服务热线: 0510-88155119
13301510675@163.com
Language
项目案例 Case
Case 激光位移

核电安全之重:安全壳鼓包检测难题——泓川科技激光位移传感器来解决

日期: 2025-01-05
浏览次数: 55

      在核电领域,安全壳宛如一位忠诚的卫士,肩负着守护核反应堆的重任,是防止放射性物质泄漏的关键防线。它的结构复杂且庞大,内部环境严苛,一旦出现安全隐患,后果不堪设想。

而安全壳鼓包现象,便是潜在隐患之一。鼓包通常是由于内部压力变化、结构老化、材料疲劳等多种因素导致的。这些鼓包可能起初微不足道,但随着时间推移,若不及时察觉并处理,极有可能逐渐扩大,进而削弱安全壳的整体结构强度,使得放射性物质泄漏风险大增。

传统的鼓包检测主要依赖人工完成。检测人员手持工具,在安全壳内小心翼翼地敲击钢内衬,凭借耳朵捕捉敲击声的细微差异,以此判断鼓包的位置与范围。这种方式弊端显著:一方面,人工检测效率极其低下,安全壳内部空间广阔,检测点众多,耗费大量人力与时间;另一方面,精度实在难以保证,人的听觉判断易受环境噪音、个人经验及身体状态等诸多因素干扰,微小鼓包很容易被遗漏,给核电站的安全运行埋下了 “定时炸弹”。

面对传统检测方式的困境,引入新的测量系统迫在眉睫。激光位移传感器等先进技术应运而生,它们如同核电安全领域的 “火眼金睛”,有望精准、高效地揪出那些隐匿的鼓包,为核电站的平稳运行保驾护航。

核电安全之重:安全壳鼓包检测难题——泓川科技激光位移传感器来解决

核心力量:激光位移传感器

(一)测量原理大揭秘

激光位移传感器的 “超能力” 源自其精妙的测量原理。它主要依据三角测量法或回波分析法施展身手。

在三角测量法中,传感器内部的激光器宛如一位精准的射手,发射出一束极细且能量集中的激光束,这束激光以特定角度射向安全壳钢内衬表面。光线抵达内衬后,会产生反射,反射光如同归巢的信鸽,迅速被传感器的接收单元捕获。接收单元通常由高灵敏度的光电二极管或 CCD/CMOS 图像传感器担当,它们能够敏锐捕捉反射光的细微变化。由于物体表面的鼓包会使反射光的入射角度产生微妙改变,根据激光发射点、反射点以及接收点之间稳固的三角几何关系,传感器内部的智能处理单元就如同一位聪明绝顶的数学家,能精确计算出传感器与内衬表面的距离变化,进而精准定位鼓包的位置与高度。

核电安全之重:安全壳鼓包检测难题——泓川科技激光位移传感器来解决

核电安全之重:安全壳鼓包检测难题——泓川科技激光位移传感器来解决

而回波分析法的运作方式稍有不同。传感器中的激光发射器火力全开,每秒向外发射高达上百万个激光脉冲,这些脉冲如密集的雨点般冲向目标。当脉冲遇到安全壳内衬后,会即刻反射回来,被接收器接收。处理器随即迅速计算激光脉冲往返所需的时间,要知道,光在空气中的传播速度可是恒定的,依据这一固定速度与往返时间,就能轻松推算出距离值。这种方法在远距离测量场景中表现卓越,为全面检测安全壳提供了有力支持。


(二)优势尽显

在安全壳鼓包测量这场关键 “战役” 中,激光位移传感器凭借诸多突出优势,成为当之无愧的 “主将”。

精度方面,它堪称 “狙击高手”,能够达到微米级甚至纳米级的超高精度。在检测微小鼓包时,绝不会放过任何蛛丝马迹,与传统人工测量方式相比,简直是天壤之别。人工测量时,检测人员即便全神贯注、经验丰富,也难以察觉毫米级以下的细微鼓包,而激光位移传感器凭借其高精度,能轻松捕捉到这些潜在隐患,为安全壳的早期诊断提供精准数据,防患于未然。

速度上,它如同闪电侠一般。能够在瞬间完成多次测量,快速获取大量数据点,高效构建出安全壳内表面的详细 “地形图”。这在大规模的安全壳检测任务中,极大地缩短了检测时间,减少了核电站停机检修的时长,为电力供应的持续性提供了坚实保障。

