服务热线: 0510-88155119
13301510675@163.com
Language
项目案例 Case
Case 白光干涉测厚

有没有纳米级别测量精度误差的激光位移传感器?泓川科技LTS-I 系列给出专业答案

日期: 2025-10-21
浏览次数: 11

一、核心疑问:LTS-I 系列真能实现纳米级测量精度吗?

答案是肯定的,LTS-I 系列通过关键参数设计,直接满足纳米级测量需求,核心精度指标如下:
  1. 重复精度达纳米级:测量 n=1.5 的玻璃样品时,重复精度 < 2nm rms,误差控制在纳米级别,确保多次测量结果稳定一致。

  2. 线性误差极小:线性误差 <±0.1μm,进一步降低测量偏差,适合对线性度要求极高的精密场景。

  3. 精准光斑保障精度:光斑直径仅 Φ20μm(测厚型探头为参考距离处数值,测距型探头为量程中心位置数值),能聚焦于微小测量点,减少非目标区域干扰。

有没有纳米级别测量精度误差的激光位移传感器?泓川科技LTS-I 系列给出专业答案

二、功能延伸:LTS-I 系列能同时满足位移与厚度测量需求吗?

可以,LTS-I 系列通过 “控制器 + 适配探头” 的组合,同时覆盖位移(测距)与厚度测量,具体配置与参数如下:
  • 控制器核心:统一搭配 LTS-IRC5400-S 控制器,支持 1 个传感头连接,采样频率最高达 40kHz,可快速捕捉动态测量数据。

  • 测距型方案(LTS-IRP-D20 探头):参考距离 20mm,适合高精度位移检测,如精密部件的位置偏移、振动位移测量。

  • 测厚型方案(LTS-IRP-T50 探头):参考距离 50mm,量程范围随被测物体折射率(n)变化,覆盖多类材料:

    • n=1 时,量程 50~4000μm(如透明薄膜);

    • n=1.5 时,量程 33.3~2667μm(如玻璃、光学镜片);

    • n=3.5 时,量程 14.3~1143μm(如高折射率晶体)。


有没有纳米级别测量精度误差的激光位移传感器?泓川科技LTS-I 系列给出专业答案

三、场景落地:哪些高精尖领域适合用 LTS-I 系列?

LTS-I 系列的纳米级精度与多场景适配性,使其能支撑以下高精尖领域的核心测量需求:
  1. 半导体制造领域:晶圆厚度检测、芯片键合位移校准

    半导体晶圆厚度需精准控制在微米级,LTS-I 的 <±0.1μm 线性误差与 Φ20μm 小光斑,可避免损伤晶圆表面,同时 40kHz 高采样频率能匹配晶圆生产线的高速检测节奏。

  2. 光学元件制造领域:透镜厚度测量、镜片表面位移检测

    光学透镜(如相机镜头、激光镜片)对厚度均匀性要求极高,LTS-IRP-T50 探头可适配不同折射率镜片(n=1.5 常见玻璃材质),结合 TSConfocalStudio 测控软件,能实时生成厚度数据报表,便于质量管控。

  3. 精密机械装配领域:导轨位移校准、轴承间隙测量

    高端数控机床、机器人导轨的位移精度直接影响加工精度,LTS-IRP-D20 探头的 20mm 参考距离与 ±2° 测量角度,可精准校准导轨直线度,RS485 接口(支持 Modbus 协议)还能与机械控制系统联动,实现实时调整。

  4. 航空航天零部件测试领域:涡轮叶片厚度检测、舱体密封件位移监测

    航空发动机涡轮叶片厚度需耐受高温且精度达标,LTS-I 系列 IP40 防护等级与 10~40℃工作温度范围,可适应车间测试环境,4~20mA 模拟电流输出能直接对接航空零部件测试系统,输出标准化数据。


有没有纳米级别测量精度误差的激光位移传感器?泓川科技LTS-I 系列给出专业答案

四、使用保障:LTS-I 系列有哪些工业级适配优势?

