服务热线: 0510-88155119
13301510675@163.com
Language
项目案例 Case
Case 光谱共聚焦

深度好文!探讨光谱共焦位移传感器的GRIN色散物镜光学像差对峰值波长提取的影响

日期: 2025-01-05
浏览次数: 63

光谱共焦传感器:精密测量的得力助手


在当今科技飞速发展的时代,精密测量技术在众多领域发挥着关键作用,光谱共焦传感器作为其中的佼佼者,备受瞩目。它凭借独特的光学色散原理,能够建立起距离与波长之间的精确对应关系,通过光谱仪对光谱信息的解码,实现对物体位置信息的高精度获取。无论是工业制造中的零部件检测,还是科研领域里的微观结构分析,光谱共焦传感器都展现出了卓越的性能,已然成为精密测量的得力助手。
而在光谱共焦传感器的内部构造中,有一个核心部件起着举足轻重的作用,那就是 GRIN 色散物镜。它如同传感器的 “眼睛”,直接影响着光线的聚焦与色散效果。然而,如同任何光学元件一样,GRIN 色散物镜存在着光学像差问题。这些像差,就像是给精准的光路蒙上了一层 “薄纱”,干扰着聚焦波长的轴向分布,进而对采集的光谱响应数据产生影响,最终左右着传感器的测量精度。接下来,就让我们深入探究 GRIN 色散物镜光学像差对峰值波长提取究竟有着怎样的影响。

一、GRIN 色散物镜光学像差剖析


深度好文!探讨光谱共焦位移传感器的GRIN色散物镜光学像差对峰值波长提取的影响

深度好文!探讨光谱共焦位移传感器的GRIN色散物镜光学像差对峰值波长提取的影响


(一)像差的类型

在光学系统中,像差是一个常见且关键的概念,它指的是光线经过光学元件后,实际成像与理想成像之间的偏差。对于 GRIN 色散物镜而言,主要存在以下几种典型的像差:

1.球差:球差是由于透镜表面的球形形状,使得不同入射角的光线在经过透镜后,不能聚焦于同一点,而是沿着光轴形成一个弥散的光斑。从原理上讲,靠近光轴的光线折射相对较小,聚焦点较远;而远离光轴的光线折射较大,聚焦点较近,这就导致了像点的模糊。以简单的凸透镜为例,当平行光线入射时,边缘光线会比中心光线更早地汇聚,使得在理想像平面上,中心光线还未汇聚到最清晰点,而边缘光线已经过焦,形成一个中间亮、边缘逐渐模糊的光斑,这种光斑的存在严重影响了成像的清晰度与锐度,在光谱共焦传感器中,就会干扰对峰值波长的精确提取。


2.像散:像散主要是因为光学系统在不同方向上的聚焦能力不一致所导致。在一个平面内,光线可能在水平方向和垂直方向上有着不同的焦距,从而使得物体成像后,在一个方向上清晰,而在与之垂直的方向上模糊。例如,观察一个十字线图案,可能会出现横线清晰而竖线模糊,或者反之的情况。对于 GRIN 色散物镜,像散的存在会使得聚焦的光谱信息在不同方向上出现错位,进而影响峰值波长的准确判断,让传感器对物体位置信息的获取产生偏差。


3.彗差:彗差的表现形式较为特殊,它使得点状物体成像后,形状类似彗星的尾巴,呈现出一种不对称的弥散斑。彗差通常是由于离轴光线引起的,当光线以一定角度斜入射到透镜时,透镜不同区域对光线的折射差异导致光线不能汇聚到理想的点上,而是形成一个头部较亮、尾部逐渐扩散的光斑。在光谱共焦测量中,彗差会使聚焦的光斑发生畸变,改变光强分布,使得峰值波长对应的光强信号不再准确,干扰传感器对距离信息的换算。

深度好文!探讨光谱共焦位移传感器的GRIN色散物镜光学像差对峰值波长提取的影响


(二)像差产生的原因

像差的产生与多种因素紧密相关:

1.透镜制造工艺:在制造 GRIN 色散物镜的过程中,要实现理想的透镜形状和折射率分布难度极高。哪怕是极其微小的加工误差,比如透镜表面的粗糙度、曲率半径的偏差等,都可能引发像差。在研磨透镜表面时,若工艺精度不够,就难以保证表面达到理论上的完美球面,从而导致光线折射不均匀,引发球差等像差问题。而且,GRIN 透镜内部折射率的精确控制也充满挑战,实际制造出的折射率梯度可能与设计值存在偏差,进一步加剧像差的影响。

2.材料特性:透镜材料本身的光学性质也对像差有着重要影响。不同波长的光在同一材料中的折射率不同,这就是色散现象。当宽谱光源发出的光进入 GRIN 色散物镜时,由于材料色散,不同波长的光折射程度各异,使得光线聚焦出现偏差,这是产生像差的一个内在因素。此外,材料的均匀性若存在缺陷,也会导致光线传播异常,增加像差的复杂性。