更为关键的是,激光位移传感器采用非接触式测量。在核辐射环境下,这一特性显得尤为重要。它无需与安全壳内衬直接接触,避免了对测量人员的辐射风险,同时也不会对待测表面造成任何损伤,确保安全壳的结构完整性不受丝毫影响,让测量工作安全、可靠地推进。


鼓包测量系统的精妙设计

(一)硬件构成全知晓

在这套创新的测量系统里,硬件可是实现精准测量的基础保障,它们各司其职,协同作战。



核电安全之重:安全壳鼓包检测难题——泓川科技激光位移传感器来解决

以树莓派为核心的测量端,就像是一位前线侦察兵,肩负着采集关键数据的重任。其中,激光位移传感器是当之无愧的 “主角”,型号为泓川科技的激光位移感测器HCM-120-A闪亮登场,它分辨率高达 30μm,重复精度 90μm,测量范围在 60 - 180mm 之间,凭借这些出色的性能参数,能够极其敏锐地捕捉到安全壳钢内衬表面细微的起伏变化,精准定位鼓包的位置与高度。

与激光位移传感器并肩作战的超声波测距传感器,选用的是HUA-4000超声波模块,精度可达 3mm,测量范围为 2 - 450cm,它主要负责测量滑块的横向位置,为整体测量提供辅助信息,确保测量的全面性。

此外,测量端还有供电装置和电源开关,为整个系统稳定运行提供充足动力,保障数据采集工作顺利进行。

而笔记本电脑则充当着数据处理端,如同一位智慧的军师,坐镇后方,接收来自测量端的原始数据,并运用强大的运算能力进行深度分析。它利用 C# 开发设计的软件,不仅能实时接收数据,还能绘制出直观的实时曲线,将抽象的数据具象化。通过巧妙的对比计算,快速且准确地分析出鼓包的位置、大小等关键信息,为后续的决策提供坚实依据。

为了让测量端能够灵活移动,获取更多数据,系统还配备了滑轨。滑轨采用不锈钢材质精心打造,具备高度调节功能,确保滑块在滑动过程中始终保持水平状态,就像为测量端铺设了一条平稳的 “轨道”,让激光位移传感器和超声波测距传感器能够稳定、高效地工作,不放过任何一处潜在鼓包。

(二)软件系统巧运行

软件系统则是整个测量系统的 “智慧大脑”,指挥着硬件有条不紊地工作。

从软件框架来看,它构建起了一座无缝连接测量端与数据处理端的桥梁。测量端以树莓派 3B 为基础,凭借其丰富的接口和强大的运算能力,运行着基于 Python 开发的程序。当系统启动后,树莓派迅速与激光位移传感器和超声波测距传感器建立紧密联系,精准控制它们开始采集数据。传感器就像灵敏的触角,随着滑块在滑轨上平稳滑动,不断获取纵向与横向的距离信息。这些珍贵的数据通过 TCP/IP 技术,如同 “飞鸽传书” 一般,被迅速、稳定地传输至数据处理端。


核电安全之重:安全壳鼓包检测难题——泓川科技激光位移传感器来解决

数据处理端的笔记本电脑,搭载着用 C# 精心开发的软件。这款软件宛如一位专业的数据分析师,实时接收来自测量端的数据后,立即着手绘制实时曲线。曲线在屏幕上逐渐显现,仿佛是安全壳内表面的 “心电图”,将鼓包的蛛丝马迹直观呈现。通过复杂而高效的对比计算算法,它能快速从海量数据中提炼出鼓包的精确位置和大小信息。

在数据处理过程中,软件的一些关键技术发挥着神奇功效。比如,针对激光位移传感器,开发人员巧妙利用泓川科技的命令集进行二次开发,如同给传感器赋予了更多 “智慧”,能够根据实际需求灵活控制其采样模式与采样率,让测量更加精准、高效。超声波模块则通过树莓派精准控制电压,实现稳定的超声波测距。

然而,由于树莓派采用 Linux 操作系统,而数据处理软件依托于 Windows 操作系统,就像两位说着不同语言的伙伴,如何实现顺畅沟通是个难题。为此,开发团队投入大量精力,运用先进的技术手段解决多平台兼容问题,确保数据在不同系统间流畅传输,让整个测量系统成为一个紧密协作的有机整体。

