服务热线: 0510-88155119
13301510675@163.com
Language
项目案例 Case
Case 激光位移

核电安全之重:安全壳鼓包检测难题——泓川科技激光位移传感器来解决

日期: 2025-01-05
浏览次数: 24

      在核电领域,安全壳宛如一位忠诚的卫士,肩负着守护核反应堆的重任,是防止放射性物质泄漏的关键防线。它的结构复杂且庞大,内部环境严苛,一旦出现安全隐患,后果不堪设想。

而安全壳鼓包现象,便是潜在隐患之一。鼓包通常是由于内部压力变化、结构老化、材料疲劳等多种因素导致的。这些鼓包可能起初微不足道,但随着时间推移,若不及时察觉并处理,极有可能逐渐扩大,进而削弱安全壳的整体结构强度,使得放射性物质泄漏风险大增。

传统的鼓包检测主要依赖人工完成。检测人员手持工具,在安全壳内小心翼翼地敲击钢内衬,凭借耳朵捕捉敲击声的细微差异,以此判断鼓包的位置与范围。这种方式弊端显著:一方面,人工检测效率极其低下,安全壳内部空间广阔,检测点众多,耗费大量人力与时间;另一方面,精度实在难以保证,人的听觉判断易受环境噪音、个人经验及身体状态等诸多因素干扰,微小鼓包很容易被遗漏,给核电站的安全运行埋下了 “定时炸弹”。

面对传统检测方式的困境,引入新的测量系统迫在眉睫。激光位移传感器等先进技术应运而生,它们如同核电安全领域的 “火眼金睛”,有望精准、高效地揪出那些隐匿的鼓包,为核电站的平稳运行保驾护航。

核电安全之重:安全壳鼓包检测难题——泓川科技激光位移传感器来解决

核心力量:激光位移传感器

(一)测量原理大揭秘

激光位移传感器的 “超能力” 源自其精妙的测量原理。它主要依据三角测量法或回波分析法施展身手。

在三角测量法中,传感器内部的激光器宛如一位精准的射手,发射出一束极细且能量集中的激光束,这束激光以特定角度射向安全壳钢内衬表面。光线抵达内衬后,会产生反射,反射光如同归巢的信鸽,迅速被传感器的接收单元捕获。接收单元通常由高灵敏度的光电二极管或 CCD/CMOS 图像传感器担当,它们能够敏锐捕捉反射光的细微变化。由于物体表面的鼓包会使反射光的入射角度产生微妙改变,根据激光发射点、反射点以及接收点之间稳固的三角几何关系,传感器内部的智能处理单元就如同一位聪明绝顶的数学家,能精确计算出传感器与内衬表面的距离变化,进而精准定位鼓包的位置与高度。

核电安全之重:安全壳鼓包检测难题——泓川科技激光位移传感器来解决

核电安全之重:安全壳鼓包检测难题——泓川科技激光位移传感器来解决

而回波分析法的运作方式稍有不同。传感器中的激光发射器火力全开,每秒向外发射高达上百万个激光脉冲,这些脉冲如密集的雨点般冲向目标。当脉冲遇到安全壳内衬后,会即刻反射回来,被接收器接收。处理器随即迅速计算激光脉冲往返所需的时间,要知道,光在空气中的传播速度可是恒定的,依据这一固定速度与往返时间,就能轻松推算出距离值。这种方法在远距离测量场景中表现卓越,为全面检测安全壳提供了有力支持。


(二)优势尽显

在安全壳鼓包测量这场关键 “战役” 中,激光位移传感器凭借诸多突出优势,成为当之无愧的 “主将”。

精度方面,它堪称 “狙击高手”,能够达到微米级甚至纳米级的超高精度。在检测微小鼓包时,绝不会放过任何蛛丝马迹,与传统人工测量方式相比,简直是天壤之别。人工测量时,检测人员即便全神贯注、经验丰富,也难以察觉毫米级以下的细微鼓包,而激光位移传感器凭借其高精度,能轻松捕捉到这些潜在隐患,为安全壳的早期诊断提供精准数据,防患于未然。

速度上,它如同闪电侠一般。能够在瞬间完成多次测量,快速获取大量数据点,高效构建出安全壳内表面的详细 “地形图”。这在大规模的安全壳检测任务中,极大地缩短了检测时间,减少了核电站停机检修的时长,为电力供应的持续性提供了坚实保障。

