服务热线: 0510-88155119
13301510675@163.com
Language
项目案例 Case
Case 激光位移

核电安全之重:安全壳鼓包检测难题——泓川科技激光位移传感器来解决

日期: 2025-01-05
浏览次数: 60

      在核电领域,安全壳宛如一位忠诚的卫士,肩负着守护核反应堆的重任,是防止放射性物质泄漏的关键防线。它的结构复杂且庞大,内部环境严苛,一旦出现安全隐患,后果不堪设想。

而安全壳鼓包现象,便是潜在隐患之一。鼓包通常是由于内部压力变化、结构老化、材料疲劳等多种因素导致的。这些鼓包可能起初微不足道,但随着时间推移,若不及时察觉并处理,极有可能逐渐扩大,进而削弱安全壳的整体结构强度,使得放射性物质泄漏风险大增。

传统的鼓包检测主要依赖人工完成。检测人员手持工具,在安全壳内小心翼翼地敲击钢内衬,凭借耳朵捕捉敲击声的细微差异,以此判断鼓包的位置与范围。这种方式弊端显著:一方面,人工检测效率极其低下,安全壳内部空间广阔,检测点众多,耗费大量人力与时间;另一方面,精度实在难以保证,人的听觉判断易受环境噪音、个人经验及身体状态等诸多因素干扰,微小鼓包很容易被遗漏,给核电站的安全运行埋下了 “定时炸弹”。

面对传统检测方式的困境,引入新的测量系统迫在眉睫。激光位移传感器等先进技术应运而生,它们如同核电安全领域的 “火眼金睛”,有望精准、高效地揪出那些隐匿的鼓包,为核电站的平稳运行保驾护航。

核电安全之重:安全壳鼓包检测难题——泓川科技激光位移传感器来解决

核心力量:激光位移传感器

(一)测量原理大揭秘

激光位移传感器的 “超能力” 源自其精妙的测量原理。它主要依据三角测量法或回波分析法施展身手。

在三角测量法中,传感器内部的激光器宛如一位精准的射手,发射出一束极细且能量集中的激光束,这束激光以特定角度射向安全壳钢内衬表面。光线抵达内衬后,会产生反射,反射光如同归巢的信鸽,迅速被传感器的接收单元捕获。接收单元通常由高灵敏度的光电二极管或 CCD/CMOS 图像传感器担当,它们能够敏锐捕捉反射光的细微变化。由于物体表面的鼓包会使反射光的入射角度产生微妙改变,根据激光发射点、反射点以及接收点之间稳固的三角几何关系,传感器内部的智能处理单元就如同一位聪明绝顶的数学家,能精确计算出传感器与内衬表面的距离变化,进而精准定位鼓包的位置与高度。

核电安全之重:安全壳鼓包检测难题——泓川科技激光位移传感器来解决

核电安全之重:安全壳鼓包检测难题——泓川科技激光位移传感器来解决

而回波分析法的运作方式稍有不同。传感器中的激光发射器火力全开,每秒向外发射高达上百万个激光脉冲,这些脉冲如密集的雨点般冲向目标。当脉冲遇到安全壳内衬后,会即刻反射回来,被接收器接收。处理器随即迅速计算激光脉冲往返所需的时间,要知道,光在空气中的传播速度可是恒定的,依据这一固定速度与往返时间,就能轻松推算出距离值。这种方法在远距离测量场景中表现卓越,为全面检测安全壳提供了有力支持。


(二)优势尽显

在安全壳鼓包测量这场关键 “战役” 中,激光位移传感器凭借诸多突出优势,成为当之无愧的 “主将”。

精度方面,它堪称 “狙击高手”,能够达到微米级甚至纳米级的超高精度。在检测微小鼓包时,绝不会放过任何蛛丝马迹,与传统人工测量方式相比,简直是天壤之别。人工测量时,检测人员即便全神贯注、经验丰富,也难以察觉毫米级以下的细微鼓包,而激光位移传感器凭借其高精度,能轻松捕捉到这些潜在隐患,为安全壳的早期诊断提供精准数据,防患于未然。