实战检验:系统性能大测试

(一)测距精度大挑战

1. 纵向鼓包测量精度

为了验证这套基于激光位移传感器的测量系统到底有多精准,科研人员精心设计了一系列严格测试。

在纵向鼓包测量精度测试环节,模拟试验采用了精度极高的三维移动平台,其精度达到了令人惊叹的 10μm,远远优于激光位移传感器自身的精度,这就好比用一把无比精准的尺子去衡量传感器的测量能力。

测试时,在三维移动平台的 Z 方向精心选取了一段 3mm 的微小量距,从初始位置开始,每隔 0.5mm 就让传感器进行一次测量,如此反复,对这 6 段距离进行往返测量,并且为了确保数据的可靠性,对同一位置还进行多次重复测量。考虑到测量初期可能存在的一些不稳定因素,选取开始测量 3s 后的数据进行深入分析,每个单独位置选取 25 个测量数据,取均值作为当前位置的测量值。

经过严谨的数据处理与细致分析,得出了令人振奋的结果。往测平均偏差仅为 47μm,在 6 号点位出现的最大偏差为 72μm;返测平均偏差更是只有 34μm,最大偏差出现在 6 号点位,为 59μm。对这些海量测量数据进行线性回归分析后,得到回归方程,这表明测距精度与量程之间呈现正相关关系,且固定误差稳定在 9μm。

核电安全之重:安全壳鼓包检测难题——泓川科技激光位移传感器来解决

如此出色的测量精度,意味着什么呢?与传统的人工测量方式相比,简直是天壤之别。人工测量在面对微小鼓包时,往往因为测量工具的精度限制以及人眼、手感的误差,很难精准判断鼓包的高度,而这套新系统能够轻松捕捉到毫米级甚至微米级的细微变化,让那些潜在的安全隐患无所遁形,为核电站的安全运行提供了坚实的数据保障。



2. 横向滑块位置精度

横向滑块位置精度同样不容忽视,它关系到整个测量系统的全面准确性。

试验中,选用了精度为 0.5mm 的毫米钢尺,在滑轨上每间隔 100mm 精心选取一个测量点,共选取 7 个关键测量点,让超声波模块对 6 段距离进行多次测量。同样,为保证结果的客观性,单个位置选取 25 个测量数据,取均值作为当前位置的测量值。

数据处理结果显示,3 次测量的横向平均偏差为 3mm,最大偏差出现在 6 号点位。进一步分析发现,横向测量偏差与距离存在强相关性,回归方程为。这一规律为实际测量提供了宝贵的操作建议:在实际使用过程中,尽量采用距离挡板较近的一段滑轨进行测量,这样能有效减小偏差,提高测量的准确性。


核电安全之重:安全壳鼓包检测难题——泓川科技激光位移传感器来解决

(二)实用性测试见真章

为了检验这套测量系统在实际场景中的表现,科研团队模拟了真实的核电站安全壳内环境,进行了实用性测试。

核电安全之重:安全壳鼓包检测难题——泓川科技激光位移传感器来解决


由于环境限制,在模拟试验中巧妙地以实验室电脑桌为例,在滑轨下方不同位置放置了 3 个形态各异的物块。有长 51.5mm、宽 41.6mm、高 6.8mm 的厚塑料块,模拟较大且明显的鼓包;还有长 32.1mm、宽 24.2mm、高 2.1mm 的薄方块,代表较为扁平、不易察觉的鼓包;以及高 5.0mm 的锥状物,模拟不规则形状的鼓包。

测试结果令人惊喜,从测量系统生成的竖直扫描鼓包高度曲线可以清晰看到,在 240 - 280mm 处的鼓包平均高度为 6.82mm,与实际放置的厚塑料块高度 6.8mm 几乎完全吻合;500 - 520mm 处的鼓包高度为 2.21mm,也精准反映了薄方块的高度;550 - 580mm 处鼓包高度为 5.02mm,与锥状物高度 5.0mm 高度一致。经多次重复测试,鼓包测量系统都能够准确识别桌面上异常凸起的位置,并精确测出相应的高度,充分展现了其在复杂环境下的强大实用性。