更为关键的是,激光位移传感器采用非接触式测量。在核辐射环境下,这一特性显得尤为重要。它无需与安全壳内衬直接接触,避免了对测量人员的辐射风险,同时也不会对待测表面造成任何损伤,确保安全壳的结构完整性不受丝毫影响,让测量工作安全、可靠地推进。


鼓包测量系统的精妙设计

(一)硬件构成全知晓

在这套创新的测量系统里,硬件可是实现精准测量的基础保障,它们各司其职,协同作战。



核电安全之重:安全壳鼓包检测难题——泓川科技激光位移传感器来解决

以树莓派为核心的测量端,就像是一位前线侦察兵,肩负着采集关键数据的重任。其中,激光位移传感器是当之无愧的 “主角”,型号为泓川科技的激光位移感测器HCM-120-A闪亮登场,它分辨率高达 30μm,重复精度 90μm,测量范围在 60 - 180mm 之间,凭借这些出色的性能参数,能够极其敏锐地捕捉到安全壳钢内衬表面细微的起伏变化,精准定位鼓包的位置与高度。

与激光位移传感器并肩作战的超声波测距传感器,选用的是HUA-4000超声波模块,精度可达 3mm,测量范围为 2 - 450cm,它主要负责测量滑块的横向位置,为整体测量提供辅助信息,确保测量的全面性。

此外,测量端还有供电装置和电源开关,为整个系统稳定运行提供充足动力,保障数据采集工作顺利进行。

而笔记本电脑则充当着数据处理端,如同一位智慧的军师,坐镇后方,接收来自测量端的原始数据,并运用强大的运算能力进行深度分析。它利用 C# 开发设计的软件,不仅能实时接收数据,还能绘制出直观的实时曲线,将抽象的数据具象化。通过巧妙的对比计算,快速且准确地分析出鼓包的位置、大小等关键信息,为后续的决策提供坚实依据。

为了让测量端能够灵活移动,获取更多数据,系统还配备了滑轨。滑轨采用不锈钢材质精心打造,具备高度调节功能,确保滑块在滑动过程中始终保持水平状态,就像为测量端铺设了一条平稳的 “轨道”,让激光位移传感器和超声波测距传感器能够稳定、高效地工作,不放过任何一处潜在鼓包。

(二)软件系统巧运行

软件系统则是整个测量系统的 “智慧大脑”,指挥着硬件有条不紊地工作。

从软件框架来看,它构建起了一座无缝连接测量端与数据处理端的桥梁。测量端以树莓派 3B 为基础,凭借其丰富的接口和强大的运算能力,运行着基于 Python 开发的程序。当系统启动后,树莓派迅速与激光位移传感器和超声波测距传感器建立紧密联系,精准控制它们开始采集数据。传感器就像灵敏的触角,随着滑块在滑轨上平稳滑动,不断获取纵向与横向的距离信息。这些珍贵的数据通过 TCP/IP 技术,如同 “飞鸽传书” 一般,被迅速、稳定地传输至数据处理端。


核电安全之重:安全壳鼓包检测难题——泓川科技激光位移传感器来解决

数据处理端的笔记本电脑,搭载着用 C# 精心开发的软件。这款软件宛如一位专业的数据分析师,实时接收来自测量端的数据后,立即着手绘制实时曲线。曲线在屏幕上逐渐显现,仿佛是安全壳内表面的 “心电图”,将鼓包的蛛丝马迹直观呈现。通过复杂而高效的对比计算算法,它能快速从海量数据中提炼出鼓包的精确位置和大小信息。

在数据处理过程中,软件的一些关键技术发挥着神奇功效。比如,针对激光位移传感器,开发人员巧妙利用泓川科技的命令集进行二次开发,如同给传感器赋予了更多 “智慧”,能够根据实际需求灵活控制其采样模式与采样率,让测量更加精准、高效。超声波模块则通过树莓派精准控制电压,实现稳定的超声波测距。

然而,由于树莓派采用 Linux 操作系统,而数据处理软件依托于 Windows 操作系统,就像两位说着不同语言的伙伴,如何实现顺畅沟通是个难题。为此,开发团队投入大量精力,运用先进的技术手段解决多平台兼容问题,确保数据在不同系统间流畅传输,让整个测量系统成为一个紧密协作的有机整体。

实战检验:系统性能大测试

(一)测距精度大挑战

1. 纵向鼓包测量精度

为了验证这套基于激光位移传感器的测量系统到底有多精准,科研人员精心设计了一系列严格测试。

在纵向鼓包测量精度测试环节,模拟试验采用了精度极高的三维移动平台,其精度达到了令人惊叹的 10μm,远远优于激光位移传感器自身的精度,这就好比用一把无比精准的尺子去衡量传感器的测量能力。