3.光线入射角:光线以较大角度斜入射到透镜时,会加剧像差的影响。正如前文提及的彗差,离轴光线由于入射角较大,经过透镜不同区域的折射路径差异更为明显,更容易产生像散、彗差等像差。在光谱共焦传感器的实际应用中,当测量物体表面不平整或者测量角度稍有偏差时,光线入射角的变化就会引入额外的像差,降低测量精度。

由于这些因素的综合作用,像差在光学系统中几乎难以完全消除。而像差的存在,又会对光学系统的成像质量造成严重危害。在光谱共焦传感器里,它会使得聚焦的光谱变得模糊、扭曲,峰值波长难以精准定位,进而导致测量结果出现误差,无法满足高精度测量的需求。接下来,让我们深入探究这些像差究竟是如何具体影响峰值波长提取的。

二、峰值波长提取原理详解


(一)光谱共焦测量基础

光谱共焦传感器的测量原理精妙绝伦,其核心在于利用色散物镜对光的独特色散特性。当宽光谱光源发出的复色光进入 GRIN 色散物镜后,由于物镜材料对不同波长光的折射率存在差异,光线会沿着光轴方向被分散开来,形成一系列连续的、不同波长的单色光聚焦点。从本质上讲,这是基于光的折射定律,不同波长的光在介质中的传播速度不同,导致折射角度各异,进而实现色散。在这个过程中,色散物镜就像是一个精密的 “光频分离器”,将混合的光线按照波长有序排列。


而且,光谱共焦测量技术巧妙地运用了光的共焦特性。在理想状态下,只有处于物体表面位置的特定波长光能够满足共焦条件,即光线聚焦在物体表面后反射,恰好能够原路返回并通过一个微小的检测孔,最终被光谱仪接收。其他波长的光由于聚焦位置不在物体表面,反射光无法通过检测孔,相当于被 “过滤” 掉了。这种精确的光筛选机制,确保了传感器能够精准地捕捉到与物体表面位置紧密相关的光信息,为后续的精确测量奠定了基础。

(二)峰值波长与距离的关联

一旦光谱仪接收到反射光,通过对光的光谱分析,就能检测到反射光强度的分布情况,其中光强最大的波长即为峰值波长。而这个峰值波长可不是孤立的信息,它与物体表面到传感器的距离存在着一一对应的关系。在传感器的校准阶段,已经预先通过精密实验和算法建立了波长 - 距离查找表或者数学模型。
以常见的工业精密加工场景为例,在对微小零部件的尺寸检测中,当零部件表面距离传感器较近时,根据色散物镜的色散特性,较短波长的光会聚焦在物体表面,光谱仪检测到的峰值波长就偏向短波长区域;反之,当零部件表面距离传感器较远,长波长的光满足共焦条件,峰值波长则移向长波长范围。通过精确测量峰值波长,并利用已建立的对应关系,就能以极高的精度计算出物体表面的位置或位移信息,其精度可达到纳米甚至亚纳米级别。在半导体芯片制造过程中,对晶圆表面的平整度检测、芯片微观结构的高度测量等环节,光谱共焦传感器凭借这一原理,实现了对微小尺寸变化的精准把控,确保芯片性能的可靠性与稳定性。

三、光学像差对峰值波长提取的具体影响

深度好文!探讨光谱共焦位移传感器的GRIN色散物镜光学像差对峰值波长提取的影响

(一)仿真实验设置

为了深入探究 GRIN 色散物镜光学像差对峰值波长提取的影响,我们搭建了一套高精度的仿真实验环境。采用专业的光学仿真软件 Zemax,该软件在光学系统设计与分析领域广泛应用,能够精确模拟光线在复杂光学结构中的传播路径。在仿真模型中,我们依据实际的光谱共焦传感器参数,构建了包含 GRIN 色散物镜、光源、探测器等关键部件的光学系统。光源设置为常见的宽谱白光 LED,其光谱范围覆盖 400 - 800nm,模拟实际应用中的照明条件。GRIN 色散物镜的各项参数,如折射率分布、透镜尺寸等,均按照实际生产工艺中的典型值设定,确保模拟结果贴近真实情况。探测器采用高灵敏度的光谱仪模型,能够精准捕捉反射光的光谱信息,记录光强随波长的变化曲线。通过对不同像差条件下的光路进行模拟计算,获取大量的光谱响应数据,为后续分析提供坚实基础。