速度上,它如同闪电侠一般。能够在瞬间完成多次测量,快速获取大量数据点,高效构建出安全壳内表面的详细 “地形图”。这在大规模的安全壳检测任务中,极大地缩短了检测时间,减少了核电站停机检修的时长,为电力供应的持续性提供了坚实保障。

更为关键的是,激光位移传感器采用非接触式测量。在核辐射环境下,这一特性显得尤为重要。它无需与安全壳内衬直接接触,避免了对测量人员的辐射风险,同时也不会对待测表面造成任何损伤,确保安全壳的结构完整性不受丝毫影响,让测量工作安全、可靠地推进。


鼓包测量系统的精妙设计

(一)硬件构成全知晓

在这套创新的测量系统里,硬件可是实现精准测量的基础保障,它们各司其职,协同作战。



核电安全之重:安全壳鼓包检测难题——泓川科技激光位移传感器来解决

以树莓派为核心的测量端,就像是一位前线侦察兵,肩负着采集关键数据的重任。其中,激光位移传感器是当之无愧的 “主角”,型号为泓川科技的激光位移感测器HCM-120-A闪亮登场,它分辨率高达 30μm,重复精度 90μm,测量范围在 60 - 180mm 之间,凭借这些出色的性能参数,能够极其敏锐地捕捉到安全壳钢内衬表面细微的起伏变化,精准定位鼓包的位置与高度。

与激光位移传感器并肩作战的超声波测距传感器,选用的是HUA-4000超声波模块,精度可达 3mm,测量范围为 2 - 450cm,它主要负责测量滑块的横向位置,为整体测量提供辅助信息,确保测量的全面性。

此外,测量端还有供电装置和电源开关,为整个系统稳定运行提供充足动力,保障数据采集工作顺利进行。

而笔记本电脑则充当着数据处理端,如同一位智慧的军师,坐镇后方,接收来自测量端的原始数据,并运用强大的运算能力进行深度分析。它利用 C# 开发设计的软件,不仅能实时接收数据,还能绘制出直观的实时曲线,将抽象的数据具象化。通过巧妙的对比计算,快速且准确地分析出鼓包的位置、大小等关键信息,为后续的决策提供坚实依据。

为了让测量端能够灵活移动,获取更多数据,系统还配备了滑轨。滑轨采用不锈钢材质精心打造,具备高度调节功能,确保滑块在滑动过程中始终保持水平状态,就像为测量端铺设了一条平稳的 “轨道”,让激光位移传感器和超声波测距传感器能够稳定、高效地工作,不放过任何一处潜在鼓包。

(二)软件系统巧运行

软件系统则是整个测量系统的 “智慧大脑”,指挥着硬件有条不紊地工作。

从软件框架来看,它构建起了一座无缝连接测量端与数据处理端的桥梁。测量端以树莓派 3B 为基础,凭借其丰富的接口和强大的运算能力,运行着基于 Python 开发的程序。当系统启动后,树莓派迅速与激光位移传感器和超声波测距传感器建立紧密联系,精准控制它们开始采集数据。传感器就像灵敏的触角,随着滑块在滑轨上平稳滑动,不断获取纵向与横向的距离信息。这些珍贵的数据通过 TCP/IP 技术,如同 “飞鸽传书” 一般,被迅速、稳定地传输至数据处理端。


核电安全之重:安全壳鼓包检测难题——泓川科技激光位移传感器来解决

数据处理端的笔记本电脑,搭载着用 C# 精心开发的软件。这款软件宛如一位专业的数据分析师,实时接收来自测量端的数据后,立即着手绘制实时曲线。曲线在屏幕上逐渐显现,仿佛是安全壳内表面的 “心电图”,将鼓包的蛛丝马迹直观呈现。通过复杂而高效的对比计算算法,它能快速从海量数据中提炼出鼓包的精确位置和大小信息。

在数据处理过程中,软件的一些关键技术发挥着神奇功效。比如,针对激光位移传感器,开发人员巧妙利用泓川科技的命令集进行二次开发,如同给传感器赋予了更多 “智慧”,能够根据实际需求灵活控制其采样模式与采样率,让测量更加精准、高效。超声波模块则通过树莓派精准控制电压,实现稳定的超声波测距。