测试时,在三维移动平台的 Z 方向精心选取了一段 3mm 的微小量距,从初始位置开始,每隔 0.5mm 就让传感器进行一次测量,如此反复,对这 6 段距离进行往返测量,并且为了确保数据的可靠性,对同一位置还进行多次重复测量。考虑到测量初期可能存在的一些不稳定因素,选取开始测量 3s 后的数据进行深入分析,每个单独位置选取 25 个测量数据,取均值作为当前位置的测量值。

经过严谨的数据处理与细致分析,得出了令人振奋的结果。往测平均偏差仅为 47μm,在 6 号点位出现的最大偏差为 72μm;返测平均偏差更是只有 34μm,最大偏差出现在 6 号点位,为 59μm。对这些海量测量数据进行线性回归分析后,得到回归方程,这表明测距精度与量程之间呈现正相关关系,且固定误差稳定在 9μm。

核电安全之重:安全壳鼓包检测难题——泓川科技激光位移传感器来解决

如此出色的测量精度,意味着什么呢?与传统的人工测量方式相比,简直是天壤之别。人工测量在面对微小鼓包时,往往因为测量工具的精度限制以及人眼、手感的误差,很难精准判断鼓包的高度,而这套新系统能够轻松捕捉到毫米级甚至微米级的细微变化,让那些潜在的安全隐患无所遁形,为核电站的安全运行提供了坚实的数据保障。



2. 横向滑块位置精度

横向滑块位置精度同样不容忽视,它关系到整个测量系统的全面准确性。

试验中,选用了精度为 0.5mm 的毫米钢尺,在滑轨上每间隔 100mm 精心选取一个测量点,共选取 7 个关键测量点,让超声波模块对 6 段距离进行多次测量。同样,为保证结果的客观性,单个位置选取 25 个测量数据,取均值作为当前位置的测量值。

数据处理结果显示,3 次测量的横向平均偏差为 3mm,最大偏差出现在 6 号点位。进一步分析发现,横向测量偏差与距离存在强相关性,回归方程为。这一规律为实际测量提供了宝贵的操作建议:在实际使用过程中,尽量采用距离挡板较近的一段滑轨进行测量,这样能有效减小偏差,提高测量的准确性。


核电安全之重:安全壳鼓包检测难题——泓川科技激光位移传感器来解决

(二)实用性测试见真章

为了检验这套测量系统在实际场景中的表现,科研团队模拟了真实的核电站安全壳内环境,进行了实用性测试。

核电安全之重:安全壳鼓包检测难题——泓川科技激光位移传感器来解决


由于环境限制,在模拟试验中巧妙地以实验室电脑桌为例,在滑轨下方不同位置放置了 3 个形态各异的物块。有长 51.5mm、宽 41.6mm、高 6.8mm 的厚塑料块,模拟较大且明显的鼓包;还有长 32.1mm、宽 24.2mm、高 2.1mm 的薄方块,代表较为扁平、不易察觉的鼓包;以及高 5.0mm 的锥状物,模拟不规则形状的鼓包。

测试结果令人惊喜,从测量系统生成的竖直扫描鼓包高度曲线可以清晰看到,在 240 - 280mm 处的鼓包平均高度为 6.82mm,与实际放置的厚塑料块高度 6.8mm 几乎完全吻合;500 - 520mm 处的鼓包高度为 2.21mm,也精准反映了薄方块的高度;550 - 580mm 处鼓包高度为 5.02mm,与锥状物高度 5.0mm 高度一致。经多次重复测试,鼓包测量系统都能够准确识别桌面上异常凸起的位置,并精确测出相应的高度,充分展现了其在复杂环境下的强大实用性。

未来展望:技术革新新征程

随着核电技术不断向更高安全性、更高效率迈进,安全壳鼓包测量系统也将迎来持续升级与广泛应用的光明前景。

一方面,传感器性能的提升空间巨大。科研人员将致力于进一步提高激光位移传感器的精度,从现有的微米级向纳米级甚至更高精度进发,力求捕捉到安全壳内衬最细微的变化。同时,拓展测量范围,使其能够适应不同型号、不同尺寸安全壳的检测需求,无论是小型实验堆还是大型商用核电站的安全壳,都能精准测量。在恶劣环境适应性上,通过采用更先进的材料与防护技术,让传感器在高温、高辐射、高湿度的核环境中稳定运行,减少维护频次,延长使用寿命。

