服务热线: 0510-88155119
13301510675@163.com
Language

激光测量技术在(ADAS)驾驶辅助系统的应用案例(一)

日期: 2025-01-16
浏览次数: 51
发表于:
来自 泓川科技
发表于: 2025-01-16
浏览次数: 51

一、引言

1.1 研究背景与目的

在汽车行业迈向智能化与自动化的进程中,先进驾驶辅助系统(ADAS)作为关键技术,正发挥着愈发重要的作用。ADAS 凭借多种传感器与智能算法,能够实时监测车辆周边环境,为驾驶员提供预警与辅助控制,极大地提升了驾驶的安全性与舒适性。

本报告旨在深入剖析《ADAS 相关工具 核心功能 & 技术》中所涉及的 ADAS 相关工具应用案例,通过详细描述各案例的具体应用场景、工作原理及达成的效果,深度挖掘这些工具在汽车制造及 ADAS 系统开发过程中的重要价值,为行业内相关人员提供具有实际参考意义的信息,助力推动 ADAS 技术的进一步发展与广泛应用。

 

1.2 研究方法与数据来源

本报告通过对《ADAS 相关工具 核心功能 & 技术》进行全面细致的整理与深入分析,从中系统地提取出各类 ADAS 相关工具的应用案例。在分析过程中,对每个案例的技术原理、应用场景以及所实现的功能进行了详细阐述,并结合实际情况进行了深入探讨。

本文所引用的 ADAS 相关工具的应用案例及技术原理均来自《ADAS 相关工具 核心功能 & 技术》文档,该文档为此次研究提供了丰富且详实的一手资料,确保了研究的准确性与可靠性。

 

二、车载相机应用案例剖析

2.1 底部填充胶涂抹高度测量

2.1.1 案例描述

在汽车电子制造中,车载相机的底部填充胶涂抹高度对于确保相机的稳定性与可靠性至关重要。通过车载相机进行底部填充胶涂抹高度的测量,具体场景为在生产线上,相机对正在进行底部填充胶涂抹的车载相机模块进行拍摄。相机利用其搭载的特定成像技术,获取底部填充胶的图像信息,随后系统对这些图像进行分析处理,从而精确得出填充胶的涂抹高度数值 。

 激光测量技术在(ADAS)驾驶辅助系统的应用案例(一)

2.1.2 技术优势分析

相较于传统的图像处理方式,该案例采用包含高度数据的 3D 图像进行检测,具有显著优势。传统图像处理主要基于 2D 平面图像进行分析,难以获取物体的高度信息,对于底部填充胶涂抹高度的测量精度有限。而 3D 图像检测技术能够全方位、立体地呈现底部填充胶的形态,不仅可以获取平面信息,还能精确测量其高度。这使得检测结果更加准确、全面,能够有效避免因测量误差导致的产品质量问题,大大提升了检测的品质,为后续车载相机的组装及性能稳定性提供了有力保障 。

 

2.2 镜片高度及相关缝隙测量

2.2.1 镜片模块内镜片间高度测量

在车载相机的镜片模块生产过程中,精确测量镜片间的高度是确保相机成像质量的关键环节。利用 CL 系列相机,采用可完成同轴测量的彩色共焦方式进行镜片间高度的测量。具体操作时,相机发射特定波长的光,光线照射到镜片上后,根据反射光的特性,通过彩色共焦原理,精确计算出不同镜片之间的高度差值。即使在目标物高度发生变化时,由于该测量方式的光点直径不会随着测量高度改变,测量点也不会出现错位,从而保证了在整个测量范围内都能进行高精度的测量,有效满足了镜片模块对镜片间高度精度的严格要求 。

激光测量技术在(ADAS)驾驶辅助系统的应用案例(一)

 

2.2.2 盖板玻璃与 CMOS 缝隙测量

盖板玻璃与 CMOS 之间的缝隙大小对车载相机的性能有着重要影响,若缝隙过大或过小,都可能导致相机出现进光不均匀、水汽侵入等问题,进而影响成像质量。在这一测量案例中,同样运用 CL 系列相机的同轴测量技术。当相机对盖板玻璃与 CMOS 之间的缝隙进行测量时,即使目标物(如盖板玻璃)具有透明或镜面特性且发生倾斜,该系列相机也能凭借其独特的测量原理,准确检测到缝隙的大小。通过精确测量缝隙,能够及时发现生产过程中的装配问题,确保车载相机的密封性和光学性能,提高产品的整体质量和可靠性 。

激光测量技术在(ADAS)驾驶辅助系统的应用案例(一)

 

2.3 CMOS 倾斜检测及相机模块行程检测

2.3.1 CMOS 倾斜检测

CMOS 作为车载相机的核心感光元件,其倾斜状态直接影响相机的成像效果。在检测 CMOS 倾斜时,CL 系列相机发挥了关键作用。该系列相机采用同轴测量方式,通过发射特定光束照射到 CMOS 上,根据反射光的角度和位置信息,精确计算出 CMOS 的倾斜角度。即使面对透明或镜面的 CMOS 目标物发生倾斜的复杂情况,相机也能稳定、准确地进行检测。这种精确的检测方式能够及时发现 CMOS 的倾斜问题,以便在生产过程中进行调整和修正,确保相机能够正常工作,获取高质量的图像 。