然而,由于树莓派采用 Linux 操作系统,而数据处理软件依托于 Windows 操作系统,就像两位说着不同语言的伙伴,如何实现顺畅沟通是个难题。为此,开发团队投入大量精力,运用先进的技术手段解决多平台兼容问题,确保数据在不同系统间流畅传输,让整个测量系统成为一个紧密协作的有机整体。

实战检验:系统性能大测试

(一)测距精度大挑战

1. 纵向鼓包测量精度

为了验证这套基于激光位移传感器的测量系统到底有多精准,科研人员精心设计了一系列严格测试。

在纵向鼓包测量精度测试环节,模拟试验采用了精度极高的三维移动平台,其精度达到了令人惊叹的 10μm,远远优于激光位移传感器自身的精度,这就好比用一把无比精准的尺子去衡量传感器的测量能力。

测试时,在三维移动平台的 Z 方向精心选取了一段 3mm 的微小量距,从初始位置开始,每隔 0.5mm 就让传感器进行一次测量,如此反复,对这 6 段距离进行往返测量,并且为了确保数据的可靠性,对同一位置还进行多次重复测量。考虑到测量初期可能存在的一些不稳定因素,选取开始测量 3s 后的数据进行深入分析,每个单独位置选取 25 个测量数据,取均值作为当前位置的测量值。

经过严谨的数据处理与细致分析,得出了令人振奋的结果。往测平均偏差仅为 47μm,在 6 号点位出现的最大偏差为 72μm;返测平均偏差更是只有 34μm,最大偏差出现在 6 号点位,为 59μm。对这些海量测量数据进行线性回归分析后,得到回归方程,这表明测距精度与量程之间呈现正相关关系,且固定误差稳定在 9μm。

核电安全之重:安全壳鼓包检测难题——泓川科技激光位移传感器来解决

如此出色的测量精度,意味着什么呢?与传统的人工测量方式相比,简直是天壤之别。人工测量在面对微小鼓包时,往往因为测量工具的精度限制以及人眼、手感的误差,很难精准判断鼓包的高度,而这套新系统能够轻松捕捉到毫米级甚至微米级的细微变化,让那些潜在的安全隐患无所遁形,为核电站的安全运行提供了坚实的数据保障。



2. 横向滑块位置精度

横向滑块位置精度同样不容忽视,它关系到整个测量系统的全面准确性。

试验中,选用了精度为 0.5mm 的毫米钢尺,在滑轨上每间隔 100mm 精心选取一个测量点,共选取 7 个关键测量点,让超声波模块对 6 段距离进行多次测量。同样,为保证结果的客观性,单个位置选取 25 个测量数据,取均值作为当前位置的测量值。

数据处理结果显示,3 次测量的横向平均偏差为 3mm,最大偏差出现在 6 号点位。进一步分析发现,横向测量偏差与距离存在强相关性,回归方程为。这一规律为实际测量提供了宝贵的操作建议:在实际使用过程中,尽量采用距离挡板较近的一段滑轨进行测量,这样能有效减小偏差,提高测量的准确性。


核电安全之重:安全壳鼓包检测难题——泓川科技激光位移传感器来解决

(二)实用性测试见真章

为了检验这套测量系统在实际场景中的表现,科研团队模拟了真实的核电站安全壳内环境,进行了实用性测试。

核电安全之重:安全壳鼓包检测难题——泓川科技激光位移传感器来解决


由于环境限制,在模拟试验中巧妙地以实验室电脑桌为例,在滑轨下方不同位置放置了 3 个形态各异的物块。有长 51.5mm、宽 41.6mm、高 6.8mm 的厚塑料块,模拟较大且明显的鼓包;还有长 32.1mm、宽 24.2mm、高 2.1mm 的薄方块,代表较为扁平、不易察觉的鼓包;以及高 5.0mm 的锥状物,模拟不规则形状的鼓包。