核电安全之重:安全壳鼓包检测难题——泓川科技激光位移传感器来解决

另一方面,系统功能拓展将成为关键发展方向。与自动化技术深度融合,实现测量系统的全自动化运行,从测量端的自动移动、自动定位,到数据处理端的自动分析、自动报告生成,最大限度减少人工干预,提高检测效率与准确性。借助人工智能算法,让系统具备自我学习能力,能够根据历史检测数据,智能预判潜在鼓包风险区域,提前进行重点监测;还能对复杂的鼓包形态进行精准识别与分类,为后续的维修决策提供详细、精准的数据支持。

未来,我们有理由相信,随着这些技术革新逐步实现,安全壳鼓包测量将变得更加高效、精准,为核电工业的稳健发展筑牢安全基石,让核能这一清洁能源在保障人类能源需求的道路上安全前行。

本文参考摘抄自:徐亚明, 张宇安全壳鼓包测量系统的设计及实现》



Case / 相关推荐
2025 - 06 - 23
点击次数: 13
LTP450W 激光位移传感器在自动打磨设备中的应用方案一、方案背景与需求痛点在铸造工件的自动化打磨场景中,粗糙的表面形貌(如毛边、凹凸不平的铸造纹理)对检测传感器提出了特殊要求:传统点光斑传感器易受表面缺陷干扰导致测量偏差,而大距离检测需求又需兼顾精度与实时性。LTP450W 激光位移传感器凭借宽光斑设计、大测量范围及高精度特性,成为适配自动打磨设备的核心检测元件,可实现从表面位置检测到打磨程度...
2025 - 05 - 28
点击次数: 25
一、行业背景:智能手机摄影技术升级催生精密检测需求随着智能手机摄影技术向高像素、超广角、长焦等多元化方向发展,摄像头模组的微型化与精密化程度显著提升。作为摄像头光学元件的核心承载结构,摄像头支架的平面度精度直接影响镜头光轴对准、感光元件贴合等关键工艺,进而决定成像质量的稳定性。传统人工目视检测或接触式测量方法因主观性强、效率低、易损伤工件等缺陷,已难以满足微米级精度检测需求。如何实现非接触式、高精...
2025 - 05 - 14
点击次数: 14
一、引言在锂电池生产中,电极厚度是影响电池性能的关键参数。基片涂覆活性物质后形成的粗糙表面,使用传统点光斑传感器测量时易受表面微观形貌影响,导致数据波动大、测量精度不足。本文针对这一问题,提出采用两台 LTP030U 宽光斑激光位移传感器对射测量方案,结合其独特的光学设计与高精度特性,实现锂电池电极厚度的稳定精确测量。二、应用挑战与传感器选型依据(一)测量难点分析锂电池电极基片涂粉后,表面粗糙度可...
2025 - 05 - 06
点击次数: 24
一、PCB 生产痛点:超薄板叠片检测难在电子制造中,PCB 板厚度仅 0.1-1.6mm,高速传输时极易出现多层重叠,传统检测手段却力不从心:接触式测量:机械探针易压弯薄板,且每秒仅测百次,跟不上产线速度;视觉检测:依赖稳定光源,机台振动(±50μm 级)让图像模糊,漏检率高达 5%。这些问题导致 3%-5% 的废料率,更可能让不良品流入下工序,引发焊接短路等连锁故障,成为产线效率和质量...
2025 - 03 - 22
点击次数: 33
一、传感器选型与技术优势对比颠覆性成本结构传统激光多普勒测振仪价格区间:¥150,000~¥500,000LTP080系列成本:¥11,000~¥15,000(视配置),降低设备投入90%以上维护成本对比:无光学镜片损耗,寿命>50,000小时,年维护费用低于¥500性能参数解析指标LTP080参数传统测振仪典型值采样频率50kHz(全量程)/160kHz(20%量程)1MHz~10MHz线性度&...
2025 - 03 - 19
点击次数: 35
一、项目背景与需求随着智慧交通和道路养护数字化的发展,对路面病害(如裂缝、车辙、坑槽)的高效检测需求日益迫切。传统人工巡检效率低、主观性强,而车载激光雷达方案成本高昂(单套设备超百万元)。因此,某省级公路养护中心采用泓川科技LTP系列传感器,构建低成本、高精度的路面扫描系统,目标如下:全幅覆盖:单次扫描覆盖3.5m标准车道,横向分辨率≤5mm,纵向分辨率≤2mm(车速60km/h时)。抗干扰能力:...
About Us
关于泓川科技
专业从事激光位移传感器,激光焊缝跟踪系统研发及销售的科技公司