激光测量技术在(ADAS)驾驶辅助系统的应用案例(一)

 

2.3.2 相机模块行程检测

在车载相机模块的装配过程中,相机模块的行程是否符合标准,对于相机的聚焦、变焦等功能的实现至关重要。采用彩色共焦方式的 CL 系列相机,能够对相机模块的行程进行精确检测。由于该系列相机的光点直径在整个测量范围内不会随着测量高度的变化而改变,这使得在测量相机模块行程时,能够在不同位置都保持高精度的测量。通过对相机模块行程的准确检测,可以有效监控装配过程,确保相机模块的各项功能能够正常运行,提高车载相机的整体性能和稳定性 。

 激光测量技术在(ADAS)驾驶辅助系统的应用案例(一)

三、2D/3D 线激光测量仪应用全景

3.1 粘合剂体积与涂抹相关测量

3.1.1 安装盖板玻璃前粘合剂体积测量

在电子设备制造领域,安装盖板玻璃是一项关键工序,而粘合剂的涂抹量对于确保盖板玻璃与设备主体之间的稳固连接以及良好的密封性起着决定性作用。在这一应用案例中,2D/3D 线激光测量仪被应用于安装盖板玻璃前的粘合剂体积测量场景。

在实际操作过程中,测量仪利用其先进的线激光技术,对即将用于粘贴盖板玻璃的粘合剂进行扫描。通过发射特定频率和强度的激光束,测量仪能够精准地捕捉粘合剂的轮廓信息。这些激光束与粘合剂表面相互作用,反射回来的光线被测量仪的高灵敏度传感器所接收。测量仪搭载的高性能算法会对这些反射光线的数据进行快速且精确的分析处理,从而将粘合剂的三维形状清晰地还原出来。基于这一精确还原的三维形状,测量仪能够高度准确地计算出粘合剂的体积数值。

这一测量过程对于产品质量控制具有不可忽视的重要作用。如果粘合剂体积过多,在安装盖板玻璃时,多余的粘合剂可能会溢出,不仅影响产品的外观整洁度,还可能会污染设备内部的其他精密部件,进而对设备的正常运行产生潜在威胁。相反,若粘合剂体积过少,盖板玻璃与设备主体之间的连接就无法得到充分的保障,可能会导致密封性不佳,使得设备在后续使用过程中容易受到灰尘、水汽等外界因素的侵蚀,极大地降低了产品的可靠性和使用寿命。通过使用 2D/3D 线激光测量仪对粘合剂体积进行精确测量,生产企业能够严格把控粘合剂的使用量,确保每一个产品在组装过程中都能达到最佳的粘贴效果和密封性能,从而有效提升产品的整体质量,降低次品率,提高生产效率和经济效益 。


 

3.1.2 印刷电路板上粘合剂涂抹体积检测

在电子制造行业中,印刷电路板作为电子设备的核心部件,其质量直接关系到整个设备的性能和可靠性。而印刷电路板上粘合剂的涂抹情况对于电路板上电子元件的固定以及电路的稳定性起着至关重要的作用。因此,准确检测印刷电路板上粘合剂的涂抹体积具有极其重要的意义。

2D/3D 线激光测量仪在这一检测任务中发挥了关键作用。该测量仪配备了大范围动态量程的超高灵敏度 CMOS 传感器,这一先进的传感器使得测量仪能够对各种复杂的目标物进行稳定且精准的检测。在对印刷电路板上的粘合剂进行检测时,测量仪通过发射线激光对电路板表面进行全面扫描。激光束在遇到粘合剂表面时会发生反射,反射光被 CMOS 传感器高效接收。由于传感器具有超高灵敏度,能够捕捉到极其微弱的反射光信号,从而获取到粘合剂表面的详细信息。

测量仪所搭载的大范围动态量程技术,则使得其能够适应不同大小和形状的粘合剂涂抹区域。无论是大面积的粘合剂涂抹,还是细微处的粘合剂点涂,测量仪都能够准确地进行测量。通过对反射光数据的深入分析和处理,测量仪能够精确计算出粘合剂的涂抹体积。

这一测量技术在电子制造中具有多方面的重要性。精确的粘合剂涂抹体积检测有助于确保电子元件在印刷电路板上的牢固固定。只有当粘合剂的涂抹量恰到好处时,电子元件才能在各种复杂的工作环境下保持稳定,不会因振动、温度变化等因素而发生位移或脱落,从而保证了电路连接的稳定性和可靠性。准确的粘合剂涂抹体积检测还能够避免因粘合剂过多或过少而引发的一系列问题。过多的粘合剂可能会导致不同电子元件之间发生短路,严重影响电路的正常工作;而过少的粘合剂则无法为电子元件提供足够的支撑和固定力,降低了产品的质量和耐用性。2D/3D 线激光测量仪的应用,为电子制造企业提供了一种高效、精准的粘合剂涂抹体积检测手段,有力地保障了印刷电路板的生产质量,推动了电子制造行业的高质量发展 。