(二)球差的影响

在仿真实验中,我们重点关注了球差对峰值波长提取的干扰。通过逐步调整 GRIN 色散物镜的球差参数,从近乎理想状态下的微小球差(球差系数为 0.1)开始,逐渐增大到较大的球差值(球差系数为 5),观察光谱响应曲线的变化。当球差系数为 0.1 时,光谱响应曲线的峰值较为尖锐,峰值波长与理论值相比,偏移量极小,仅在纳米级别,几乎不影响测量精度。随着球差系数增大到 1,峰值波长出现了明显的偏移,向长波长方向移动了约 6.28nm,这一偏移量已经可能对一些高精度测量场景造成影响。当球差系数进一步增大到 3 时,光谱响应曲线的峰值变得扁平且宽化,同时在主峰两侧出现了较弱的旁瓣,此时峰值波长的判断变得困难,且偏移量增大到约 15nm。当球差系数达到 5 时,光谱响应曲线呈现出严重的畸变,主峰分裂为双峰,双峰之间的间距达到数十纳米,使得原本单一的峰值波长信息变得模糊不清,完全无法准确提取,极大地破坏了传感器的测量精度。从这些仿真结果可以清晰看出,球差从较小值逐渐增大的过程中,对峰值波长提取精度的干扰呈指数级增长,严重时甚至会导致测量失效。

深度好文!探讨光谱共焦位移传感器的GRIN色散物镜光学像差对峰值波长提取的影响

[此处插入球差不同数值下,光谱响应曲线变化的仿真结果图表,横坐标为波长,纵坐标为光强,不同曲线代表不同球差系数,直观展示峰值波长的偏移情况]

(三)像散的影响

在研究像散对峰值波长提取的影响时,我们在仿真模型中单独引入像散,并与无像散的理想情况进行对比。在无像散时,光谱响应曲线呈现出对称的单峰形状,峰值波长稳定且易于提取。当引入一定量的像散后,光谱响应曲线在不同方向上的光强分布发生改变。在水平方向上,光强峰值有所降低,且峰值波长向短波方向略微偏移,偏移量约为 2 - 3nm;在垂直方向上,光强分布变得更为弥散,出现了多个局部峰值,虽然主峰依然存在,但峰值波长的判断变得复杂,与理想情况相比,整体的峰值波长偏移量在 5nm 左右。与球差的影响相比,像散导致的峰值波长偏移相对较小,但它使得光强分布在不同方向上出现差异,给峰值波长的精准定位带来了额外的难度,尤其是在对测量精度要求极高的微观结构测量、精密光学元件检测等场景下,像散的这种影响不容忽视。


深度好文!探讨光谱共焦位移传感器的GRIN色散物镜光学像差对峰值波长提取的影响


[插入有无像散情况下,峰值波长分布的对比图表,通过不同颜色或线条区分,展示像散对峰值波长的干扰特征]

(四)组合像差的影响

实际的光学系统中,往往不是单一像差存在,而是多种像差同时作用。当球差、像散以及彗差等组合出现时,光谱响应曲线变得极为复杂。仿真结果显示,此时的光谱曲线不仅峰值波长发生了较大偏移,而且在主峰两侧出现了三峰旁瓣同时升高的现象。原本清晰的单峰结构被破坏,主峰的光强占比降低,旁瓣的干扰使得峰值波长的提取难度大幅提升。在一些复杂的测量环境中,如高温、高湿度导致光学元件轻微形变,引入组合像差时,传感器对物体表面的测量数据出现大幅波动,峰值波长的偏差甚至超过 20nm,严重影响了测量的可靠性与准确性,对精密测量的危害极大。
[呈现存在多种像差组合时,光谱响应曲线的复杂变化图表,详细标注各特征峰的变化情况,解释组合像差的破坏作用]

四、应对光学像差的策略探讨


(一)光学设计优化

在光学设计阶段降低像差是提升光谱共焦传感器性能的关键一环。一方面,合理选择透镜材料至关重要。科研人员不断探索新型光学材料,如某些具有特殊色散特性的玻璃或晶体材料,它们能够在一定程度上补偿色散带来的像差问题。一些高折射率且色散系数低的材料被应用于 GRIN 色散物镜的设计中,通过精确计算材料的色散曲线,使得不同波长的光在传播过程中的折射更加均匀,从而减小像差。据相关研究表明,采用新型低色散材料制作的色散物镜,相比传统材料,球差系数可降低约 30%,有效改善了光线聚焦效果。


另一方面,优化透镜的曲面设计也是重要手段。非球面透镜的应用逐渐广泛,它能够通过改变透镜表面的曲率分布,精准地校正像差。在设计过程中,利用先进的光学设计软件,如 Code V、Zemax 等,进行多次模拟优化。通过调整非球面的参数,如二次曲面系数、高次项系数等,使得光线在透镜表面的折射更加符合理想状态。在实际项目中,经过优化后的非球面 GRIN 色散物镜,像散降低了约 25%,显著提高了成像质量,使得峰值波长的提取更加精准。

此外,精心设计光学系统的结构布局同样不可忽视。合理安排透镜之间的间距、光阑的位置等,可以有效控制光线的入射角和传播路径,减少像差的累积。在一些复杂的光学系统中,采用对称式结构设计,能够利用对称性抵消部分像差,提高系统的稳定性与精度。