除核心精度外,LTS-I 系列的硬件与软件设计进一步适配高精尖领域的工业场景:
  1. 丰富接口兼容工业系统:支持 100BASE-TX Ethernet、USB2.0 High Speed、RS485(9600~115200 波特率)接口,可对接 PLC、工业电脑、数据采集系统,满足自动化测量需求。

  2. 软件与二次开发支持:自带 TSConfocalStudio 测控软件,可直接设置参数、查看数据;提供 C++ 及 C# 二次开发包,方便企业根据自身场景定制测量程序。

  3. 稳定的工业级性能:控制器采用 24VDC±10% 供电,电流消耗约 0.4A,重量约 5700g,便于集成到工业设备中;探头外径 Φ10mm(D20 探头长度 58.5mm,T50 探头长度 26.5mm),可在狭小空间安装。


应用场景
核心测量需求
适配探头型号
关键性能参数
接口与通信配置
适配优势及备注
半导体制造领域
晶圆厚度检测、芯片键合位移校准
LTS-IRP-T50(测厚)
重复精度<2nm rms(n=1.5 时),线性误差<±0.1μm,量程 33.3~2667μm(n=1.5),光斑 Φ20μm,采样频率 40kHz
控制器:LTS-IRC5400-S接口:100BASE-TX Ethernet、USB2.0、RS485(Modbus)输出:4~20mA 电流、数字信号
零接触测量避免晶圆损伤,Ethernet 支持高速在线检测,搭配 TSConfocalStudio 生成质量报表
光学元件制造领域
透镜 / 镜片厚度测量、表面位移检测
LTS-IRP-T50(测厚)
量程 50~4000μm(n=1,薄膜)、33.3~2667μm(n=1.5,玻璃),测量角度 ±2°,光斑 Φ20μm
控制器:LTS-IRC5400-S接口:USB2.0(参数配置)、RS485(数据传输)输出:0~10V 电压、警报信号
适配不同折射率光学材料,小光斑确保边缘测量精度,支持二次开发定制检测流程
精密机械装配领域
导轨位移校准、轴承间隙测量
LTS-IRP-D20(测距)
参考距离 20mm,重复精度<2nm rms,采样频率 40kHz,探头尺寸 Φ10×58.5mm
控制器:LTS-IRC5400-S接口:RS485(Modbus,联动 PLC)、USB2.0输入:AB/ABZ 编码器信号
小尺寸探头适配狭小安装空间,RS485 实现与机械系统实时联动校准,测量角度 ±2° 适配多方位检测
航空航天零部件测试领域
涡轮叶片厚度检测、密封件位移监测
LTS-IRP-T50(测厚)
量程 14.3~1143μm(n=3.5,晶体),防护等级 IP40,工作温度 10~40℃
控制器:LTS-IRC5400-S接口:100BASE-TX Ethernet、RS485输出:4~20mA 电流、比较器输出
耐受工业测试环境,模拟电流输出适配航空测试系统,高采样频率捕捉动态位移变化