中国 · 无锡 · 总部地址:无锡新吴区天山路6号
销售热线:0510-88155119 
图文传真:0510-88152650
Working Time
我们的工作时间
周一至周五:8:00-18:00
周六至周日:9:00-15:00
Shown 企业秀 More
  • 1
    2025 - 04 - 12
    在工业自动化领域,激光位移传感器作为精密测量的核心部件,其性能直接影响生产精度与效率。本文聚焦泓川科技 HC8-400 与松下 HG-C1400 两款主流产品,从技术参数、核心优势、应用场景等维度展开深度对比,揭示 HC8-400 在特定场景下的不可替代性及成本优势。一、技术参数对比:细节见真章1. 基础性能指标参数HC8-400HG-C1400差异分析测量范围400±200mm(200-600mm)400±200mm(200-600mm)两者一致,覆盖中长距离测量场景。重复精度200-400mm:150μm 400-600mm:400μm200-400mm:300μm 400-600mm:800μmHC8-400 在全量程精度表现更优,尤其在 400-600mm 远距段,重复精度提升 50%,适合对稳定性要求高的精密测量。线性度200-400mm:±0.2%F.S. 400-600mm:±0.3%F.S.200-400mm:±0.2%F.S. 400-600mm:±0.3%F.S.线性度一致,满足工业级测量标准。温度特性±0.05%F.S/℃±0.03%F.S/℃HG-C1400 理论温漂略优,但 HC8-400 通过独特热稳设计,实际在高温环境(如 80℃)下表现更可靠,弥补参数...
  • 2
    2025 - 01 - 17
    一、引言1.1 研究背景与意义在当今数字化信息爆炸的时代,数据存储的重要性愈发凸显。硬盘驱动器(HDD)作为一种传统且广泛应用的大容量存储设备,在数据存储领域占据着举足轻重的地位。从个人计算机中的数据存储,到企业级数据中心的海量数据管理,HDD 都发挥着不可替代的作用。随着科技的飞速发展,各行业对数据存储的容量、速度、稳定性以及可靠性等方面的要求不断提高。例如,在影视制作行业,4K、8K 等高分辨率视频的编辑和存储需要大容量且读写速度快的存储设备;在金融行业,大量交易数据的实时存储和快速检索对 HDD 的性能和可靠性提出了严苛要求。为了确保 HDD 能够满足这些日益增长的需求,其制造过程中的质量控制至关重要。而光学传感器检测技术在 HDD 的质量控制中扮演着关键角色。通过运用光学传感器,可以对 HDD 的多个关键参数进行精确检测。比如,检测盘片的平整度,盘片平整度的微小偏差都可能导致磁头与盘片之间的距离不稳定,进而影响数据的读写准确性和稳定性;测量磁头的位置精度,磁头定位不准确会使数据读写出现错误,降低 HDD 的性能;监测电机的转速均匀性,电机转速不稳定会导致数据读取速度波动,影响用户体验。光学传感器能够以非接触的方式进行高精度检测,避免了对 HDD 部件的损伤,同时还能实现快速、高效的检测,大大提高了生产效率和产品质量。 1.2 研究目的与方法本研究旨在深入探究不同类...
  • 3
    2025 - 06 - 09
    一、核心参数深度对比维度泓川科技 HC16 系列奥泰斯 CD22 系列差异影响分析型号覆盖15/35/100/150mm(4 款)15/35/100mm(3 款)HC16 新增150mm 基准距离型号(HC16-150),测量范围 ±100mm,填补 CD22 无远距离型号空白。重复精度(静态)15mm:1μm;35mm:6μm;100mm:20μm;150mm:60μm15mm:1μm;35mm:6μm;100mm:20μmHC16-150 精度较低(60μm),适合远距离低精度场景(如放卷料余量粗测),CD22 无对应型号需搭配中继。通讯扩展性支持 EtherCAT 模块(文档提及)、RS485、模拟量仅 RS485、模拟量HC16 对 ** 工业总线系统(如 PLC 集成)** 兼容性更强,可减少额外通讯模块成本。电源适应性全系列 DC12-24V 统一输入模拟量电压型需 DC18-24V,电流 / 485 型 DC12-24V若用户系统电源为12-18V,HC16 电压输出型(如 HC16-15-485V)可直接替代 CD22 电压型,避免电源升级成本。功耗≤100mA(全系列)≤700mA(CD22-15A 为例)HC16 功耗仅为 CD22 的1/7,适合电池供电设备、多传感器阵列场景,降低散热和电源设计压力。体积与重量尺寸未明确标注(参考 CD22 为紧凑型...