测试结果令人惊喜,从测量系统生成的竖直扫描鼓包高度曲线可以清晰看到,在 240 - 280mm 处的鼓包平均高度为 6.82mm,与实际放置的厚塑料块高度 6.8mm 几乎完全吻合;500 - 520mm 处的鼓包高度为 2.21mm,也精准反映了薄方块的高度;550 - 580mm 处鼓包高度为 5.02mm,与锥状物高度 5.0mm 高度一致。经多次重复测试,鼓包测量系统都能够准确识别桌面上异常凸起的位置,并精确测出相应的高度,充分展现了其在复杂环境下的强大实用性。

未来展望:技术革新新征程

随着核电技术不断向更高安全性、更高效率迈进,安全壳鼓包测量系统也将迎来持续升级与广泛应用的光明前景。

一方面,传感器性能的提升空间巨大。科研人员将致力于进一步提高激光位移传感器的精度,从现有的微米级向纳米级甚至更高精度进发,力求捕捉到安全壳内衬最细微的变化。同时,拓展测量范围,使其能够适应不同型号、不同尺寸安全壳的检测需求,无论是小型实验堆还是大型商用核电站的安全壳,都能精准测量。在恶劣环境适应性上,通过采用更先进的材料与防护技术,让传感器在高温、高辐射、高湿度的核环境中稳定运行,减少维护频次,延长使用寿命。

核电安全之重:安全壳鼓包检测难题——泓川科技激光位移传感器来解决

另一方面,系统功能拓展将成为关键发展方向。与自动化技术深度融合,实现测量系统的全自动化运行,从测量端的自动移动、自动定位,到数据处理端的自动分析、自动报告生成,最大限度减少人工干预,提高检测效率与准确性。借助人工智能算法,让系统具备自我学习能力,能够根据历史检测数据,智能预判潜在鼓包风险区域,提前进行重点监测;还能对复杂的鼓包形态进行精准识别与分类,为后续的维修决策提供详细、精准的数据支持。

未来,我们有理由相信,随着这些技术革新逐步实现,安全壳鼓包测量将变得更加高效、精准,为核电工业的稳健发展筑牢安全基石,让核能这一清洁能源在保障人类能源需求的道路上安全前行。