 

3.2 部件高度与位置多元测量

3.2.1 印刷电路板上封装部件高度检测

在印刷电路板的生产流程中,封装部件的高度精确与否直接关系到电路板的整体性能以及后续与其他组件的装配兼容性。2D/3D 线激光测量仪在印刷电路板上封装部件高度检测方面展现出了卓越的性能。

当对印刷电路板上的封装部件进行高度检测时,测量仪首先发射出线激光束,这些激光束以特定的角度和间距照射到封装部件的表面。由于封装部件的表面具有不同的高度特征,激光束在反射过程中会产生不同的反射路径和时间延迟。测量仪的探测器能够精确捕捉到这些反射光的变化信息。

通过对反射光的详细分析,测量仪可以构建出封装部件表面的三维轮廓图像。在这个过程中,测量仪利用其先进的算法,根据激光束的发射角度、反射时间以及探测器的位置信息,精确计算出封装部件各个点的高度数值。将这些高度数值进行整合和分析,就能够准确得出封装部件的整体高度以及与标准高度的偏差情况。

这一检测过程对电路板生产具有关键作用。如果封装部件的高度不符合设计要求,可能会导致在电路板组装过程中与其他部件发生干涉,使得组装无法顺利进行,严重影响生产效率。封装部件高度的偏差还可能会影响到电路的电气性能,例如导致信号传输不稳定、接触不良等问题,进而降低整个电路板的可靠性和稳定性。通过使用 2D/3D 线激光测量仪对封装部件高度进行严格检测,生产厂家能够及时发现并纠正高度偏差问题,确保每一块印刷电路板都符合高质量的生产标准,为电子产品的稳定运行提供坚实保障 。


 

3.2.2 安装外壳时倾斜检测

在设备制造过程中,安装外壳是一个重要环节,而确保模块在安装外壳时的倾斜度符合要求,对于保证设备的正常运行和整体性能至关重要。2D/3D 线激光测量仪在安装外壳时的倾斜检测中发挥了关键作用。

测量仪以 3D 形状捕捉目标物的方式进行工作。它通过发射多束线激光,从不同角度对即将安装外壳的模块进行全方位扫描。这些激光束在接触到模块表面后,会根据模块的形状和位置产生不同的反射模式。测量仪的传感器迅速捕捉这些反射光,并将其转化为详细的空间坐标数据。

基于这些丰富的空间坐标数据,测量仪能够构建出模块的精确 3D 模型。通过对这个 3D 模型的深入分析,测量仪可以同时检测出模块多个点的高度及位置信息。通过对比这些点的实际高度和位置与预设的标准值,测量仪能够准确判断出模块是否存在倾斜以及倾斜的程度和方向。

这种倾斜检测对于避免安装不良具有重要的原理和实际效果。如果在安装外壳时模块存在倾斜,那么外壳在安装过程中可能无法与模块紧密贴合,导致密封性能下降,使得设备容易受到外界环境因素的影响,如灰尘、水汽等的侵入,从而降低设备的使用寿命和可靠性。倾斜的模块还可能会导致内部组件之间的相对位置发生变化,影响设备内部的电路连接和机械结构的正常运行,进而引发各种故障。通过在安装外壳前使用 2D/3D 线激光测量仪进行倾斜检测,能够及时发现并纠正模块的倾斜问题,确保外壳能够正确、紧密地安装在模块上,有效提高产品的质量和稳定性,减少因安装不良而导致的产品故障率,提升生产效率和企业的经济效益 。

 

3.3 其他特色测量案例

3.3.1 密封材料多维度测量

在众多工业产品中,密封材料的性能直接关系到产品的密封性、防水性、防尘性等关键特性,进而影响产品的质量和使用寿命。2D/3D 线激光测量仪能够对密封材料进行高度、宽度、体积等多维度的测量,为确保密封材料的质量和性能提供了有力支持。

在对密封材料进行高度测量时,测量仪发射的线激光束垂直照射到密封材料的表面,通过分析激光束的反射情况,精确计算出密封材料表面各点的高度信息,从而得到密封材料的整体高度数值。对于宽度测量,测量仪从侧面发射激光束,扫描密封材料的横向轮廓,根据反射光的变化确定密封材料的宽度边界,进而准确测量出宽度尺寸。在测量体积时,测量仪结合之前获取的高度和宽度数据,以及通过对密封材料整体形状的扫描和分析,利用先进的算法计算出密封材料的体积。

这些多维度的测量对于产品的密封性具有重要影响。如果密封材料的高度不足,可能无法完全填充密封间隙,导致密封不严密,出现泄漏现象。宽度不合适则可能导致密封材料与密封部位无法良好匹配,同样影响密封效果。而体积的准确测量有助于确保在使用密封材料时,其用量既能满足密封需求,又不会造成浪费。通过对密封材料进行全面、精确的多维度测量,生产企业能够严格把控密封材料的质量和安装效果,有效提升产品的密封性和防护性能,保障产品在各种复杂环境下的正常运行 。

 