  • 4
    2022 - 12 - 01
    在烟草分级及仓储环节中有大量的自动化设备,比如高速往复运动的穿梭车堆垛机等,如何建立完善的安全预防措施,保障作业人员的人身安全是企业在思考的方向,我们在烟草工业内部系统里面已经积累了众多的成功案例,我们会通过机械安全控制以及电器这三个维度来帮助企业进行评估,具体的改造场景有,立库输送管道出入口防护百度极速可在经过现场评估后我们会给客户出具评估报告和推荐的安全整改。                机械设备,例如马舵机,泄漏机缠绕机等在快消品行业是广泛存在的,特别是码作机器,经常需要操作人员频繁介入该区域应用的工业机器人运行速度快存在着较高的安全隐患,在转运站码垛技术入口,经常采用一套光幕和光电传感器来实现屏蔽功能,从而实现人物分离,在这个应用中,以物体在传中带上面时,车场光电传感器,从而激活,屏蔽功能,当你为触发屏蔽功能很简单,有些操作人员会拿纸箱或者其他东西遮挡这个光电传感器,从而很容易就操纵了这个屏蔽功能,存在着很大的安全隐患,针对这个问题,我们开发出创新高效的是入口防护替代方案,智能门控系统,无锡屏蔽传感器就和实现pp功能,这项专利技术是基于。             专利技术是激光幕,使出入口防务变得更加高效...
  • 5
    2023 - 09 - 11
    非接触测量涂布厚度的行业报告摘要:本报告将介绍非接触测量涂布厚度的行业应用场景及解决方案。涂布厚度的准确测量在多个行业中至关重要,如带钢、薄膜、造纸、无纺布、金属箔材、玻璃和电池隔膜等行业。传统的测量方法存在一定的局限性,而非接触测量技术的应用可以提供更准确、高效的测量解决方案。本报告将重点介绍X射线透射法、红外吸收法和光学成像测量方法这三种主要的非接触测量解决方案,并分析其适用场景、原理和优势。引言涂布厚度是涂覆工艺中的一个重要参数,对于保证产品质量和性能具有重要意义。传统的测量方法,如接触式测量和传感器测量,存在一定局限性,如易受污染、操作复杂和不适用于特定行业。而非接触测量方法以其高精度、实时性和便捷性成为行业中的理想选择。行业应用场景涂布厚度的非接触测量方法适用于多个行业,包括但不限于以下领域:带钢:用于热镀锌、涂覆和镀铝等行业,对涂层和薄膜的厚度进行测量。薄膜:用于光学、电子、半导体等行业,对各种功能薄膜的厚度进行测量。造纸:用于测量纸张的涂布、涂胶和覆膜等工艺中的厚度。无纺布:用于纺织和过滤行业,对无纺布的厚度进行测量。金属箔材:用于食品包装、电子器件等行业,对箔材的厚度进行测量。玻璃:用于建筑和汽车行业,对玻璃的涂层厚度进行测量。电池隔膜:用于电池制造行业,对隔膜的厚度进行测量。解决方案一:X射线透射法X射线透射法是一种常用的非接触涂布厚度测量方法,其测量原理基于射线...
  • 6
    2025 - 03 - 04
    一、核心参数对比表参数项LK-G08(基恩士)LTPD08(泓川科技国产)参考距离8 mm8 mm检测范围±0.8 mm±0.8 mm线性度±0.05% F.S.±0.03% F.S.重复精度0.02 μm0.03 μm采样频率20 μs1 ms(6档可调)6.25 μs1 ms(多档可调)激光类别1类(JIS C6802)2类(安全等级更高)光源功率0.3 mW0.5 mW(可定制更高功率)防护等级未标注IP67工作温度+10+40°C0+50°C(可定制-4070°C)通讯接口未标注RS485、TCP/IP、开发包支持供电电压-DC 936V(±10%波动兼容)重量245 g213 g二、性能差异深度解析1. 测量性能精度与速度: LK-G08在重复精度(0.02μm)上略优,适合超精密场景;而LTPD08的线性度(±0.03% F.S.)更优,且在采样频率上支持最高6.25μs(缩小量程时可达160kHz),动态响应能力更强。激光适应性: LTPD08提供405nm蓝光版本可选,可应对高反光或透明材质测量,基恩士仅支持655nm红光。2. 环境适应性防护等级: LTPD08的IP67防护显著优于未标注防护的LK-G08,适...