本文参考摘抄自:徐亚明, 张宇安全壳鼓包测量系统的设计及实现》



Case / 相关推荐
2026 - 01 - 23
点击次数: 0
0. 概述 (Abstract)随着高端制造业中3C玻璃面板、晶圆表面涂胶、透明薄膜以及光学透镜的广泛应用,透明材质的非接触式在线测量成为了视觉检测领域的“深水区”。传统的激光检测往往因透明物体的透射特性(光线穿透)和内部多重反射(“鬼影”杂波),导致测量数值漂移、精度下降。针对透明物体平面度及倾斜度的高精度量测,** 本方案采用“收光模组改良+半透明算法消除机制”的双重技术架构**,依托 高速高...
2025 - 12 - 23
点击次数: 22
摘要激光三角法测量技术凭借非接触、高精度、高效率的优势,已成为现代制造业中复杂曲面检测的核心手段。本文以LTP系列高速高精度激光三角位移传感器为研究对象,系统梳理激光三角法测量原理,深入分析复杂曲面几何特性(倾角、转角)对测量精度的影响机制,依托马晓帆硕士论文《复杂曲面激光三角法测量的精度提高技术研究》中的实验数据与误差修正模型,结合工业部署案例,论证LTP系列传感器在摆线齿轮等典型复杂曲面测量中...
2025 - 12 - 23
点击次数: 15
基于激光位移测量的动静压主轴回转精度测试技术研究——兼论泓川科技 LTP 激光位移传感器在高端装备中的工程应用价值一、引言:高端制造对主轴回转精度测试提出的新要求在高端数控机床、精密磨床以及超精密加工装备中,主轴回转精度被公认为影响零件加工质量的核心指标之一。主轴的回转精度不仅直接决定了工件的圆度、表面粗糙度和形位公差,还与加工系统的动态稳定性、加工一致性和设备可靠性密切相关。随着制造业向高精度、...
2025 - 12 - 19
点击次数: 15
核心摘要:在一段时期内,日本基恩士(KEYENCE)的LK系列特别是LK-G5000系列定义了高速激光位移传感器的行业基准。然而,随着本土传感器技术从模仿走向创新,中国厂商泓川科技(Chuantec)凭借LTP系列高速高精度激光三角位移传感器,以“技术指标在工业甜蜜区看齐”和“1/2价格的绝对优势”,正在锂电、3C、半导体及重工行业迅速确立“头部平替”的地位。本文将从光路架构、运算控制模式、详细核...
2025 - 12 - 19
点击次数: 11
——深度解构FMCW干涉式激光测距仪在长超程精密测量中的算法与数据逻辑Meta Description: 探索如何在不牺牲精度的情况下摆脱长度限制。本文深度技术解析干涉式激光测距仪利用FMCW光子集成技术,打破百米量程与1nm分辨率的物理矛盾。适用于高端半导体、精密机床与大型自动化领域。如果将工业级位置反馈传感器市场画在一张图表上,我们会看到绝大多数产品都挤在两条轴线上:一条是“短量程极高精度”(...
2025 - 12 - 17
点击次数: 11
摘要动力电池极片辊压后的厚度均匀性直接决定电池能量密度、功率密度及安全性能,微米级的厚度偏差可能导致内阻不一致、热失控风险升高。本文基于无锡泓川科技 LTP 系列激光三角位移传感器,设计一套辊压极片在线厚度实时监测系统,通过双探头对射式安装、160kHz 高速采样与温漂补偿算法,实现极片厚度 0.03μm 级重复精度测量。结合动力电池极片制造工艺需求,详细阐述系统测量原理、结构设计、实施步骤,通过...
About Us
关于泓川科技
专业从事激光位移传感器,激光焊缝跟踪系统研发及销售的科技公司
中国 · 无锡 · 总部地址:无锡新吴区天山路6号
销售热线:0510-88155119 
图文传真:0510-88152650
Working Time
我们的工作时间
周一至周五:8:00-18:00
周六至周日:9:00-15:00
Shown 企业秀 More
  • 1
    2023 - 02 - 21