Case / 相关推荐
2025 - 10 - 21
点击次数: 11
一、核心疑问:LTS-I 系列真能实现纳米级测量精度吗?答案是肯定的,LTS-I 系列通过关键参数设计,直接满足纳米级测量需求,核心精度指标如下:重复精度达纳米级:测量 n=1.5 的玻璃样品时,重复精度 2nm rms,误差控制在纳米级别,确保多次测量结果稳定一致。线性误差极小:线性误差 ±0.1μm,进一步降低测量偏差,适合对线性度要求极高的精密场景。精准光斑保障精度:光斑直径仅 ...
2025 - 07 - 30
点击次数: 45
在材料科学与精密制造领域,“厚度” 这一关键参数的微小偏差可能直接影响产品性能与可靠性。白光干涉测厚传感器凭借其纳米级精度、非接触式测量特性,已成为破解微纳尺度厚度检测难题的核心工具。本文将深入解析其测量技术原理、核心优势,并探讨其在材料科学中的多元应用。一、测量原理:以光为尺,解码干涉信号中的厚度信息白光干涉测厚技术的核心原理源于光学干涉现象。当宽谱白色光源(如超高亮度彩色激光光源)照射到待测样...
2025 - 03 - 31
点击次数: 121
一、背景与需求在光学薄膜、柔性电子及包装材料领域,聚对苯二甲酸乙二醇酯(PET)薄膜的厚度均匀性直接影响其光学性能、机械强度及阻隔性能。例如,在显示屏光学膜材中,40μm PET膜的厚度偏差需控制在±0.5μm以内,传统接触式测厚仪易划伤膜面,且难以满足纳米级精度要求。 本案例采用HT-T系列白光干涉测厚仪,以非接触方式对40μm PET膜进行高精度厚度测量,验证其在实际工业场景中的适用...
2025 - 03 - 26
点击次数: 80
行业困局:透明膜测厚为何成为制造升级的“卡脖子”环节?在高端光学膜、柔性电子等领域,12.5μm FEP膜与8-10μm UV胶层的叠层结构是产品性能的核心保障。然而,传统检测手段却陷入三重困境:精度之殇:千分尺测量误差达±1μm,无法满足超薄叠层管控需求;效率瓶颈:接触式测量导致膜面损伤,离线抽检拖慢产线节奏;信号干扰:多层透明膜反射光叠加,光学传感器误判率超15%。泓川科技破局之道:...
2025 - 03 - 04
点击次数: 172
1. 背景与需求在半导体制造工艺中,光刻胶厚度的均匀性直接影响光刻图形精度及后续蚀刻/沉积工艺的质量。某半导体企业需对硅片表面光刻胶(厚度范围20μm±1μm)进行快速、非接触式在线检测,要求测量精度优于±0.1μm,且需适应产线高速节拍(每秒10点以上)。传统接触式测厚仪存在划伤风险,而光谱椭偏仪则对操作环境要求苛刻。基于此,采用HT-T系列白光干涉测厚传感器构建解决方案。2...
2025 - 02 - 25
点击次数: 134
核心关键词:白光干涉测厚仪 胶带测厚 非接触测量 涂胶厚度检测为什么胶带行业急需白光干涉测厚技术?在胶粘制品行业(如3M、德莎、Nitto等),涂胶厚度偏差超过3μm会导致:✅ 粘接力下降30%以上✅ 光学胶出现气泡/彩虹纹✅ 导电胶电阻值波动±15%传统千分尺测量不仅效率低(单点耗时>30秒),更会压伤未固化胶层——这正是泓川科技LT系列白光干涉测厚仪成为行业首选的根本原因!揭秘泓川科...
About Us
关于泓川科技
专业从事激光位移传感器,激光焊缝跟踪系统研发及销售的科技公司
中国 · 无锡 · 总部地址:无锡新吴区天山路6号
销售热线:0510-88155119 
图文传真:0510-88152650
Working Time
我们的工作时间
周一至周五:8:00-18:00
周六至周日:9:00-15:00
Shown 企业秀 More
  • 1
    2023 - 02 - 21