未来展望:技术革新新征程

随着核电技术不断向更高安全性、更高效率迈进,安全壳鼓包测量系统也将迎来持续升级与广泛应用的光明前景。

一方面,传感器性能的提升空间巨大。科研人员将致力于进一步提高激光位移传感器的精度,从现有的微米级向纳米级甚至更高精度进发,力求捕捉到安全壳内衬最细微的变化。同时,拓展测量范围,使其能够适应不同型号、不同尺寸安全壳的检测需求,无论是小型实验堆还是大型商用核电站的安全壳,都能精准测量。在恶劣环境适应性上,通过采用更先进的材料与防护技术,让传感器在高温、高辐射、高湿度的核环境中稳定运行,减少维护频次,延长使用寿命。

核电安全之重:安全壳鼓包检测难题——泓川科技激光位移传感器来解决

另一方面,系统功能拓展将成为关键发展方向。与自动化技术深度融合,实现测量系统的全自动化运行,从测量端的自动移动、自动定位,到数据处理端的自动分析、自动报告生成,最大限度减少人工干预,提高检测效率与准确性。借助人工智能算法,让系统具备自我学习能力,能够根据历史检测数据,智能预判潜在鼓包风险区域,提前进行重点监测;还能对复杂的鼓包形态进行精准识别与分类,为后续的维修决策提供详细、精准的数据支持。

未来,我们有理由相信,随着这些技术革新逐步实现,安全壳鼓包测量将变得更加高效、精准,为核电工业的稳健发展筑牢安全基石,让核能这一清洁能源在保障人类能源需求的道路上安全前行。