深度好文!探讨光谱共焦位移传感器的GRIN色散物镜光学像差对峰值波长提取的影响


(二)算法补偿

除了在光学设计上发力,利用算法对像差进行补偿也是行之有效的策略。高斯拟合算法是常用的方法之一,它基于光强分布的高斯函数模型,对采集到的光谱响应数据进行拟合。在存在像差的情况下,光谱响应曲线往往会发生畸变,高斯拟合通过寻找最佳的拟合参数,还原出理想状态下的峰值波长。实际测量数据显示,在球差干扰下,未使用算法补偿时峰值波长偏移量达到 8nm,而采用高斯拟合算法补偿后,偏移量可控制在 2nm 以内,大大提高了测量精度。


Zernike 多项式拟合算法则更为灵活强大,它能够将像差分解为多个不同阶次的多项式项,针对各项像差分别进行补偿。通过对大量实验数据的分析,确定像差的主要成分,然后利用 Zernike 多项式构建补偿模型。对于像散较为严重的情况,Zernike 多项式拟合可以精准地调整光强分布,使得原本模糊的峰值变得清晰可辨。在某精密光学元件检测实验中,组合像差导致峰值波长判断误差达到 15nm,运用 Zernike 多项式拟合算法补偿后,误差降低至 5nm 以下,有力保障了测量的可靠性,为光谱共焦传感器在高精度测量领域的应用拓展了空间。

深度好文!探讨光谱共焦位移传感器的GRIN色散物镜光学像差对峰值波长提取的影响

五、前沿研究与未来展望


在当前科研前沿,诸多顶尖科研团队正全力以赴攻克 GRIN 色散物镜光学像差带来的难题,力求推动光谱共焦传感器迈向新高度。一方面,在 GRIN 色散物镜的改进上持续发力。部分团队运用先进的微纳加工技术,尝试制造出具有更加精准折射率梯度分布的 GRIN 透镜,从根源上降低像差。通过对透镜内部纳米结构的精细调控,有望实现球差、像散等像差系数降低 50% 以上,极大提升光线聚焦的精准度。
另一方面,创新的像差校正算法如雨后春笋般涌现。一些科研人员借助深度学习强大的特征提取与模型构建能力,开发出基于深度学习的像差校正算法。通过海量的模拟像差数据与实际测量数据对深度学习模型进行训练,使其能够智能识别并实时校正像差。初步实验表明,在复杂像差环境下,该算法可将峰值波长提取精度提高约 3 - 5nm,为高精度测量提供坚实保障。
展望未来,随着材料科学、光学制造工艺以及算法技术的协同进步,光谱共焦传感器有望迎来质的飞跃。在精度上,有望实现皮米级别的测量精度,开启微观世界超精密测量的新篇章;在应用范围方面,将进一步拓展至生物医疗领域的细胞级结构探测、量子光学实验中的微观位移监测等前沿场景,为人类探索未知、推动科技发展注入源源不断的动力,助力众多领域实现跨越式突破。