    激光位移传感器是一种用于测量距离和轮廓表面的自动光学传感技术。它的工作原理是发射激光束,激光束被目标表面或区域反射,然后光束返回所需的时间被转换为距离测量。它的主要应用是尺寸计量,可以精确测量长度、距离和粗糙度轮廓。激光位移传感器也用于工业自动化、机器人和机器视觉应用。什么是激光位移传感器?       激光位移传感器是一种用于测量距离和轮廓表面的自动光学传感技术。该系统通过从激光源发射激光来工作。然后,该激光束从目标表面或区域反射回来。然后,光束覆盖距离和返回所花费的时间被转换为距离测量或轮廓。激光位移传感器通常由三个主要部分组成:*激光源*光学探测器*处理器      激光源通常是激光二极管,其波长适合于目标区域及其光学特性。激光二极管产生激光束,该激光束被引导到目标表面或区域上。然后光束被反射回检测器。根据应用,可以用一定范围的脉冲频率调制光束。光束由光学检测器检测。检测器将光转换成电信号,然后将其发送到处理器。然后处理器处理信息并将测量数据发送到数字显示器或计算机。然后,数据可用于进一步分析或控制自动化过程。历史:       激光位移传感器最初是在20世纪70年代开发的,是麻省理工学院研究项目的一部分。这项研究由美国陆军研究实验室和美国空军赖特实验室赞助。该技术最...
  • 2
    2025 - 01 - 09
    一、光谱共焦传感技术解密光谱共焦技术的起源,要追溯到科学家们对传统成像精度局限的深刻洞察。在 20 世纪 70 年代,传统成像在精密测量领域遭遇瓶颈,为突破这一困境,基于干涉原理的光谱共焦方法应运而生,开启了高精度测量的新篇章。进入 80 年代,科研人员不断改进仪器设计,引入特殊的分光元件,如同给传感器装上了 “精密滤网”,精准分辨不同波长光信号;搭配高灵敏度探测器,将光信号转化为精确数字信息。同时,计算机技术强势助力,实现数据快速处理、动态输出测量结果,让光谱共焦技术稳步走向成熟。90 年代,纳米技术、微电子学蓬勃发展,对测量精度要求愈发苛刻。科研团队迎难而上,开发新算法、模型优化测量,减少误差;增设温度控制、机械振动抑制功能,宛如为传感器打造 “稳定护盾”,确保在复杂实验环境下结果稳定可靠,至此,光谱共焦技术成为精密测量领域的关键力量。添加图片注释,不超过 140 字(可选)二、HCY 光谱共焦传感器工作原理(一)核心原理阐释HCY 光谱共焦传感器的核心在于巧妙运用光学色散现象。当内部的白光点光源发出光线后,光线会迅速射向精密的透镜组。在这里,白光如同被解开了神秘面纱,依据不同波长被精准地色散开来,形成一道绚丽的 “彩虹光带”。这些不同波长的光,各自沿着独特的路径前行,最终聚焦在不同的高度之上,构建起一个精密的测量范围 “标尺”。当光线抵达物体表面,会发生反射,其中特定波长的光...
  • 3
    2025 - 09 - 02
    泓川科技激光位移传感器产品技术报告尊敬的客户: 感谢您对泓川科技激光位移传感器产品的关注与信任。为帮助您全面了解我司产品,现将激光位移传感器相关技术信息从参数指标、设计原理、结构设计等八大核心维度进行详细说明,为您的选型、使用及维护提供专业参考。一、参数指标我司激光位移传感器涵盖 LTP400 系列与 LTP450 系列,各型号核心参数经纳米级高精度激光干涉仪标定验证,确保数据精准可靠,具体参数如下表所示:表 1:LTP400EA参数表参数类别具体参数LTP400EA备注基础测量参数测量中心距离400mm以量程中心位置计算(*1)量程200mm-重复精度(静态)3μm测量标准白色陶瓷样件,50kHz 无平均,取 65536 组数据均方根偏差(*2)线性度±0.03%F.S.(F.S.=200mm)采用纳米级激光干涉仪标定(*3)光源与光斑光源类型-激光功率可定制,部分型号提供 405nm 蓝光版本(*4)光束直径聚焦点光斑 Φ300μm中心位置直径,两端相对变大(*5)电气参数电源电压DC9-36V-功耗约 2.5W-短路保护反向连接保护、过电流保护-输出与通信模拟量输出(选配)电压:0-5V/010V/-1010V;电流:420mA探头可独立提供电压、电流与 RS485 输出(*6)通讯接口RS485 串口、TCP/IP 网口可选配模拟电压 / 电流输出模块(*7)响应...
  • 4
    2023 - 10 - 20