本文参考摘抄自:徐亚明, 张宇安全壳鼓包测量系统的设计及实现》



Case / 相关推荐
2025 - 12 - 23
点击次数: 12
摘要激光三角法测量技术凭借非接触、高精度、高效率的优势,已成为现代制造业中复杂曲面检测的核心手段。本文以LTP系列高速高精度激光三角位移传感器为研究对象,系统梳理激光三角法测量原理,深入分析复杂曲面几何特性(倾角、转角)对测量精度的影响机制,依托马晓帆硕士论文《复杂曲面激光三角法测量的精度提高技术研究》中的实验数据与误差修正模型,结合工业部署案例,论证LTP系列传感器在摆线齿轮等典型复杂曲面测量中...
2025 - 12 - 23
点击次数: 2
基于激光位移测量的动静压主轴回转精度测试技术研究——兼论泓川科技 LTP 激光位移传感器在高端装备中的工程应用价值一、引言:高端制造对主轴回转精度测试提出的新要求在高端数控机床、精密磨床以及超精密加工装备中,主轴回转精度被公认为影响零件加工质量的核心指标之一。主轴的回转精度不仅直接决定了工件的圆度、表面粗糙度和形位公差,还与加工系统的动态稳定性、加工一致性和设备可靠性密切相关。随着制造业向高精度、...
2025 - 12 - 19
点击次数: 5
核心摘要:在一段时期内,日本基恩士(KEYENCE)的LK系列特别是LK-G5000系列定义了高速激光位移传感器的行业基准。然而,随着本土传感器技术从模仿走向创新,中国厂商泓川科技(Chuantec)凭借LTP系列高速高精度激光三角位移传感器,以“技术指标在工业甜蜜区看齐”和“1/2价格的绝对优势”,正在锂电、3C、半导体及重工行业迅速确立“头部平替”的地位。本文将从光路架构、运算控制模式、详细核...
2025 - 12 - 19
点击次数: 5
——深度解构FMCW干涉式激光测距仪在长超程精密测量中的算法与数据逻辑Meta Description: 探索如何在不牺牲精度的情况下摆脱长度限制。本文深度技术解析干涉式激光测距仪利用FMCW光子集成技术,打破百米量程与1nm分辨率的物理矛盾。适用于高端半导体、精密机床与大型自动化领域。如果将工业级位置反馈传感器市场画在一张图表上,我们会看到绝大多数产品都挤在两条轴线上:一条是“短量程极高精度”(...
2025 - 12 - 17
点击次数: 2
摘要动力电池极片辊压后的厚度均匀性直接决定电池能量密度、功率密度及安全性能,微米级的厚度偏差可能导致内阻不一致、热失控风险升高。本文基于无锡泓川科技 LTP 系列激光三角位移传感器,设计一套辊压极片在线厚度实时监测系统,通过双探头对射式安装、160kHz 高速采样与温漂补偿算法,实现极片厚度 0.03μm 级重复精度测量。结合动力电池极片制造工艺需求,详细阐述系统测量原理、结构设计、实施步骤,通过...
2025 - 10 - 21
点击次数: 27
序号应用场景(多维度细化)核心需求维度项目难点推荐型号传感器优势(文档依据)选型依据(文档来源)1半导体 - 8 英寸晶圆键合线高度检测(键合线直径 20μm,金属反光)精度 0.05μm;表面金属反光;光斑≤20μm;检测距 8mm键合线微小(20μm),金属反光易导致测量偏移LTPD081. 投受光分离设计,可贴近键合区域无干扰;2. Φ20μm 小光斑精准定位线体;3. 正反射模式抑...
About Us
关于泓川科技
专业从事激光位移传感器,激光焊缝跟踪系统研发及销售的科技公司
中国 · 无锡 · 总部地址:无锡新吴区天山路6号
销售热线:0510-88155119 
图文传真:0510-88152650
Working Time
我们的工作时间
周一至周五:8:00-18:00
周六至周日:9:00-15:00
Shown 企业秀 More
  • 1
    2023 - 09 - 20
    首先,让我们对TOF进行一次短暂的“速读”——它全称叫'time-of-flight',中文怎么说呢?风格洒脱地称之为“飞行时间”。你没听错,就是“飞行时间”。所有的颠覆与创新始于赤裸裸的想象,对吧?再来回过头,看看我们的主角TOF激光测距传感器。激光这东西,我想你肯定不陌生。科幻大片,医美广告里都被频繁提及。对这位明星,我们暂时按下暂停键, 我们聊一聊测距传感器——那可是能把复杂的三维世界,硬是证明成一串串精准数据的硬核工具。当然,他俩的组合,并不是偶然撞壁造成的火花。在“鹰眼”TOF的身上,激光变得更加酷炫,传感器技术也变得更为深邃。他们共舞的主线,就是光的飞行时间。想象一下,要在现实世界计算出光从物体发射出来,然后反射回传感器的时间。你愣了一秒,觉得好像进入了'黑洞'的领域。实则不然,TOF激光测距传感器就是这样“耳提面命”。它以光速旅行者的姿态,穿越空间,告诉我们物体与之间的距离。亲,你有听说过光速吗?大约每秒走30万公里哦,这个速度足够你在一秒钟内去绕地球七点五圈了!TOF激光测距传感器就是他们利用这么一个迅疾的光速,再加上高精度的时钟,来高效精确地计算出飞行时间并转化为距离数据。小编想说,TOF不仅玩科技,他更玩智谋,战胜了同类的超声波、红外线等测距设备。毕竟,被物的颜色、亮度、表面材质,或者环境的温湿度对他来说都不构成锁链。准确到“下毛...