3.3.2 皮带轮形状及凹痕检测

在工业生产中,皮带轮作为传动系统的重要组成部分,其形状的准确性和表面的完整性对于确保传动系统的稳定运行、提高传动效率以及延长设备使用寿命起着至关重要的作用。2D/3D 线激光测量仪在皮带轮形状及凹痕检测方面具有独特的优势。

测量仪通过发射线激光束对皮带轮的表面进行全面扫描。激光束在接触到皮带轮表面时,会根据皮带轮的形状产生不同的反射路径和强度变化。测量仪的高灵敏度传感器能够精确捕捉这些反射光的细微变化,并将其转化为详细的数字信号。通过对这些数字信号的深入分析和处理,测量仪能够构建出皮带轮表面的精确三维模型。

在这个三维模型的基础上,测量仪可以准确检测皮带轮的形状是否符合设计标准。它能够精确测量皮带轮的直径、轮槽的深度和宽度、轮缘的厚度等关键尺寸参数,并与预设的标准值进行对比,及时发现形状偏差。测量仪还能够敏锐地检测出皮带轮表面是否存在凹痕。对于任何微小的凹痕,测量仪都能通过反射光的异常变化识别出来,并确定凹痕的位置、大小和深度。

这种检测在工业生产中具有重要的应用场景和意义。如果皮带轮的形状不准确,在传动过程中会导致皮带与皮带轮之间的接触不良,从而产生打滑现象,降低传动效率,甚至可能引发设备故障,影响生产的正常进行。而皮带轮表面的凹痕则会降低皮带轮的结构强度,在长期高速运转过程中,凹痕处可能会逐渐产生裂纹,进一步扩展导致皮带轮损坏,增加设备维修成本和停机时间。通过使用 2D/3D 线激光测量仪对皮带轮进行定期的形状及凹痕检测,企业能够及时发现并修复潜在的问题,确保皮带轮始终处于良好的工作状态,保障工业生产的高效、稳定运行 。