本文深度参考:李春艳,李丹琳,刘继红,等 .《 GRIN 色散物镜光学像差对峰值波长提取的影响》[J. 光子学报,2024533):0322003

Case / 相关推荐
2025 - 08 - 06
点击次数: 3
一、多晶硅太阳能电池厚度:发电效率与柔性的平衡艺术多晶硅太阳能电池作为光伏市场的主流产品,其厚度是影响性能的核心参数 —— 既需满足高效发电,又要适应柔性场景的需求,这种 "平衡" 背后是材料特性与工程技术的深度耦合。1. 厚度与发电效率:并非越厚越好的 "倒 U 型" 关系多晶硅太阳能电池的发电效率依赖于光吸收能力与载流子收集效率的协同。当厚度较小时(如<...
2025 - 07 - 13
点击次数: 16
一、方案背景与需求凸面镜面作为光学系统中的关键元件,其 3D 轮廓精度直接影响光学性能(如成像质量、光路偏转精度)。传统接触式测量易划伤镜面,而普通光学测量受限于角度范围和量程,难以覆盖凸面的曲面变化(大段差、大曲率)。针对这一需求,本方案采用LTC4000F 光谱共焦传感器搭配LT-CCS 单通道控制器,利用其超大测量角度、超大量程及高精度特性,实现凸面镜面 3D 轮廓的非接触式精确扫描。二、方...
2025 - 06 - 05
点击次数: 5
一、行业挑战与泓川科技解决方案在医用玻璃瓶生产领域,透明 / 茶色瓶底的倾斜度检测一直是技术难点:传统接触式传感器(如电感式)因物理接触易划伤瓶底,且采样频率低(≤2kHz),无法满足高速产线需求;激光位移传感器则因光穿透性问题,对透明材料测量失效。泓川科技凭借 LTC7000 系列光谱共焦位移传感器与 LT-CPS/LT-CPS-L 控制器的创新组合,突破了上述瓶颈,为医用玻璃瓶质量管控提供了非...
2025 - 06 - 04
点击次数: 9
一、工艺挑战与技术需求在手机制造领域,油墨涂刷工序需完成 7 次精密涂布,单次涂层厚度控制在微米级(典型值 50-200μm),且要求各层平整度误差≤±5μm。传统接触式测量存在划伤风险,而普通光学传感器因光能利用率低(0.1% F.S/°C),难以满足高速在线全检需求。泓川科技基于LTC400 系列光谱共焦位移传感器与LT-CPS 控制器的组合方案,以0.012μm 静态重复...
2025 - 05 - 21
点击次数: 29
一、玻璃管管壁单边测厚应用场景适用于透明玻璃管(如医用输液管、实验室玻璃器皿)的管壁厚度快速检测,尤其适合小管径、薄壁结构的单边非接触式测量。测试方案设备配置传感器:LTC7000S 激光位移传感器(聚焦光斑 Φ25μm,适合微小尺寸测量)。控制器:LT-CPF 系列控制器(单通道模式,采样频率≥1Hz,满足每秒 1 次数据采集需求)。测量模式:折射率模式(默认 K9 光学玻璃折射率,n=1.51...
2025 - 05 - 06
点击次数: 30
泓川科技光谱共焦技术赋能陶瓷片厚度精密检测一、行业背景与检测挑战在电子元器件、建筑陶瓷、化工容器等领域,陶瓷制品的厚度精度直接决定其功能性与可靠性。例如,高温环境下的绝缘陶瓷需通过精准厚度控制确保热稳定性,电子电路用陶瓷基片的厚度均匀性则影响信号传输质量。当被测陶瓷片呈现 "一面光滑上釉、一面粗糙带孔" 的复杂表面时,传统测量手段难以兼顾光滑面的镜面反射特性与粗糙面的散射干扰问...
About Us
关于泓川科技
专业从事激光位移传感器,激光焊缝跟踪系统研发及销售的科技公司
中国 · 无锡 · 总部地址:无锡新吴区天山路6号
销售热线:0510-88155119 
图文传真:0510-88152650
Working Time
我们的工作时间
周一至周五:8:00-18:00
周六至周日:9:00-15:00
Shown 企业秀 More
  • 1
    2025 - 04 - 12
    在工业自动化领域,激光位移传感器作为精密测量的核心部件,其性能直接影响生产精度与效率。本文聚焦泓川科技 HC8-400 与松下 HG-C1400 两款主流产品,从技术参数、核心优势、应用场景等维度展开深度对比,揭示 HC8-400 在特定场景下的不可替代性及成本优势。一、技术参数对比:细节见真章1. 基础性能指标参数HC8-400HG-C1400差异分析测量范围400±200mm(200-600mm)400±200mm(200-600mm)两者一致,覆盖中长距离测量场景。重复精度200-400mm:150μm 400-600mm:400μm200-400mm:300μm 400-600mm:800μmHC8-400 在全量程精度表现更优,尤其在 400-600mm 远距段,重复精度提升 50%,适合对稳定性要求高的精密测量。线性度200-400mm:±0.2%F.S. 400-600mm:±0.3%F.S.200-400mm:±0.2%F.S. 400-600mm:±0.3%F.S.线性度一致,满足工业级测量标准。温度特性±0.05%F.S/℃±0.03%F.S/℃HG-C1400 理论温漂略优,但 HC8-400 通过独特热稳设计,实际在高温环境(如 80℃)下表现更可靠,弥补参数...