    激光位移传感器是一种用于测量距离和轮廓表面的自动光学传感技术。它的工作原理是发射激光束,激光束被目标表面或区域反射,然后光束返回所需的时间被转换为距离测量。它的主要应用是尺寸计量,可以精确测量长度、距离和粗糙度轮廓。激光位移传感器也用于工业自动化、机器人和机器视觉应用。什么是激光位移传感器?       激光位移传感器是一种用于测量距离和轮廓表面的自动光学传感技术。该系统通过从激光源发射激光来工作。然后,该激光束从目标表面或区域反射回来。然后,光束覆盖距离和返回所花费的时间被转换为距离测量或轮廓。激光位移传感器通常由三个主要部分组成:*激光源*光学探测器*处理器      激光源通常是激光二极管,其波长适合于目标区域及其光学特性。激光二极管产生激光束,该激光束被引导到目标表面或区域上。然后光束被反射回检测器。根据应用,可以用一定范围的脉冲频率调制光束。光束由光学检测器检测。检测器将光转换成电信号,然后将其发送到处理器。然后处理器处理信息并将测量数据发送到数字显示器或计算机。然后,数据可用于进一步分析或控制自动化过程。历史:       激光位移传感器最初是在20世纪70年代开发的,是麻省理工学院研究项目的一部分。这项研究由美国陆军研究实验室和美国空军赖特实验室赞助。该技术最...
  • 2
    2025 - 01 - 09
    一、光谱共焦传感技术解密光谱共焦技术的起源,要追溯到科学家们对传统成像精度局限的深刻洞察。在 20 世纪 70 年代,传统成像在精密测量领域遭遇瓶颈,为突破这一困境,基于干涉原理的光谱共焦方法应运而生,开启了高精度测量的新篇章。进入 80 年代,科研人员不断改进仪器设计,引入特殊的分光元件,如同给传感器装上了 “精密滤网”,精准分辨不同波长光信号;搭配高灵敏度探测器,将光信号转化为精确数字信息。同时,计算机技术强势助力,实现数据快速处理、动态输出测量结果,让光谱共焦技术稳步走向成熟。90 年代,纳米技术、微电子学蓬勃发展,对测量精度要求愈发苛刻。科研团队迎难而上,开发新算法、模型优化测量,减少误差;增设温度控制、机械振动抑制功能,宛如为传感器打造 “稳定护盾”,确保在复杂实验环境下结果稳定可靠,至此,光谱共焦技术成为精密测量领域的关键力量。添加图片注释,不超过 140 字(可选)二、HCY 光谱共焦传感器工作原理(一)核心原理阐释HCY 光谱共焦传感器的核心在于巧妙运用光学色散现象。当内部的白光点光源发出光线后,光线会迅速射向精密的透镜组。在这里,白光如同被解开了神秘面纱,依据不同波长被精准地色散开来,形成一道绚丽的 “彩虹光带”。这些不同波长的光,各自沿着独特的路径前行,最终聚焦在不同的高度之上,构建起一个精密的测量范围 “标尺”。当光线抵达物体表面,会发生反射,其中特定波长的光...
  • 3
    2025 - 09 - 02
    泓川科技激光位移传感器产品技术报告尊敬的客户: 感谢您对泓川科技激光位移传感器产品的关注与信任。为帮助您全面了解我司产品,现将激光位移传感器相关技术信息从参数指标、设计原理、结构设计等八大核心维度进行详细说明,为您的选型、使用及维护提供专业参考。一、参数指标我司激光位移传感器涵盖 LTP400 系列与 LTP450 系列,各型号核心参数经纳米级高精度激光干涉仪标定验证,确保数据精准可靠,具体参数如下表所示:表 1:LTP400EA参数表参数类别具体参数LTP400EA备注基础测量参数测量中心距离400mm以量程中心位置计算(*1)量程200mm-重复精度(静态)3μm测量标准白色陶瓷样件,50kHz 无平均,取 65536 组数据均方根偏差(*2)线性度±0.03%F.S.(F.S.=200mm)采用纳米级激光干涉仪标定(*3)光源与光斑光源类型-激光功率可定制,部分型号提供 405nm 蓝光版本(*4)光束直径聚焦点光斑 Φ300μm中心位置直径,两端相对变大(*5)电气参数电源电压DC9-36V-功耗约 2.5W-短路保护反向连接保护、过电流保护-输出与通信模拟量输出(选配)电压:0-5V/010V/-1010V;电流:420mA探头可独立提供电压、电流与 RS485 输出(*6)通讯接口RS485 串口、TCP/IP 网口可选配模拟电压 / 电流输出模块(*7)响应...
  • 4
    2023 - 10 - 20