News / 推荐阅读 +More
2025 - 02 - 19
点击次数: 2
一、测量原理与技术框架高精度激光位移传感器实现1μm以下精度的核心在于三角测量法的深度优化。如图1所示,当激光束投射到被测表面时,散射光斑经接收透镜在CMOS/CCD阵列上形成位移图像。根据几何关系:\Delta x = \frac{L \cdot \sinθ}{M \cdot \cos(α±θ)}Δx=M⋅cos(α±θ)L⋅sinθ其中L为基距,θ为接收角,M为放大倍数。要实现亚微米分辨率需突破传统三角法的三个技术瓶颈:光斑质量退化、环境噪声干扰、信号处理延迟。二、关键算法突破1. 光斑中心定位算法采用改进型高斯混合模型(GMM)结合小波变换降噪,可有效抑制散斑噪声。研究显示[1],基于Marr小波的边缘检测算法可使定位精度提升至0.12像素(对应0.05μm)。2. 动态补偿算法LTP系列采用专利技术(CN202310456789.1)中的自适应卡尔曼滤波:PYT...
2025 - 02 - 17
点击次数: 18
泓川科技LTC系列光谱共焦传感器中的侧向出光探头(LTCR系列),凭借其独特的90°出光设计与紧凑结构,彻底解决了深孔、内壁、微型腔体等复杂场景的测量难题。本文深度解析LTCR系列的技术优势、核心型号对比及典型行业应用,为精密制造提供全新测量视角。一、侧向出光探头技术优势1. 空间适应性革命90°侧向出光:光路与探头轴线垂直,避免传统轴向探头因长度限制无法深入狭窄空间的问题。超薄探头设计:最小直径仅Φ3.8mm(LTCR1500N),可深入孔径≥4mm的深孔/缝隙。案例对比:场景传统轴向探头限制LTCR系列解决方案发动机喷油孔内壁检测探头长度>50mm,无法伸入LTCR1500N(长度85mm,直径Φ3.8mm)直达孔底微型轴承内圈粗糙度轴向光斑被侧壁遮挡LTCR4000侧向光斑精准照射测量面2. 精度与稳定性兼具纳米级静态噪声:LTCR1500静态...
2025 - 02 - 09
点击次数: 45
摘要为提高激光位移传感器在机测量工件特征的精度,本文针对其关键误差源展开研究并提出补偿策略。实验表明,激光位移传感器的测量误差主要由传感器倾斜误差与数控机床几何误差构成。通过设计倾斜误差实验,利用Legendre多项式建立误差模型,补偿后倾斜误差被控制在±0.025 mm以内;针对机床几何误差,提出基于球杆仪倾斜安装的解耦方法,结合参数化建模对X/Y轴误差进行辨识与补偿。实验验证表明,补偿后工件线性尺寸测量误差小于0.05 mm,角度误差小于0.08°,显著提升了在机测量的精度与可靠性。研究结果为高精度在机测量系统的误差补偿提供了理论依据与实用方法。关键词:工件特征;在机测量;激光位移传感器;误差建模;Legendre多项式1. 引言在机测量技术通过集成测量与加工过程,避免了传统离线测量的重复装夹与搬运误差,成为精密制造领域的关键技术之一。非接触式激光位移传感器凭借其高...
2025 - 02 - 09
点击次数: 79
1. 性能参数对比参数LTP400基恩士 LK-G400米铱 ILD1420-200测量范围±100 mm漫反射 ±100 mm200 mm(具体范围依型号)采样频率160 kHz(最高)50 kHz(对应 20 μs)8 kHz(可调)静态噪声1.5 μm(平均后)2 μm(再现性)8 μm(重复性)线性误差±0.05% F.S.(±100 μm)±160 μm光斑直径Φ300 μm(W型号更宽)ø290 μm750 x 1100 μm(末端)接口类型以太网、485、模拟输出未明确(可能基础)RS422、PROFINET、EtherCAT防护等级IP67IP67IP67重量438 g380 g(含线缆)145 g(带电缆)可定制性激光功率、蓝光版本、模拟模块无提及ASC(动态表面补偿)、多种工业接口2. LTP400 的核心优势...
2025 - 02 - 05
点击次数: 60
一、引言1.1 研究背景与目的在工业自动化进程不断加速的当下,激光位移传感器作为关键测量设备,凭借其高精度、非接触、高响应速度等突出优势,在工业制造、汽车生产、航空航天等众多领域得到广泛应用。从精密零件的尺寸检测,到大型机械的装配定位,再到生产线上的实时监测,激光位移传感器都发挥着不可或缺的作用,为提升产品质量、提高生产效率、保障生产安全提供了坚实支撑。基恩士作为传感器领域的知名品牌,其 LK-H/LK-G5000 系列激光位移传感器备受关注。该系列产品融合先进技术,具备卓越性能,在市场上占据重要地位。深入研究这一系列产品,能够使我们全面掌握其技术特性、应用场景以及市场表现,为相关行业的技术选型、产品研发、生产优化等提供有力参考,同时也有助于推动激光位移传感器技术的进一步发展与创新。 1.2 研究方法与数据来源本次研究主要采用了文献研究法,广泛查阅了基恩士官方网站发布的产品资料、...
About Us
关于泓川科技
专业从事激光位移传感器,激光焊缝跟踪系统研发及销售的科技公司
中国 · 无锡 · 总部地址:无锡新吴区天山路6号
销售热线:0510-88155119 
图文传真:0510-88152650
Working Time
我们的工作时间
周一至周五:8:00-18:00
周六至周日:9:00-15:00
Shown 企业秀 More
  • 1
    2023 - 03 - 09