  • 2
    2025 - 01 - 17
    一、引言1.1 研究背景与意义在当今数字化信息爆炸的时代,数据存储的重要性愈发凸显。硬盘驱动器(HDD)作为一种传统且广泛应用的大容量存储设备,在数据存储领域占据着举足轻重的地位。从个人计算机中的数据存储,到企业级数据中心的海量数据管理,HDD 都发挥着不可替代的作用。随着科技的飞速发展,各行业对数据存储的容量、速度、稳定性以及可靠性等方面的要求不断提高。例如,在影视制作行业,4K、8K 等高分辨率视频的编辑和存储需要大容量且读写速度快的存储设备;在金融行业,大量交易数据的实时存储和快速检索对 HDD 的性能和可靠性提出了严苛要求。为了确保 HDD 能够满足这些日益增长的需求,其制造过程中的质量控制至关重要。而光学传感器检测技术在 HDD 的质量控制中扮演着关键角色。通过运用光学传感器,可以对 HDD 的多个关键参数进行精确检测。比如,检测盘片的平整度,盘片平整度的微小偏差都可能导致磁头与盘片之间的距离不稳定,进而影响数据的读写准确性和稳定性;测量磁头的位置精度,磁头定位不准确会使数据读写出现错误,降低 HDD 的性能;监测电机的转速均匀性,电机转速不稳定会导致数据读取速度波动,影响用户体验。光学传感器能够以非接触的方式进行高精度检测,避免了对 HDD 部件的损伤,同时还能实现快速、高效的检测,大大提高了生产效率和产品质量。 1.2 研究目的与方法本研究旨在深入探究不同类...
  • 3
    2025 - 06 - 09
    一、核心参数深度对比维度泓川科技 HC16 系列奥泰斯 CD22 系列差异影响分析型号覆盖15/35/100/150mm(4 款)15/35/100mm(3 款)HC16 新增150mm 基准距离型号(HC16-150),测量范围 ±100mm,填补 CD22 无远距离型号空白。重复精度(静态)15mm:1μm;35mm:6μm;100mm:20μm;150mm:60μm15mm:1μm;35mm:6μm;100mm:20μmHC16-150 精度较低(60μm),适合远距离低精度场景(如放卷料余量粗测),CD22 无对应型号需搭配中继。通讯扩展性支持 EtherCAT 模块(文档提及)、RS485、模拟量仅 RS485、模拟量HC16 对 ** 工业总线系统(如 PLC 集成)** 兼容性更强,可减少额外通讯模块成本。电源适应性全系列 DC12-24V 统一输入模拟量电压型需 DC18-24V,电流 / 485 型 DC12-24V若用户系统电源为12-18V,HC16 电压输出型(如 HC16-15-485V)可直接替代 CD22 电压型,避免电源升级成本。功耗≤100mA(全系列)≤700mA(CD22-15A 为例)HC16 功耗仅为 CD22 的1/7,适合电池供电设备、多传感器阵列场景,降低散热和电源设计压力。体积与重量尺寸未明确标注(参考 CD22 为紧凑型...
  • 4
    2022 - 12 - 01
    在烟草分级及仓储环节中有大量的自动化设备,比如高速往复运动的穿梭车堆垛机等,如何建立完善的安全预防措施,保障作业人员的人身安全是企业在思考的方向,我们在烟草工业内部系统里面已经积累了众多的成功案例,我们会通过机械安全控制以及电器这三个维度来帮助企业进行评估,具体的改造场景有,立库输送管道出入口防护百度极速可在经过现场评估后我们会给客户出具评估报告和推荐的安全整改。                机械设备,例如马舵机,泄漏机缠绕机等在快消品行业是广泛存在的,特别是码作机器,经常需要操作人员频繁介入该区域应用的工业机器人运行速度快存在着较高的安全隐患,在转运站码垛技术入口,经常采用一套光幕和光电传感器来实现屏蔽功能,从而实现人物分离,在这个应用中,以物体在传中带上面时,车场光电传感器,从而激活,屏蔽功能,当你为触发屏蔽功能很简单,有些操作人员会拿纸箱或者其他东西遮挡这个光电传感器,从而很容易就操纵了这个屏蔽功能,存在着很大的安全隐患,针对这个问题,我们开发出创新高效的是入口防护替代方案,智能门控系统,无锡屏蔽传感器就和实现pp功能,这项专利技术是基于。             专利技术是激光幕,使出入口防务变得更加高效...
  • 5
    2023 - 09 - 11