  • 7
    2023 - 09 - 26
    1 激光光热技术测厚:原理是利用激光照射材料,产生的热量使材料产生变化,再通过光学方式检测这种变化以确定材料的厚度。优点是非接触式、无损伤、准确;缺点也是显而易见的,对于颜色、形状、表面纹理等都有不同程度的影响。2 白光干涉测厚:原理是使用白光干涉仪产生干涉图案,然后通过分析干涉图案得材料厚度。优点是测量精度高、灵敏度高;缺点是设备复杂且成本高昂。3 激光干涉测厚:主要是利用激光波的相干性,测量物体的干涉条纹来反推出物体的厚度。优点是测量精度高、速度快;但激光源的稳定性和调节技术要求比较高。4 光谱共聚焦测厚:该方法是根据材料对不同波长光的反射、折射和吸收特性,同时探测所有波长的光谱,从而计算出材料厚度。优点是测量准确、适用范围广;缺点是设备复杂、操作要求高。5 椭圆偏光法测厚:原理是利用光的偏振特性对材料进行测量,根据计算出材料厚度。优点是接触、无损伤,但适用范围有限。6 红外吸收法测厚:红外吸收法是指通过测定红外光在材料中吸收的程度来推断优点是测量过程简单、直观、精度高;缺点是对材料的红外吸收特性有严格要求。7 X/β射线测厚:主要是利用X射线或者β射线穿透材料时,穿透的射线强度和物体的厚度之间存在一定的关系。优点是精确、可靠;缺点是人体安全需要考虑。8 电容测厚:原理是利用两极板间的电容量与介质厚度成正比,通过测量电容量来测量厚度。优点是设备简单、便宜;缺点是精度较低。9 反...
  • 8
    2024 - 03 - 05
    在测量被透明物体覆盖的目标时,环境照明补偿和透视测量是提高测量准确性的重要手段。这些技术的应用,在智能手机等电子设备的制造过程中,具有至关重要的作用。首先,让我们来探讨一下环境照明补偿的作用。在生产线环境中,照明条件往往并不稳定,这会对测量精度产生严重影响。环境照明补偿技术通过自动调整传感器参数,以补偿外部光照条件的变化,使得测量系统能在不同的照明条件下都能保持稳定的测量性能。这就使得我们在测量被透明物体(如手机屏幕)覆盖的目标时,能够得到更为准确的结果。其次,透视测量技术则能够解决透明物体对测量造成的干扰。由于透明物体会让部分光线穿过,使得传统的测量技术难以准确捕捉目标的位置和形状。而透视测量技术则能够通过特殊的光学设计和算法处理,使得传感器能够“看透”透明物体,直接对其背后的目标进行测量。这样,我们就可以在不接触目标的情况下,对其进行准确的测量。在智能手机等电子设备的制造过程中,这两种技术都有着广泛的应用。例如,在手机屏幕的生产过程中,环境照明补偿技术可以帮助我们确保屏幕在各种光线条件下都能显示清晰。而透视测量技术则可以用于测量手机屏幕下的各种元器件,如触摸屏、摄像头等,确保它们的位置和尺寸都符合设计要求。此外,这两种技术还可以结合使用,以提高测量的精度和效率。例如,我们可以先使用透视测量技术确定目标的位置,然后使用环境照明补偿技术对其进行精确测量。这样,我们不仅可以得到更准确...
Message 最新动态
泓川科技的光学楞镜如何解决光谱共焦传感器在狭小空间中大量程测量的难题? 2025 - 08 - 12 在半导体芯片制造、精密电子组装等高端工业场景中,一个棘手的矛盾始终存在:一方面,设备内部空间日益紧凑,毫米级的安装高度都可能成为 “禁区”;另一方面,随着产品结构复杂化,对测量量程的需求不断提升,5mm 以上的大量程检测已成为常态。如何在狭小空间内实现大量程精密测量?无锡泓川科技给出了突破性答案 ——光学转折镜,以创新设计让光谱共焦传感器的测量方向 “直角转向”,既节省安装空间,又兼容大量程需求,重新定义精密测量的空间可能性。传统方案的痛点:空间与量程难以两全在精密测量领域,侧出光传感器曾是狭小空间的 “救星”。