    激光位移传感器被广泛应用于各种领域中。其中一个很有用的应用是测量薄膜厚度。这种传感器可以在离表面很近的距离下进行高精度测量,因此非常适合这种应用。本文将介绍激光位移传感器如何用于测量薄膜厚度,包括测量方法、测量原理和市场应用。一、测量方法测量薄膜厚度的基本思路是利用激光位移传感器测量薄膜前后表面的距离差,然后通过几何公式计算出薄膜厚度。在实际操作中,测量方法大致可分为以下几种:1. 手持式测量手持式测量通常用于快速的现场检测。用户只需要将激光位移传感器靠近待测表面,然后通过读取显示屏上的数值判断薄膜厚度是否符合要求。这种方法不需要复杂的设备和步骤,非常易于使用。但是由于人手的震动和误差等因素,手持式测量的精度相对较低,只适用于需求不是特别高的场合。2. 自动化在线测量自动化在线测量一般用于工业生产线上的质量控制。这种方法需要将激光位移传感器与自动化设备相连接,将测量数据传递给计算机进行分析。在这种情况下,测量过程可以完全自动化,精度也可以得到保证。但是相对于手持式测量来说,这种方法需要的设备和技术要求更高,成本也更高。3. 显微镜下测量显微镜下测量常用于对细小薄膜厚度的测量。在这种情况下,用户需要将激光位移传感器与显微镜相结合进行测量。由于显微镜的存在,可以大大增强测量精度。但是相对于其他两种方法,这种方法需要的设备更多,并且技巧要求也更高。二、测量原理激光位移传感器利用的是激光三...
  • 2
    2025 - 01 - 14
    四、光学传感器应用对薄膜涂布生产的影响4.1 提升生产效率4.1.1 实时监测与反馈在薄膜涂布生产的复杂乐章中,光学传感器实时监测与反馈机制宛如精准的指挥棒,引领着生产的节奏。凭借其卓越的高速数据采集能力,光学传感器能够如同闪电般迅速捕捉涂布过程中的关键参数变化。在高速涂布生产线以每分钟数百米的速度运行时,传感器能够在瞬间采集到薄膜厚度、涂布速度、位置偏差等数据,为生产过程的实时监控提供了坚实的数据基础。这些采集到的数据如同及时的情报,被迅速传输至控制系统。控制系统则如同智慧的大脑,对这些数据进行深入分析。一旦发现参数偏离预设的理想范围,控制系统会立即发出指令,如同指挥官下达作战命令,对涂布设备的相关参数进行精准调整。当检测到薄膜厚度略微超出标准时,控制系统会迅速调整涂布头的压力,使涂布量精确减少,确保薄膜厚度回归正常范围。这种实时监测与反馈机制的存在,使得生产过程能够始终保持在最佳状态。它避免了因参数失控而导致的生产中断和产品质量问题,如同为生产线安装了一个智能的 “稳定器”。与传统的生产方式相比,生产调整的时间大幅缩短,从过去的数小时甚至数天,缩短至现在的几分钟甚至几秒钟,极大地提高了生产效率。4.1.2 减少停机时间在薄膜涂布生产的漫长旅程中,设备故障和产品质量问题如同隐藏在道路上的绊脚石,可能导致停机时间的增加,严重影响生产效率。而光学传感器的实时监测功能,就像一位警惕的卫...
  • 3
    2020 - 09 - 14
    现如今在很多的行业里面都离不开激光位移传感器的应用,因为这种特殊激光位移传感器特点‍是能够对长度以及方位等来进行高精度的准确测量,而且用起来简便且很耐用所以受到了无数用户们的认可。而面对市场上众多的激光位移传感器品牌用户们究竟该怎么去选择呢?一、根据需要测量的目标结构与材质进行选择激光位移传感器虽然有着强大的测量功能,但是对于测量的目标结构与材质也是有着相应的需求的,因为激光位移传感器的测量过程是需要一个完整三角光路的,如果被测量目标的表面凹入不平就会造成三角光路无法形成,这样的话自然也就无法顺利的得到测量数据了。如果被测量目标的表面吸光这样也是无法形成完整三角光路进而无法完成测量工作的,因此用户们在选择激光位移传感器产品之时应着重考虑到这些问题才行。二、根据参数指标的实际要求进行选择激光位移传感器如今在制造业内有着很多的应用特别是对电子行业更是如此,而在选择这种产品时也应当根据具体所需的参数指标的来进行针对性选择才行。事实上这里所说的参数及指包含的面比较广比如说分辨率还有测量的速率等,因为对零部件生产的要求越是精密那么对它的要求也自然要更高也只有这样才能生产制造出真正的好产品。虽然激光位移传感器功能众多在生产过程当中的重要性是很明显的,但是在选择激光位移传感器的时候还是不能盲目应当遵循着上述这两个方面的原则,只有这样才能在众多的激光位移传感器品牌当中顺利地找到更能够满足自身实际需...
  • 4
    2023 - 12 - 08
    现代科技日新月异的发展,为我们带来了种种便利。光伏产业就是其中的一员。压延玻璃作为光伏电池板的关键材料,其厚度的精确控制直接影响到电池板性能。然而,传统的手动检测方法难以满足高精度测量的需要,光谱共焦传感器的出现彻底改变了这一问题。光谱共焦传感器,顾名思义,它利用光谱学原理和共焦技术,实现对物体的高精度,迅速,无损检测。在压延玻璃的生产过程中,我们可以使用它进行厚度的实时监测。具体步骤如下:首先,我们应该注意的是,由于压延玻璃两面的表面状态不同,一面平整光滑,另外一面则是由无数微小的半球面拼接而成。因此,在进行光学测量时,我们需要遵循激光的透光原理,从平整表面那一侧打光。这样做可以确保我们获得的数据稳定而准确。其次,由于压延玻璃在生产过程中可能会出现轻微的抖动,因此,我们需要选择具有较大测量范围的光谱共焦传感器,以弥补生产过程中的这种不确定性。一般来说,压延玻璃的厚度在2-3.5mm之间,因此我们尽量选用量程大于8mm的传感器。最后,光谱共焦传感器具有良好的穿透性能和大角度检测能力。我们可以通过检测透明物体的正反两面,以此来获取压延玻璃的厚度值。同时,由于其可以进行大角度测量,所以,即使玻璃表面存在凹凸不平的情况,也能得出稳定、准确的测量结果。本案例给我们展示了科技与生产的完美结合,使得生产过程更加精细,更加高效。我们有理由相信,随着科技的不断进步,未来生产出的光伏压延玻璃将更加完...
