤其适配显微对焦类检测设备。性能优点:对焦速度快:50kHz 高速对焦,同步匹配缺陷检测的实时性需求;对焦精度高:0.5μm 对焦精度,保障缺陷成像清晰、检测无偏差;设计灵活:分体式结构,可根据检测设备的安装空间与布局灵活调整,降低适配难度。3. LT-R 反射膜厚仪:极薄膜厚检测的 “精密管家”核心用途:专注于极薄膜...
多方面研究泓川科技LTP系列大量程全国产激光位移传感器 2025 - 09 - 02 泓川科技激光位移传感器产品技术报告尊敬的客户: 感谢您对泓川科技激光位移传感器产品的关注与信任。为帮助您全面了解我司产品,现将激光位移传感器相关技术信息从参数指标、设计原理、结构设计等八大核心维度进行详细说明,为您的选型、使用及维护提供专业参考。一、参数指标我司激光位移传感器涵盖 LTP400 系列与 LTP450 系列,各型号核心参数经纳米级高精度激光干涉仪标定验证,确保数据精准可靠,具体参数如下表所示:表 1:LTP400EA参数表参数类别具体参数LTP400EA备注基础测量参数测量中心距离400mm以量程中心位置计算(*1)量程200mm-重复精度(静态)3μm测量标准白色陶瓷样件,50kHz 无平均,取 65536 组数据均方根偏差(*2)线性度±0.03%F.S.(F.S.=200mm)采用纳米级激光干涉仪标定(*3)光源与光斑光源类型-激光功率可定制,部分型号提供 405nm 蓝光版本(*4)光束直径聚焦点光斑 Φ300μm中心位置直径,两端相对变大(*5)电气参数电源电压DC9-36V-功耗约 2.5W-短路保护反向连接保护、过电流保护-输出与通信模拟量输出(选配)电压:0-5V/010V/-1010V;电流:420mA探头可独立提供电压、电流与 RS485 输出(*6)通讯接口RS485 串口、TCP/IP 网口可选配模拟电压 / 电流输出模块(*7)响应...
Copyright ©2005 - 2013 无锡泓川科技有限公司

1

犀牛云提供企业云服务
Our Link
X
3

SKYPE 设置

4

阿里旺旺设置

等待加载动态数据...

等待加载动态数据...

5

电话号码管理

  • 0510-88155119
6

二维码管理

等待加载动态数据...

等待加载动态数据...

展开