    面对反射率不同的目标物时,激光位移传感器需要调整以下方面以确保测量的稳定性:根据目标物的反射率变化,调整接收光量。反射率较高的目标物可能导致光量饱和,而反射率较低的目标物可能无法获得足够的接收光量。因此,需要根据目标物的反射特性,适时调整激光位移传感器的接收光量,以使其处于最佳工作状态。使用光量控制范围调整功能。这种功能可以预先决定接收光量的上限和下限,缩短获取最佳光量的时间,从而可以更快地调整光量。针对反射率较高的目标物,需要减小激光功率和缩短发射时间,以避免光量饱和。而对于反射率较低的目标物,则应增大激光功率和延长发射时间,以确保获得足够的接收光量。在调整过程中,需要注意测量反射率急剧变化位置的稳定程度,以及使用光量调整功能以外功能时的稳定程度。如果无法稳定测量反射率不同的目标物,可能是由于目标物的反射光因颜色、反光、表面状况(粗度、倾斜度)等因素而发生变化,导致感光元件(接收光波形)上形成的光点状态也会随之变化。这种情况下,需要通过反复试验和调整,找到最佳的激光位移传感器工作参数。总结来说,激光位移传感器需要根据目标物的反射率变化,调整接收光量、激光发射时间、激光功率和增益等参数,以确保测量的稳定性和准确性。同时,需要注意目标物的反射特性及其变化情况,以便及时调整激光位移传感器的参数。
  • 5
    2025 - 01 - 19
    一、引言1.1 研究背景与意义在科技飞速发展的当下,半导体和电子部件制造行业正经历着深刻的变革。随着电子产品的功能不断增强,尺寸却日益缩小,对半导体和电子部件的性能、精度以及可靠性提出了极为严苛的要求。从智能手机、平板电脑到高性能计算机、物联网设备,无一不依赖于先进的半导体和电子部件技术。而这些部件的质量与性能,在很大程度上取决于制造过程中的测量、检测和品质管理环节。光学测量技术作为一种先进的测量手段,凭借其高精度、非接触、快速测量等诸多优势,在半导体和电子部件制造领域中发挥着愈发关键的作用。它能够精确测量微小尺寸、复杂形状以及表面形貌等参数,为制造过程提供了不可或缺的数据支持。举例来说,在半导体芯片制造中,芯片的线宽、间距等关键尺寸的精度要求已经达到了纳米级别,光学测量技术能够准确测量这些尺寸,确保芯片的性能符合设计标准。再如,在电子部件的封装过程中,光学测量可以检测焊点的形状、尺寸以及位置,保障封装的可靠性。光学测量技术的应用,不仅能够有效提高产品的质量和性能,还能显著降低生产成本,增强企业在市场中的竞争力。通过实时监测和精确控制制造过程,能够及时发现并纠正生产中的偏差,减少废品率和返工率,提高生产效率。因此,深入研究光学测量在半导体和电子部件制造中的典型应用,对于推动行业的发展具有重要的现实意义。1.2 研究目的与方法本报告旨在深入剖析光学测量在半导体和电子部件制造测量、检测...
  • 6
    2025 - 01 - 14
    一、引言1.1 激光位移传感器概述激光位移传感器,作为工业测量领域的关键设备,凭借其卓越的非接触测量特性,正日益成为众多行业实现高精度测量与自动化控制的核心技术。它主要利用激光的反射特性,通过精确测量反射光的相关参数,实现对目标物体的位移、距离、厚度等几何量的精准测定。这一技术的诞生,为现代制造业、科研实验以及诸多工业生产过程,提供了高效、可靠且精准的测量手段。其工作原理基于激光三角测量法和激光回波分析法。激光三角测量法常用于高精度、短距离测量场景。在该方法中,激光位移传感器发射出一束激光,射向被测物体表面,物体表面反射的激光经由特定的光学系统,被传感器内部的探测器接收。根据激光发射点、反射点以及探测器接收点之间所构成的三角几何关系,通过精密的计算,能够精确得出物体与传感器之间的距离 。激光回波分析法更适用于远距离测量,传感器以每秒发射大量激光脉冲的方式,向被测物体发送信号,随后依据激光脉冲从发射到被接收的时间差,精确计算出物体与传感器之间的距离。在工业测量领域,激光位移传感器的重要地位不容小觑。在汽车制造行业,它被广泛应用于车身零部件的尺寸检测、装配精度控制等环节。通过对汽车零部件的精确测量,能够确保各个部件的尺寸符合设计要求,从而提升整车的装配质量和性能。在电子制造领域,激光位移传感器可用于检测芯片的尺寸、平整度以及电子元件的贴装精度等。在芯片制造过程中,其微小的尺寸和极高的精...