  • 5
    2025 - 01 - 14
    四、关键测量技巧4.1 特殊环境测量对策4.1.1 高温环境应对在高温环境中使用激光位移传感器时,需采取有效措施以确保其正常运行和测量精度。将传感头远离热源是一种简单有效的方法。由于距离热源越近,温度越高,在不影响安装及测量精度的前提下,应优先选择可远距离测量的传感头 。在钢铁冶炼厂的高温炉旁,若需测量炉内工件的位置,可选用具有较长测量距离的激光位移传感器,将传感头安装在远离高温炉的位置,既能避免高温对传感器的直接影响,又能实现对工件的准确测量。当测量仪周边温度较规定环境温度略高时,可采用传感头用气洗方式隔热。通过向传感头周围吹拂空气,能够将热量带走,从而将温度降至规定环境温度以下。在玻璃制造车间,熔炉附近的温度较高,可在激光位移传感器的传感头处设置气洗装置,持续向传感头输送冷空气,有效降低传感头的温度,保证传感器的稳定工作。若测量仪的周边温度较高,可采用传感头用外壳或空气隔热的方法。以耐热箱包覆传感头,并向箱内输送空气,使温度控制在测量仪的环境温度范围内。在航空发动机的高温部件测试中,由于部件表面温度极高,可使用陶瓷材料制成的耐热箱将传感头包裹起来,并通过管道向箱内输送冷却空气,确保传感头在高温环境下能够正常工作 。4.1.2 强光反射环境处理在测量反射较强的镜面时,传感头的安装方式至关重要。为获取反射光,需将传感头倾斜角度设定为反射角度α的一半,角度α在激光位移传感器的尺寸上有...
  • 6
    2025 - 02 - 01
    一、背景与需求在印刷、包装、金属加工等行业中,材料(如纸张、薄膜、金属薄板等)通过传送带或滚筒输送时,常因机械振动、静电吸附或操作失误导致单张材料与双张材料重叠。若未及时检测,重叠材料可能造成设备卡顿、加工精度下降甚至产品报废。传统的检测方法(如光电传感器或机械触头)易受材料透明度、颜色或表面特性的干扰,而对射式超声波传感器凭借其非接触、高适应性及强抗干扰能力,成为解决此类问题的理想选择。二、对射超声波传感器的工作原理对射式超声波传感器由发射器和接收器组成,发射器发出高频声波(通常40kHz~200kHz),接收器检测穿透材料的声波信号。声波在穿透材料时会发生以下变化:信号衰减:单张材料厚度较薄,声波衰减较小;双张材料因厚度增加,声波能量被吸收或散射更多,接收端信号强度显著降低。飞行时间(ToF):声波穿透材料的传播时间与材料厚度正相关,双张材料会延长传播时间。通过分析接收信号的强度或传播时间差异,可精准判断材料是否为单张或双张。三、传感器选型与参数优势根据用户提供的传感器参数(HUA单双张检测系列),推荐以下型号及配置:推荐型号:HUA-18GM55-200-3E1(M18尺寸,3路PNP常开输出)关键参数:检测范围:发射器与接收器间距20-60mm,盲区7mm,适应厚度0.01mm~3mm的材料。输出类型:3路开关量输出(支持单双张状态分通道指示)。响应延时:10ms,匹配生产...
  • 7
    2023 - 03 - 20
    介绍工业光电传感器是现代制造业中最常用的检测设备之一,广泛应用于自动化生产线、机械加工、装配、物流搬运等行业。随着国民经济的不断发展,中国的工业光电传感器制造业也不断发展壮大,成为制造业的一支重要力量。本文旨在对中国产的工业光电传感器现状进行描述。发展历史20世纪80年代初期,我国的工业自动化程度比较低,大部分生产线仍采用人力操作,制造业存在高人力成本、低效率、品质难以保证等问题。为了提高制造业的效率和品质,中国开始引入外国的工业自动化设备,其中就包括工业光电传感器。80年代中后期,国内开始试水制造工业光电传感器,并逐步发展壮大。90年代初期,随着国民经济的增长和工业自动化的加速推进,中国的工业光电传感器制造业进入快速发展期。如今,中国的工业光电传感器制造业已经处于全球领先地位,成为世界闻名的光电传感器生产基地之一。产业链分析商业模式中国的工业光电传感器制造业商业模式主要是以生产销售为主,较少采用研发生产销售一体化模式。生产企业主要供应给自动化设备制造商,然后这些自动化设备制造商销售给最终用户,最终用户则使用这些设备来自动化生产线。除此之外,还有一些企业将工业光电传感器产品应用到自己的设备制造中,以提高自己产品的品质和效率,然后再将自己的产品销售给最终用户。在商业模式上,中国的工业光电传感器制造业与欧美等发达国家还存在一定的差距。技术研发中国的工业光电传感器制造业在技术研发方面逐渐...
  • 8
    2025 - 01 - 22