    非接触测量涂布厚度的行业报告摘要:本报告将介绍非接触测量涂布厚度的行业应用场景及解决方案。涂布厚度的准确测量在多个行业中至关重要,如带钢、薄膜、造纸、无纺布、金属箔材、玻璃和电池隔膜等行业。传统的测量方法存在一定的局限性,而非接触测量技术的应用可以提供更准确、高效的测量解决方案。本报告将重点介绍X射线透射法、红外吸收法和光学成像测量方法这三种主要的非接触测量解决方案,并分析其适用场景、原理和优势。引言涂布厚度是涂覆工艺中的一个重要参数,对于保证产品质量和性能具有重要意义。传统的测量方法,如接触式测量和传感器测量,存在一定局限性,如易受污染、操作复杂和不适用于特定行业。而非接触测量方法以其高精度、实时性和便捷性成为行业中的理想选择。行业应用场景涂布厚度的非接触测量方法适用于多个行业,包括但不限于以下领域:带钢:用于热镀锌、涂覆和镀铝等行业,对涂层和薄膜的厚度进行测量。薄膜:用于光学、电子、半导体等行业,对各种功能薄膜的厚度进行测量。造纸:用于测量纸张的涂布、涂胶和覆膜等工艺中的厚度。无纺布:用于纺织和过滤行业,对无纺布的厚度进行测量。金属箔材:用于食品包装、电子器件等行业,对箔材的厚度进行测量。玻璃:用于建筑和汽车行业,对玻璃的涂层厚度进行测量。电池隔膜:用于电池制造行业,对隔膜的厚度进行测量。解决方案一:X射线透射法X射线透射法是一种常用的非接触涂布厚度测量方法,其测量原理基于射线...
  • 6
    2025 - 03 - 04
    一、核心参数对比表参数项LK-G08(基恩士)LTPD08(泓川科技国产)参考距离8 mm8 mm检测范围±0.8 mm±0.8 mm线性度±0.05% F.S.±0.03% F.S.重复精度0.02 μm0.03 μm采样频率20 μs1 ms(6档可调)6.25 μs1 ms(多档可调)激光类别1类(JIS C6802)2类(安全等级更高)光源功率0.3 mW0.5 mW(可定制更高功率)防护等级未标注IP67工作温度+10+40°C0+50°C(可定制-4070°C)通讯接口未标注RS485、TCP/IP、开发包支持供电电压-DC 936V(±10%波动兼容)重量245 g213 g二、性能差异深度解析1. 测量性能精度与速度: LK-G08在重复精度(0.02μm)上略优,适合超精密场景;而LTPD08的线性度(±0.03% F.S.)更优,且在采样频率上支持最高6.25μs(缩小量程时可达160kHz),动态响应能力更强。激光适应性: LTPD08提供405nm蓝光版本可选,可应对高反光或透明材质测量,基恩士仅支持655nm红光。2. 环境适应性防护等级: LTPD08的IP67防护显著优于未标注防护的LK-G08,适...
  • 7
    2023 - 09 - 26
    1 激光光热技术测厚:原理是利用激光照射材料,产生的热量使材料产生变化,再通过光学方式检测这种变化以确定材料的厚度。优点是非接触式、无损伤、准确;缺点也是显而易见的,对于颜色、形状、表面纹理等都有不同程度的影响。2 白光干涉测厚:原理是使用白光干涉仪产生干涉图案,然后通过分析干涉图案得材料厚度。优点是测量精度高、灵敏度高;缺点是设备复杂且成本高昂。3 激光干涉测厚:主要是利用激光波的相干性,测量物体的干涉条纹来反推出物体的厚度。优点是测量精度高、速度快;但激光源的稳定性和调节技术要求比较高。4 光谱共聚焦测厚:该方法是根据材料对不同波长光的反射、折射和吸收特性,同时探测所有波长的光谱,从而计算出材料厚度。优点是测量准确、适用范围广;缺点是设备复杂、操作要求高。5 椭圆偏光法测厚:原理是利用光的偏振特性对材料进行测量,根据计算出材料厚度。优点是接触、无损伤,但适用范围有限。6 红外吸收法测厚:红外吸收法是指通过测定红外光在材料中吸收的程度来推断优点是测量过程简单、直观、精度高;缺点是对材料的红外吸收特性有严格要求。7 X/β射线测厚:主要是利用X射线或者β射线穿透材料时,穿透的射线强度和物体的厚度之间存在一定的关系。优点是精确、可靠;缺点是人体安全需要考虑。8 电容测厚:原理是利用两极板间的电容量与介质厚度成正比,通过测量电容量来测量厚度。优点是设备简单、便宜;缺点是精度较低。9 反...
  • 8
    2024 - 03 - 05
    在测量被透明物体覆盖的目标时,环境照明补偿和透视测量是提高测量准确性的重要手段。这些技术的应用,在智能手机等电子设备的制造过程中,具有至关重要的作用。首先,让我们来探讨一下环境照明补偿的作用。在生产线环境中,照明条件往往并不稳定,这会对测量精度产生严重影响。环境照明补偿技术通过自动调整传感器参数,以补偿外部光照条件的变化,使得测量系统能在不同的照明条件下都能保持稳定的测量性能。这就使得我们在测量被透明物体(如手机屏幕)覆盖的目标时,能够得到更为准确的结果。其次,透视测量技术则能够解决透明物体对测量造成的干扰。由于透明物体会让部分光线穿过,使得传统的测量技术难以准确捕捉目标的位置和形状。而透视测量技术则能够通过特殊的光学设计和算法处理,使得传感器能够“看透”透明物体,直接对其背后的目标进行测量。这样,我们就可以在不接触目标的情况下,对其进行准确的测量。在智能手机等电子设备的制造过程中,这两种技术都有着广泛的应用。例如,在手机屏幕的生产过程中,环境照明补偿技术可以帮助我们确保屏幕在各种光线条件下都能显示清晰。而透视测量技术则可以用于测量手机屏幕下的各种元器件,如触摸屏、摄像头等,确保它们的位置和尺寸都符合设计要求。此外,这两种技术还可以结合使用,以提高测量的精度和效率。例如,我们可以先使用透视测量技术确定目标的位置,然后使用环境照明补偿技术对其进行精确测量。这样,我们不仅可以得到更准确...