  • 2
    2025 - 03 - 06
    背景与挑战随着电子封装技术的快速发展,直接镀铜陶瓷基板(DPC)因具备优异的导热性、机械强度及耐高温性能,被广泛应用于大功率LED、IGBT模块等领域。然而,其表面金属镀层的厚度均匀性直接影响器件的散热效率与可靠性。某客户需对一批DPC基板进行全检,要求**在正反面各选取10个金属块(含2个重复基准点)**进行高精度厚度测量,并同步获取表面轮廓与中心区高度数据,以满足严格的工艺质量控制标准。解决方案针对客户需求,我们采用LTC1200系列光谱共焦传感器(配套高精度运动平台与测控软件),设计了一套非接触式三维测厚方案:设备选型量程:±600μm(覆盖金属层典型厚度范围)重复精度:0.03μm(静态,确保基准点数据一致性)线性误差:<±0.3μm(满足亚微米级公差要求)采样频率:10kHz(高速扫描提升检测效率)选用LTC1200B型号传感器(光斑直径约19μm),兼顾测量精度与金属表面反射特性需求,其技术参数如下:搭配亚微米级定位平台,确保扫描路径精确控制。基准点设定以陶瓷基板裸露区域作为基准面,在正反面各设置2个重复测量点,通过传感器实时比对基准高度数据,消除基板翘曲或装夹误差对厚度计算的影响。实施流程数据采集:沿预设路径扫描金属块,同步记录轮廓点云与中心区高度(软件自动拟合最高点作为厚度参考值)。厚度计算:基于公式:\text{金属层厚度} = \text{金...
  • 3
    2023 - 09 - 25
    由于半导体生产工艺的复杂性和精密性,对晶圆切割的技术要求极高,传统的机械切割方式已经无法满足现代电子行业的需求。在这种情况下,光谱共焦位移传感器配合激光隐切技术(激光隐形切割)在晶圆切割中发挥了重要作用。以下将详细介绍这种新型高效切割技术的应用案例及其优势。原理:利用小功率的激光被光谱共焦位移传感器设定的预定路径所导,聚焦在直径只有100多纳米的光斑上,形成巨大的局部能量,然后根据这个能量将晶圆切割开。光谱共焦位移传感器在切割过程中实时检测切口深度和位置,确保切口的深广和位置的精确性。激光隐切与光谱共焦位移传感器结合的应用案例:以某种先进的半导体制程为例,晶圆经过深刻蚀、清洗、扩散等步骤后,需要进行精确切割。在这个过程中,首先,工程师根据需要的切割图案在软件上设定好切割路径,然后切割机通过光谱共焦位移传感器引导激光按照预定的路径且此过程工程师可以实时观察和测量切口深度和位置。优点:这种技术最大的优势就是它能够实现超微细切割,避免了大功率激光对芯片可能会带来的影响。另外,因为切割的深度和位置可以实时调控,这 法也非常具有灵活性。同时,由于使用光谱共焦位移传感器精确控制切割的深度和位置,所以切割出来的晶圆表面平整,质量更好。总的来看,光谱共焦位移传感器配合激光隐切在晶圆切割中的应用,不仅提升了生产效率,减少了废品率,而且大幅度提升了产品质量,对于当前和未来的半导体行业都将是一个革新的技...
  • 4
    2024 - 03 - 05
    非接触式激光位移传感器在生产线上的应用具有多方面的优势,下面将从精度、速度、可靠性、灵活性和安全性等方面进行逐一分析,并通过具体的应用场景来说明其应用价值。同时,还会与传统的接触式传感器进行比较,以突显非接触式激光位移传感器的独特优势。精度:非接触式激光位移传感器采用激光三角测量法,具有极高的测量精度。例如,在半导体制造过程中,需要精确控制薄膜的厚度,非接触式激光位移传感器可以实现微米级的测量精度,从而确保产品质量。相比之下,传统接触式传感器可能会因为接触力度的不同而影响测量精度。速度:非接触式激光位移传感器具有快速响应的特点,可以在生产线上实现高速测量。例如,在包装机械中,需要实时监测包装材料的位置和速度,非接触式激光位移传感器可以迅速捕捉到这些变化,从而确保包装过程的顺利进行。而传统接触式传感器可能会因为接触摩擦等因素而影响测量速度。可靠性:非接触式激光位移传感器无需与目标物体直接接触,因此可以避免因摩擦、磨损等因素导致的传感器损坏。此外,非接触式传感器还具有较好的抗干扰能力,可以在恶劣的生产环境中稳定工作。相比之下,传统接触式传感器更容易受到环境因素的影响而出现故障。灵活性:非接触式激光位移传感器可以适应不同的测量需求,通过调整激光发射角度、接收透镜焦距等参数,可以实现不同距离、不同角度的测量。此外,非接触式传感器还可以与计算机、PLC等设备进行连接,实现自动化控制和数据处理...