    面对反射率不同的目标物时,激光位移传感器需要调整以下方面以确保测量的稳定性:根据目标物的反射率变化,调整接收光量。反射率较高的目标物可能导致光量饱和,而反射率较低的目标物可能无法获得足够的接收光量。因此,需要根据目标物的反射特性,适时调整激光位移传感器的接收光量,以使其处于最佳工作状态。使用光量控制范围调整功能。这种功能可以预先决定接收光量的上限和下限,缩短获取最佳光量的时间,从而可以更快地调整光量。针对反射率较高的目标物,需要减小激光功率和缩短发射时间,以避免光量饱和。而对于反射率较低的目标物,则应增大激光功率和延长发射时间,以确保获得足够的接收光量。在调整过程中,需要注意测量反射率急剧变化位置的稳定程度,以及使用光量调整功能以外功能时的稳定程度。如果无法稳定测量反射率不同的目标物,可能是由于目标物的反射光因颜色、反光、表面状况(粗度、倾斜度)等因素而发生变化,导致感光元件(接收光波形)上形成的光点状态也会随之变化。这种情况下,需要通过反复试验和调整,找到最佳的激光位移传感器工作参数。总结来说,激光位移传感器需要根据目标物的反射率变化,调整接收光量、激光发射时间、激光功率和增益等参数,以确保测量的稳定性和准确性。同时,需要注意目标物的反射特性及其变化情况,以便及时调整激光位移传感器的参数。
  • 5
    2025 - 01 - 19
    一、引言1.1 研究背景与意义在科技飞速发展的当下,半导体和电子部件制造行业正经历着深刻的变革。随着电子产品的功能不断增强,尺寸却日益缩小,对半导体和电子部件的性能、精度以及可靠性提出了极为严苛的要求。从智能手机、平板电脑到高性能计算机、物联网设备,无一不依赖于先进的半导体和电子部件技术。而这些部件的质量与性能,在很大程度上取决于制造过程中的测量、检测和品质管理环节。光学测量技术作为一种先进的测量手段,凭借其高精度、非接触、快速测量等诸多优势,在半导体和电子部件制造领域中发挥着愈发关键的作用。它能够精确测量微小尺寸、复杂形状以及表面形貌等参数,为制造过程提供了不可或缺的数据支持。举例来说,在半导体芯片制造中,芯片的线宽、间距等关键尺寸的精度要求已经达到了纳米级别,光学测量技术能够准确测量这些尺寸,确保芯片的性能符合设计标准。再如,在电子部件的封装过程中,光学测量可以检测焊点的形状、尺寸以及位置,保障封装的可靠性。光学测量技术的应用,不仅能够有效提高产品的质量和性能,还能显著降低生产成本,增强企业在市场中的竞争力。通过实时监测和精确控制制造过程,能够及时发现并纠正生产中的偏差,减少废品率和返工率,提高生产效率。因此,深入研究光学测量在半导体和电子部件制造中的典型应用,对于推动行业的发展具有重要的现实意义。1.2 研究目的与方法本报告旨在深入剖析光学测量在半导体和电子部件制造测量、检测...
  • 6
    2025 - 01 - 14
    一、引言1.1 激光位移传感器概述激光位移传感器,作为工业测量领域的关键设备,凭借其卓越的非接触测量特性,正日益成为众多行业实现高精度测量与自动化控制的核心技术。它主要利用激光的反射特性,通过精确测量反射光的相关参数,实现对目标物体的位移、距离、厚度等几何量的精准测定。这一技术的诞生,为现代制造业、科研实验以及诸多工业生产过程,提供了高效、可靠且精准的测量手段。其工作原理基于激光三角测量法和激光回波分析法。激光三角测量法常用于高精度、短距离测量场景。在该方法中,激光位移传感器发射出一束激光,射向被测物体表面,物体表面反射的激光经由特定的光学系统,被传感器内部的探测器接收。根据激光发射点、反射点以及探测器接收点之间所构成的三角几何关系,通过精密的计算,能够精确得出物体与传感器之间的距离 。激光回波分析法更适用于远距离测量,传感器以每秒发射大量激光脉冲的方式,向被测物体发送信号,随后依据激光脉冲从发射到被接收的时间差,精确计算出物体与传感器之间的距离。在工业测量领域,激光位移传感器的重要地位不容小觑。在汽车制造行业,它被广泛应用于车身零部件的尺寸检测、装配精度控制等环节。通过对汽车零部件的精确测量,能够确保各个部件的尺寸符合设计要求,从而提升整车的装配质量和性能。在电子制造领域,激光位移传感器可用于检测芯片的尺寸、平整度以及电子元件的贴装精度等。在芯片制造过程中,其微小的尺寸和极高的精...
  • 7
    2025 - 01 - 29