    一、引言1.1 研究背景与目的在当今科技迅猛发展的时代,传感器作为获取信息的关键设备,在工业自动化、智能制造、航空航天、汽车制造等众多领域中发挥着不可或缺的重要作用。激光位移传感器凭借其高精度、非接触式测量、快速响应等显著优势,成为了现代精密测量领域的核心设备之一。近年来,随着国内制造业的转型升级以及对高精度测量需求的不断攀升,我国传感器市场呈现出蓬勃发展的态势。然而,长期以来,高端激光位移传感器市场大多被国外品牌所占据,这不仅限制了国内相关产业的自主发展,还在一定程度上影响了国家的产业安全。在此背景下,国产激光位移传感器的研发与推广显得尤为重要。本研究聚焦于国产激光位移传感器 HCM 系列,旨在深入剖析该系列产品的技术特点、性能优势、应用场景以及市场竞争力。通过对 HCM 系列产品的全面研究,期望能够为相关行业的企业提供有价值的参考依据,助力其在设备选型、技术升级等方面做出更为明智的决策。同时,本研究也希望能够为推动国产激光位移传感器行业的发展贡献一份力量,促进国内传感器产业的技术进步与创新,提升我国在高端传感器领域的自主研发能力和市场竞争力。1.2 研究方法与数据来源本研究综合运用了多种研究方法,以确保研究的全面性、准确性和可靠性。在研究过程中,首先进行了广泛的文献研究,收集并深入分析了国内外关于激光位移传感器的学术论文、行业报告、专利文献等资料,从而对激光位移传感器的发展历程...
Message 最新动态
亚微米级激光位移传感器的技术实现路径及LTP系列创新设计 2025 - 02 - 19 一、测量原理与技术框架高精度激光位移传感器实现1μm以下精度的核心在于三角测量法的深度优化。如图1所示,当激光束投射到被测表面时,散射光斑经接收透镜在CMOS/CCD阵列上形成位移图像。根据几何关系:\Delta x = \frac{L \cdot \sinθ}{M \cdot \cos(α±θ)}Δx=M⋅cos(α±θ)L⋅sinθ其中L为基距,θ为接收角,M为放大倍数。要实现亚微米分辨率需突破传统三角法的三个技术瓶颈:光斑质量退化、环境噪声干扰、信号处理延迟。二、关键算法突破1. 光斑中心定位算法采用改进型高斯混合模型(GMM)结合小波变换降噪,可有效抑制散斑噪声。研究显示[1],基于Marr小波的边缘检测算法可使定位精度提升至0.12像素(对应0.05μm)。2. 动态补偿算法LTP系列采用专利技术(CN202310456789.1)中的自适应卡尔曼滤波:PYTHONclass AdaptiveKalman:    def update(self, z):        # 实时调整过程噪声协方差Q        se...
LTC系列侧向出光光谱共焦探头(LTCR系列):狭小空间精密测量的终极解决方案 2025 - 02 - 17 泓川科技LTC系列光谱共焦传感器中的侧向出光探头(LTCR系列),凭借其独特的90°出光设计与紧凑结构,彻底解决了深孔、内壁、微型腔体等复杂场景的测量难题。本文深度解析LTCR系列的技术优势、核心型号对比及典型行业应用,为精密制造提供全新测量视角。一、侧向出光探头技术优势1. 空间适应性革命90°侧向出光:光路与探头轴线垂直,避免传统轴向探头因长度限制无法深入狭窄空间的问题。超薄探头设计:最小直径仅Φ3.8mm(LTCR1500N),可深入孔径≥4mm的深孔/缝隙。案例对比:场景传统轴向探头限制LTCR系列解决方案发动机喷油孔内壁检测探头长度>50mm,无法伸入LTCR1500N(长度85mm,直径Φ3.8mm)直达孔底微型轴承内圈粗糙度轴向光斑被侧壁遮挡LTCR4000侧向光斑精准照射测量面2. 精度与稳定性兼具纳米级静态噪声:LTCR1500静态噪声80nm,线性误差<±0.3μm,媲美轴向探头性能。抗振动设计:光纤与探头刚性耦合,在30m/s²振动环境下,数据波动<±0.1μm。温漂抑制:全系温漂<0.005%FS/℃,-20℃~80℃环境下无需重新校准。3. 多场景安装适配万向调节支架:支持±15°偏转角度微调,兼容非垂直安装场景。气密性封装:IP67防护等级,可直接用于切削...
基于激光位移传感器的在机测量系统误差建模与补偿研究 2025 - 02 - 09 摘要为提高激光位移传感器在机测量工件特征的精度,本文针对其关键误差源展开研究并提出补偿策略。实验表明,激光位移传感器的测量误差主要由传感器倾斜误差与数控机床几何误差构成。通过设计倾斜误差实验,利用Legendre多项式建立误差模型,补偿后倾斜误差被控制在±0.025 mm以内;针对机床几何误差,提出基于球杆仪倾斜安装的解耦方法,结合参数化建模对X/Y轴误差进行辨识与补偿。实验验证表明,补偿后工件线性尺寸测量误差小于0.05 mm,角度误差小于0.08°,显著提升了在机测量的精度与可靠性。研究结果为高精度在机测量系统的误差补偿提供了理论依据与实用方法。关键词:工件特征;在机测量;激光位移传感器;误差建模;Legendre多项式1. 引言在机测量技术通过集成测量与加工过程,避免了传统离线测量的重复装夹与搬运误差,成为精密制造领域的关键技术之一。非接触式激光位移传感器凭借其高精度、高采样率及非损伤性等优势,被广泛应用于复杂曲面、微结构等工件的在机测量中。然而,实际测量中,传感器倾斜误差与机床几何误差会显著影响测量结果。现有研究多聚焦单一误差源,缺乏对多误差耦合影响的系统性分析。本文结合理论建模与实验验证,提出一种综合误差补偿方法,为提升在机测量精度提供新的解决方案。2. 误差源分析与建模2.1 激光位移传感器倾斜误差当激光束方向与被测表面法线存在夹角时,倾斜误差会导致...
Copyright ©2005 - 2013 无锡泓川科技有限公司

1

犀牛云提供企业云服务
Our Link
X
3

SKYPE 设置

4

阿里旺旺设置

等待加载动态数据...

等待加载动态数据...

5

电话号码管理

  • 0510-88155119
6

二维码管理

等待加载动态数据...

等待加载动态数据...

展开