Message 最新动态
泓川科技的光学楞镜如何解决光谱共焦传感器在狭小空间中大量程测量的难题? 2025 - 08 - 12 在半导体芯片制造、精密电子组装等高端工业场景中,一个棘手的矛盾始终存在:一方面,设备内部空间日益紧凑,毫米级的安装高度都可能成为 “禁区”;另一方面,随着产品结构复杂化,对测量量程的需求不断提升,5mm 以上的大量程检测已成为常态。如何在狭小空间内实现大量程精密测量?无锡泓川科技给出了突破性答案 ——光学转折镜,以创新设计让光谱共焦传感器的测量方向 “直角转向”,既节省安装空间,又兼容大量程需求,重新定义精密测量的空间可能性。传统方案的痛点:空间与量程难以两全在精密测量领域,侧出光传感器曾是狭小空间的 “救星”。泓川科技旗下 LTCR 系列作为 90° 侧向出光型号,凭借紧凑设计广泛应用于深孔、内壁等特征测量。但受限于结构设计,其量程多集中在 2.5mm 以内(如 LTCR4000 量程为 ±2mm),难以满足半导体晶圆厚度、大型精密构件高度差等大量程场景的需求。若选择传统端面出光的大量程传感器(如 LTC10000 量程 ±5mm、LTC20000 量程 ±10mm、LTC50000 量程 ±25mm),虽能覆盖测量需求,却因轴向出光设计需预留足够安装高度,在半导体设备的密闭腔室、精密仪器的紧凑模组中 “寸步难行”。空间与量程,似乎成了不可调和的矛盾。光学转折镜:让大量程探头 “直角转身”,释放空间潜力泓川科技创新研发的光学转折镜...
泓川科技 LTP 系列激光位移传感器全国产化制造流程细节全披露 2025 - 06 - 22 一、国产化背景与战略意义在全球供应链竞争加剧的背景下,激光位移传感器作为工业自动化核心测量部件,其国产化生产对打破技术垄断、保障产业链安全具有重要战略意义。泓川科技 LTP 系列依托国内完整的光学、电子、机械产业链体系,实现了从核心零部件到整机制造的全流程国产化,彻底解决了接口卡脖子问题,产品精度与稳定性达到国际先进水平,同时具备更强的成本竞争力与定制化服务能力。二、核心部件全国产化组成体系(一)光学系统组件激光发射单元激光二极管:采用深圳镭尔特光电 655nm 红光 PLD650 系列(功率 0.5-4.9mW)及埃赛力达 905nm 红外三腔脉冲激光二极管,支持准直快轴压缩技术,波长稳定性 ±0.1nm,满足工业级高稳定性需求。准直透镜:选用杭州秋籁科技 KEWLAB CL-UV 系列,表面粗糙度 光学滤光片:深圳激埃特光电定制窄带滤光片,红外截止率 99.9%,有效消除环境光干扰。激光接收单元光电探测器:上海欧光电子代理 OTRON 品牌 PSD 位置敏感探测器,分辨率达 0.03μm(如 LTPD08 型号),北京中教金源量子点探测器正在实现自主替代。聚焦透镜组:福州合创光电高精度分光棱镜,偏振消光比 1000:1,配合广州明毅电子阳极氧化支架,确保光路同轴度≤5μm。(二)电子电路组件信号处理模块微处理器:龙芯中科 3A5000 工业级芯片,支持 - 40℃...
有没有量程1米,测量精度误差1mm的国产激光位移传感器,频率5Khz以上? 2025 - 06 - 19 有!LTM 系列三款国产激光位移传感器满足需求在工业检测领域,量程 1 米、精度误差 1mm、频率 5KHz 以上的激光位移传感器是高端测量的刚需,而国产传感器常因精度或频率不足被进口品牌垄断。无锡泓川科技的 LTM2-800W、LTM3-800W、LTM5-800W 三款产品,不仅全面覆盖上述指标,更以进口品牌一半的成本优势,成为国产替代的优选方案。以下从性能参数、优劣分析、场景适配及成本对比展开详细介绍。一、核心性能参数对比型号LTM2-800WLTM3-800WLTM5-800W参考距离800mm800mm800mm测量范围±500mm(总量程 1000mm)±500mm(总量程 1000mm)±500mm(总量程 1000mm)光斑尺寸450×6000μm450×6000μm450×6000μm重复精度45μm45μm45μm线性误差采样频率5KHz10KHz31.25KHz工业接口485 串口 / 模拟信号(二选一)以太网 / 485 串口 / 模拟信号以太网 / 485 串口 / 模拟信号光源660nm,Max.50mW660nm,Max.50mW660nm,Max.50mW防护等级IP67IP67IP67工作温度0~+50℃0~+50℃0~+50℃功耗约 2.0W约 2.0W约 2.0W二、产品优势分析(一)...
Copyright ©2005 - 2013 无锡泓川科技有限公司

1

犀牛云提供企业云服务
Our Link
X
3

SKYPE 设置

4

阿里旺旺设置

等待加载动态数据...

等待加载动态数据...

5

电话号码管理

  • 0510-88155119
6

二维码管理

等待加载动态数据...

等待加载动态数据...

展开