泓川科技旗下 LTCR 系列作为 90° 侧向出光型号,凭借紧凑设计广泛应用于深孔、内壁等特征测量。但受限于结构设计,其量程多集中在 2.5mm 以内(如 LTCR4000 量程为 ±2mm),难以满足半导体晶圆厚度、大型精密构件高度差等大量程场景的需求。若选择传统端面出光的大量程传感器(如 LTC10000 量程 ±5mm、LTC20000 量程 ±10mm、LTC50000 量程 ±25mm),虽能覆盖测量需求,却因轴向出光设计需预留足够安装高度,在半导体设备的密闭腔室、精密仪器的紧凑模组中 “寸步难行”。空间与量程,似乎成了不可调和的矛盾。光学转折镜:让大量程探头 “直角转身”,释放空间潜力泓川科技创新研发的光学转折镜...
泓川科技 LTP 系列激光位移传感器全国产化制造流程细节全披露 2025 - 06 - 22 一、国产化背景与战略意义在全球供应链竞争加剧的背景下,激光位移传感器作为工业自动化核心测量部件,其国产化生产对打破技术垄断、保障产业链安全具有重要战略意义。泓川科技 LTP 系列依托国内完整的光学、电子、机械产业链体系,实现了从核心零部件到整机制造的全流程国产化,彻底解决了接口卡脖子问题,产品精度与稳定性达到国际先进水平,同时具备更强的成本竞争力与定制化服务能力。二、核心部件全国产化组成体系(一)光学系统组件激光发射单元激光二极管:采用深圳镭尔特光电 655nm 红光 PLD650 系列(功率 0.5-4.9mW)及埃赛力达 905nm 红外三腔脉冲激光二极管,支持准直快轴压缩技术,波长稳定性 ±0.1nm,满足工业级高稳定性需求。准直透镜:选用杭州秋籁科技 KEWLAB CL-UV 系列,表面粗糙度 光学滤光片:深圳激埃特光电定制窄带滤光片,红外截止率 99.9%,有效消除环境光干扰。激光接收单元光电探测器:上海欧光电子代理 OTRON 品牌 PSD 位置敏感探测器,分辨率达 0.03μm(如 LTPD08 型号),北京中教金源量子点探测器正在实现自主替代。聚焦透镜组:福州合创光电高精度分光棱镜,偏振消光比 1000:1,配合广州明毅电子阳极氧化支架,确保光路同轴度≤5μm。(二)电子电路组件信号处理模块微处理器:龙芯中科 3A5000 工业级芯片,支持 - 40℃...
有没有量程1米,测量精度误差1mm的国产激光位移传感器,频率5Khz以上? 2025 - 06 - 19 有!LTM 系列三款国产激光位移传感器满足需求在工业检测领域,量程 1 米、精度误差 1mm、频率 5KHz 以上的激光位移传感器是高端测量的刚需,而国产传感器常因精度或频率不足被进口品牌垄断。无锡泓川科技的 LTM2-800W、LTM3-800W、LTM5-800W 三款产品,不仅全面覆盖上述指标,更以进口品牌一半的成本优势,成为国产替代的优选方案。以下从性能参数、优劣分析、场景适配及成本对比展开详细介绍。一、核心性能参数对比型号LTM2-800WLTM3-800WLTM5-800W参考距离800mm800mm800mm测量范围±500mm(总量程 1000mm)±500mm(总量程 1000mm)±500mm(总量程 1000mm)光斑尺寸450×6000μm450×6000μm450×6000μm重复精度45μm45μm45μm线性误差采样频率5KHz10KHz31.25KHz工业接口485 串口 / 模拟信号(二选一)以太网 / 485 串口 / 模拟信号以太网 / 485 串口 / 模拟信号光源660nm,Max.50mW660nm,Max.50mW660nm,Max.50mW防护等级IP67IP67IP67工作温度0~+50℃0~+50℃0~+50℃功耗约 2.0W约 2.0W约 2.0W二、产品优势分析(一)...
Copyright ©2005 - 2013 无锡泓川科技有限公司

1

犀牛云提供企业云服务
Our Link
X
3

SKYPE 设置

4

阿里旺旺设置

等待加载动态数据...

等待加载动态数据...

5

电话号码管理

  • 0510-88155119
6

二维码管理

等待加载动态数据...

等待加载动态数据...

展开