  • 5
    2025 - 03 - 27
    1. 引言在工业自动化领域,激光位移传感器是实现高精度非接触测量的核心器件。基恩士 IL-S025 作为市场主流产品,以其 1μm 重复精度和稳定性能著称。然而,随着国产传感器技术的突破,泓川科技 LTM3-030/LTM3-030W 型号凭借更高的性能参数和经济性,为用户提供了新的选择。本文将从技术参数、性能表现、应用场景等方面,深入对比分析两者的替代可行性。 2. 核心技术参数对比参数基恩士 IL-S025泓川科技 LTM3-030/LTM3-030W对比结论重复精度1μm0.25μm(LTM3-030)/ 0.25μm(LTM3-030W)LTM3 系列更优(4 倍精度提升)线性误差±0.075% F.S.(±5mm 范围)LTM3-030W 更优(接近 IL-S025)测量范围±5mm(参考距离 25mm)±5mm(参考距离 30mm)等效采样频率3kHz(采样周期 0.33ms)10kHzLTM3 系列更优(3倍速度提升)光斑尺寸25×1200μm(线性光斑)Φ35μm(M3-030)/ Φ35×400μm(M3-030W)LTM3 系列光斑更小(点光斑更聚焦)光源类型660nm 激光(Class 2)655nm 激光(Class 2)等效接口配置需外接放大器单元(支持 EtherNet/IP 等)...
  • 6
    2025 - 01 - 16
    一、引言1.1 研究背景与目的在汽车行业迈向智能化与自动化的进程中,先进驾驶辅助系统(ADAS)作为关键技术,正发挥着愈发重要的作用。ADAS 凭借多种传感器与智能算法,能够实时监测车辆周边环境,为驾驶员提供预警与辅助控制,极大地提升了驾驶的安全性与舒适性。本报告旨在深入剖析《ADAS 相关工具 核心功能 & 技术》中所涉及的 ADAS 相关工具应用案例,通过详细描述各案例的具体应用场景、工作原理及达成的效果,深度挖掘这些工具在汽车制造及 ADAS 系统开发过程中的重要价值,为行业内相关人员提供具有实际参考意义的信息,助力推动 ADAS 技术的进一步发展与广泛应用。 1.2 研究方法与数据来源本报告通过对《ADAS 相关工具 核心功能 & 技术》进行全面细致的整理与深入分析,从中系统地提取出各类 ADAS 相关工具的应用案例。在分析过程中,对每个案例的技术原理、应用场景以及所实现的功能进行了详细阐述,并结合实际情况进行了深入探讨。本文所引用的 ADAS 相关工具的应用案例及技术原理均来自《ADAS 相关工具 核心功能 & 技术》文档,该文档为此次研究提供了丰富且详实的一手资料,确保了研究的准确性与可靠性。 二、车载相机应用案例剖析2.1 底部填充胶涂抹高度测量2.1.1 案例描述在汽车电子制造中,车载相机的底部填充胶涂抹高度对于确保相机的...
  • 7
    2022 - 12 - 03
    激光测距传感器的功能,你了解多少呢?大家好,我是无锡宏川传感学堂的李同学。激光测距传感器的功能可分为距离测量和窗口测量。其中距离测量在测距应用中传感器可以随时投入使用。直接给出与物体之间的距离。测量值可用于系统控制或者物体的精准定位。此外还可以选择对数字量模拟,量输出进行调整。如果需要检测尺寸较小的物体。可直接进行窗口测量。通过对参照物进行自学习,传感器可直接测得与标称尺寸的偏差。在这种情况下,数字量输出也可以进行相应的参数进行。除了传感器的尺寸和测量范围。光斑的形状也尤其重要,点击光代表精准聚焦。能精确测量小尺寸的物体。线激光能可靠测量粗糙度比较大的表面积。带纹理的彩色表面。在光泽不均匀或极其粗糙的表面上也能进行稳定的测量。
  • 8
    2023 - 10 - 01
    '新吴科之匠',泓川科技有限公司全新打造的传感器新标杆,我们凝聚高端技术力量,专注于高精度、高性能的激光位移传感器LTP系列,光谱共焦传感器LTC系列,白光干涉测厚传感器,线光谱共焦传感器,以及3D结构光和3D线激光。 强大的研发能力和对细节无穷追求,让我们的产品在每个细微处都彰显出卓越品质。'新吴科之匠'不仅寓意着尖端科技的集中体现,更代表着对品质的极致追求。我们相信,只有最好,才能过硬。
Message 最新动态