  • 7
    2025 - 01 - 29
    五、光谱共焦传感器测量厚度的局限性及解决措施5.1 局限性分析5.1.1 测量范围限制光谱共焦传感器的测量范围相对有限,一般在几毫米到几十毫米之间。这是由于其测量原理基于色散物镜对不同波长光的聚焦特性,测量范围主要取决于色散物镜的轴向色差范围以及光谱仪的工作波段。在实际应用中,对于一些大尺寸物体的厚度测量,如厚壁管材、大型板材等,可能需要多次测量拼接数据,增加了测量的复杂性和误差来源。例如,在测量厚度超过传感器量程的大型金属板材时,需要移动传感器进行多次测量,然后将测量数据进行拼接处理,但在拼接过程中可能会因测量位置的定位误差、测量角度的变化等因素导致测量结果的不准确。5.1.2 对被测物体表面状态的要求虽然光谱共焦传感器对多种材料具有良好的适用性,但被测物体表面的粗糙度、平整度等因素仍会对测量精度产生一定影响。当被测物体表面粗糙度较大时,表面的微观起伏会导致反射光的散射和漫反射增强,使得反射光的强度分布不均匀,从而影响光谱仪对反射光波长的准确检测,导致测量误差增大。对于表面平整度较差的物体,如存在明显翘曲或弯曲的板材,会使传感器与物体表面的距离在不同位置发生变化,超出传感器的测量精度范围,进而影响厚度测量的准确性。例如,在测量表面粗糙的橡胶板材时,由于橡胶表面的微观纹理和不规则性,测量精度会明显下降,难以达到对光滑表面测量时的高精度水平。5.1.3 成本相对较高光谱共焦传感器作为...
  • 8
    2023 - 02 - 26
    今天我为大家展示安全激光扫描仪产品,安全激光扫描仪适用于各种应用技术领域,      在设备开发期间我们给予了特别关注,以确保它能够在广泛应用中发挥最佳功能,尤其重视大型工作区域的防护,例如机床正面区域或机器人工作区域。      其他应用包括移动车辆的防护,例如侧向滑动装置或移动运输设备,无人驾驶运输系统。甚至垂直安装激光扫描仪的出入口保护系统。尽管我们在安全激光扫描与领域,已经有数10年的经验了,但该应用领域仍然面对许多挑战。不过我们的激光安全扫描仪具有独一无二的功能属性,例如具有8.25米检测距离和270度扫描范围。       属于目前市场上的高端设备,非常适合侧向滑动装置正面区域等大型区域或长距离的防护。该设备的另一个亮点就是能够同时监测两个保护功能。这在许多应用领域中,独具优势以前需要使用两个设备,如今只需要使用一台这样的安全激光扫描仪,即可完成两台设备的功能。               实践中遇到的一项挑战是设计一款异常强骨的激光安全扫描仪。能够适应周围环境中可能存在的灰尘和颗粒等恶劣条件,因此我们提供了较分辨率达到0.1度的设备。它在目前市场上具有非常高的价值。   ...
Message 最新动态
蓝光光源激光位移传感器:优势、原理与特殊场景解决方案 —— 泓川科技 LTP 系列 405nm 定制... 2025 - 10 - 21 在工业精密测量中,传统红光激光位移传感器常受高反射、半透明、高温红热等特殊场景限制,而蓝光光源(405nm 波长)凭借独特物理特性实现突破。以下通过 “一问一答” 形式,详解蓝光传感器的优势、原理构造,并结合泓川科技 LTP 系列定制方案,看其如何解决特殊环境测量难题。1. 蓝光光源激光位移传感器相比传统红光,核心优势是什么?蓝光传感器的核心优势源于 405nm 波长的物理特性,相比传统 655nm 左右的红光,主要体现在三方面:更高横向分辨率:根据瑞利判据,光学分辨率与波长成反比。蓝光波长仅为红光的 62%(405nm/655nm≈0.62),相同光学系统下横向分辨率可提升约 38%,能形成更小光斑(如泓川 LTP025 蓝光版光斑最小达 Φ18μm),适配芯片针脚、晶圆等微米级结构测量。更强信号稳定性:蓝光单光子能量达 3.06eV,远高于红光的 2.05eV。在低反射率材料(如橡胶、有机涂层)表面,能激发出更强散射信号;同时穿透性更低,仅在材料表层作用,避免内部折射干扰,适合表面精准测量。更优抗干扰能力:蓝光波段与红热辐射(500nm 以上)、户外强光(可见光为主)重叠度低,搭配专用滤光片后,可有效隔绝高温物体自发光、阳光直射等干扰,这是红光难以实现的。2. 蓝光激光位移传感器的原理构造是怎样的?为何能实现高精度测量?蓝光传感器的高精度的核心是 “光学设计 + 信号处理 + ...