蓝光光源激光位移传感器:优势、原理与特殊场景解决方案 —— 泓川科技 LTP 系列 405nm 定制... 2025 - 10 - 21 在工业精密测量中,传统红光激光位移传感器常受高反射、半透明、高温红热等特殊场景限制,而蓝光光源(405nm 波长)凭借独特物理特性实现突破。以下通过 “一问一答” 形式,详解蓝光传感器的优势、原理构造,并结合泓川科技 LTP 系列定制方案,看其如何解决特殊环境测量难题。1. 蓝光光源激光位移传感器相比传统红光,核心优势是什么?蓝光传感器的核心优势源于 405nm 波长的物理特性,相比传统 655nm 左右的红光,主要体现在三方面:更高横向分辨率:根据瑞利判据,光学分辨率与波长成反比。蓝光波长仅为红光的 62%(405nm/655nm≈0.62),相同光学系统下横向分辨率可提升约 38%,能形成更小光斑(如泓川 LTP025 蓝光版光斑最小达 Φ18μm),适配芯片针脚、晶圆等微米级结构测量。更强信号稳定性:蓝光单光子能量达 3.06eV,远高于红光的 2.05eV。在低反射率材料(如橡胶、有机涂层)表面,能激发出更强散射信号;同时穿透性更低,仅在材料表层作用,避免内部折射干扰,适合表面精准测量。更优抗干扰能力:蓝光波段与红热辐射(500nm 以上)、户外强光(可见光为主)重叠度低,搭配专用滤光片后,可有效隔绝高温物体自发光、阳光直射等干扰,这是红光难以实现的。2. 蓝光激光位移传感器的原理构造是怎样的?为何能实现高精度测量?蓝光传感器的高精度的核心是 “光学设计 + 信号处理 + ...
泓川科技国产系列光谱共焦/激光位移传感器/白光干涉测厚产品性能一览 2025 - 09 - 05 高精度测量传感器全系列:赋能精密制造,适配多元检测需求聚焦半导体、光学膜、机械加工等领域的精密检测核心痛点,我们推出全系列高性能测量传感器,覆盖 “测厚、对焦、位移” 三大核心应用场景,以 “高精准、高速度、高适配” 为设计核心,为您的工艺控制与质量检测提供可靠技术支撑。以下为各产品系列的详细介绍:1.LTS-IR 红外干涉测厚传感器:半导体材料测厚专属核心用途:专为硅、碳化硅、砷化镓等半导体材料设计,精准实现晶圆等器件的厚度测量。性能优点:精度卓越:±0.1μm 线性精度 + 2nm 重复精度,确保测量数据稳定可靠;量程适配:覆盖 10μm2mm 测厚范围,满足多数半导体材料检测需求;高效高速:40kHz 采样速度,快速捕捉厚度数据,适配在线检测节奏;灵活适配:宽范围工作距离设计,可灵活匹配不同规格的检测设备与场景。2. 分体式对焦传感器:半导体 / 面板缺陷检测的 “高速对焦助手”核心用途:针对半导体、面板领域的高精度缺陷检测场景,提供高速实时对焦支持,尤其适配显微对焦类检测设备。性能优点:对焦速度快:50kHz 高速对焦,同步匹配缺陷检测的实时性需求;对焦精度高:0.5μm 对焦精度,保障缺陷成像清晰、检测无偏差;设计灵活:分体式结构,可根据检测设备的安装空间与布局灵活调整,降低适配难度。3. LT-R 反射膜厚仪:极薄膜厚检测的 “精密管家”核心用途:专注于极薄膜...
多方面研究泓川科技LTP系列大量程全国产激光位移传感器 2025 - 09 - 02 泓川科技激光位移传感器产品技术报告尊敬的客户: 感谢您对泓川科技激光位移传感器产品的关注与信任。为帮助您全面了解我司产品,现将激光位移传感器相关技术信息从参数指标、设计原理、结构设计等八大核心维度进行详细说明,为您的选型、使用及维护提供专业参考。一、参数指标我司激光位移传感器涵盖 LTP400 系列与 LTP450 系列,各型号核心参数经纳米级高精度激光干涉仪标定验证,确保数据精准可靠,具体参数如下表所示:表 1:LTP400EA参数表参数类别具体参数LTP400EA备注基础测量参数测量中心距离400mm以量程中心位置计算(*1)量程200mm-重复精度(静态)3μm测量标准白色陶瓷样件,50kHz 无平均,取 65536 组数据均方根偏差(*2)线性度±0.03%F.S.(F.S.=200mm)采用纳米级激光干涉仪标定(*3)光源与光斑光源类型-激光功率可定制,部分型号提供 405nm 蓝光版本(*4)光束直径聚焦点光斑 Φ300μm中心位置直径,两端相对变大(*5)电气参数电源电压DC9-36V-功耗约 2.5W-短路保护反向连接保护、过电流保护-输出与通信模拟量输出(选配)电压:0-5V/010V/-1010V;电流:420mA探头可独立提供电压、电流与 RS485 输出(*6)通讯接口RS485 串口、TCP/IP 网口可选配模拟电压 / 电流输出模块(*7)响应...
Copyright ©2005 - 2013 无锡泓川科技有限公司

1

犀牛云提供企业云服务
Our Link
X
3

SKYPE 设置

4

阿里旺旺设置

等待加载动态数据...

等待加载动态数据...

5

电话号码管理

  • 0510-88155119
6

二维码管理

等待加载动态数据...

等待加载动态数据...

展开