泓川科技国产系列光谱共焦/激光位移传感器/白光干涉测厚产品性能一览 2025 - 09 - 05 高精度测量传感器全系列:赋能精密制造,适配多元检测需求聚焦半导体、光学膜、机械加工等领域的精密检测核心痛点,我们推出全系列高性能测量传感器,覆盖 “测厚、对焦、位移” 三大核心应用场景,以 “高精准、高速度、高适配” 为设计核心,为您的工艺控制与质量检测提供可靠技术支撑。以下为各产品系列的详细介绍:1.LTS-IR 红外干涉测厚传感器:半导体材料测厚专属核心用途:专为硅、碳化硅、砷化镓等半导体材料设计,精准实现晶圆等器件的厚度测量。性能优点:精度卓越:±0.1μm 线性精度 + 2nm 重复精度,确保测量数据稳定可靠;量程适配:覆盖 10μm2mm 测厚范围,满足多数半导体材料检测需求;高效高速:40kHz 采样速度,快速捕捉厚度数据,适配在线检测节奏;灵活适配:宽范围工作距离设计,可灵活匹配不同规格的检测设备与场景。2. 分体式对焦传感器:半导体 / 面板缺陷检测的 “高速对焦助手”核心用途:针对半导体、面板领域的高精度缺陷检测场景,提供高速实时对焦支持,尤其适配显微对焦类检测设备。性能优点:对焦速度快:50kHz 高速对焦,同步匹配缺陷检测的实时性需求;对焦精度高:0.5μm 对焦精度,保障缺陷成像清晰、检测无偏差;设计灵活:分体式结构,可根据检测设备的安装空间与布局灵活调整,降低适配难度。3. LT-R 反射膜厚仪:极薄膜厚检测的 “精密管家”核心用途:专注于极薄膜...
多方面研究泓川科技LTP系列大量程全国产激光位移传感器 2025 - 09 - 02 泓川科技激光位移传感器产品技术报告尊敬的客户: 感谢您对泓川科技激光位移传感器产品的关注与信任。为帮助您全面了解我司产品,现将激光位移传感器相关技术信息从参数指标、设计原理、结构设计等八大核心维度进行详细说明,为您的选型、使用及维护提供专业参考。一、参数指标我司激光位移传感器涵盖 LTP400 系列与 LTP450 系列,各型号核心参数经纳米级高精度激光干涉仪标定验证,确保数据精准可靠,具体参数如下表所示:表 1:LTP400EA参数表参数类别具体参数LTP400EA备注基础测量参数测量中心距离400mm以量程中心位置计算(*1)量程200mm-重复精度(静态)3μm测量标准白色陶瓷样件,50kHz 无平均,取 65536 组数据均方根偏差(*2)线性度±0.03%F.S.(F.S.=200mm)采用纳米级激光干涉仪标定(*3)光源与光斑光源类型-激光功率可定制,部分型号提供 405nm 蓝光版本(*4)光束直径聚焦点光斑 Φ300μm中心位置直径,两端相对变大(*5)电气参数电源电压DC9-36V-功耗约 2.5W-短路保护反向连接保护、过电流保护-输出与通信模拟量输出(选配)电压:0-5V/010V/-1010V;电流:420mA探头可独立提供电压、电流与 RS485 输出(*6)通讯接口RS485 串口、TCP/IP 网口可选配模拟电压 / 电流输出模块(*7)响应...
Copyright ©2005 - 2013 无锡泓川科技有限公司

1

犀牛云提供企业云服务
Our Link
X
3

SKYPE 设置

4

阿里旺旺设置

等待加载动态数据...

等待加载动态数据...

5

电话号码管理

  • 0510-88155119
6

二维码管理

等待加载动态数据...

等待加载动态数据...

展开