    五、光谱共焦传感器测量厚度的局限性及解决措施5.1 局限性分析5.1.1 测量范围限制光谱共焦传感器的测量范围相对有限,一般在几毫米到几十毫米之间。这是由于其测量原理基于色散物镜对不同波长光的聚焦特性,测量范围主要取决于色散物镜的轴向色差范围以及光谱仪的工作波段。在实际应用中,对于一些大尺寸物体的厚度测量,如厚壁管材、大型板材等,可能需要多次测量拼接数据,增加了测量的复杂性和误差来源。例如,在测量厚度超过传感器量程的大型金属板材时,需要移动传感器进行多次测量,然后将测量数据进行拼接处理,但在拼接过程中可能会因测量位置的定位误差、测量角度的变化等因素导致测量结果的不准确。5.1.2 对被测物体表面状态的要求虽然光谱共焦传感器对多种材料具有良好的适用性,但被测物体表面的粗糙度、平整度等因素仍会对测量精度产生一定影响。当被测物体表面粗糙度较大时,表面的微观起伏会导致反射光的散射和漫反射增强,使得反射光的强度分布不均匀,从而影响光谱仪对反射光波长的准确检测,导致测量误差增大。对于表面平整度较差的物体,如存在明显翘曲或弯曲的板材,会使传感器与物体表面的距离在不同位置发生变化,超出传感器的测量精度范围,进而影响厚度测量的准确性。例如,在测量表面粗糙的橡胶板材时,由于橡胶表面的微观纹理和不规则性,测量精度会明显下降,难以达到对光滑表面测量时的高精度水平。5.1.3 成本相对较高光谱共焦传感器作为...
  • 8
    2023 - 02 - 26
    今天我为大家展示安全激光扫描仪产品,安全激光扫描仪适用于各种应用技术领域,      在设备开发期间我们给予了特别关注,以确保它能够在广泛应用中发挥最佳功能,尤其重视大型工作区域的防护,例如机床正面区域或机器人工作区域。      其他应用包括移动车辆的防护,例如侧向滑动装置或移动运输设备,无人驾驶运输系统。甚至垂直安装激光扫描仪的出入口保护系统。尽管我们在安全激光扫描与领域,已经有数10年的经验了,但该应用领域仍然面对许多挑战。不过我们的激光安全扫描仪具有独一无二的功能属性,例如具有8.25米检测距离和270度扫描范围。       属于目前市场上的高端设备,非常适合侧向滑动装置正面区域等大型区域或长距离的防护。该设备的另一个亮点就是能够同时监测两个保护功能。这在许多应用领域中,独具优势以前需要使用两个设备,如今只需要使用一台这样的安全激光扫描仪,即可完成两台设备的功能。               实践中遇到的一项挑战是设计一款异常强骨的激光安全扫描仪。能够适应周围环境中可能存在的灰尘和颗粒等恶劣条件,因此我们提供了较分辨率达到0.1度的设备。它在目前市场上具有非常高的价值。   ...
Message 最新动态
蓝光光源激光位移传感器:优势、原理与特殊场景解决方案 —— 泓川科技 LTP 系列 405nm 定制... 2025 - 10 - 21 在工业精密测量中,传统红光激光位移传感器常受高反射、半透明、高温红热等特殊场景限制,而蓝光光源(405nm 波长)凭借独特物理特性实现突破。以下通过 “一问一答” 形式,详解蓝光传感器的优势、原理构造,并结合泓川科技 LTP 系列定制方案,看其如何解决特殊环境测量难题。1. 蓝光光源激光位移传感器相比传统红光,核心优势是什么?蓝光传感器的核心优势源于 405nm 波长的物理特性,相比传统 655nm 左右的红光,主要体现在三方面:更高横向分辨率:根据瑞利判据,光学分辨率与波长成反比。蓝光波长仅为红光的 62%(405nm/655nm≈0.62),相同光学系统下横向分辨率可提升约 38%,能形成更小光斑(如泓川 LTP025 蓝光版光斑最小达 Φ18μm),适配芯片针脚、晶圆等微米级结构测量。更强信号稳定性:蓝光单光子能量达 3.06eV,远高于红光的 2.05eV。在低反射率材料(如橡胶、有机涂层)表面,能激发出更强散射信号;同时穿透性更低,仅在材料表层作用,避免内部折射干扰,适合表面精准测量。更优抗干扰能力:蓝光波段与红热辐射(500nm 以上)、户外强光(可见光为主)重叠度低,搭配专用滤光片后,可有效隔绝高温物体自发光、阳光直射等干扰,这是红光难以实现的。2. 蓝光激光位移传感器的原理构造是怎样的?为何能实现高精度测量?蓝光传感器的高精度的核心是 “光学设计 + 信号处理 + ...
泓川科技国产系列光谱共焦/激光位移传感器/白光干涉测厚产品性能一览 2025 - 09 - 05 高精度测量传感器全系列:赋能精密制造,适配多元检测需求聚焦半导体、光学膜、机械加工等领域的精密检测核心痛点,我们推出全系列高性能测量传感器,覆盖 “测厚、对焦、位移” 三大核心应用场景,以 “高精准、高速度、高适配” 为设计核心,为您的工艺控制与质量检测提供可靠技术支撑。以下为各产品系列的详细介绍:1.LTS-IR 红外干涉测厚传感器:半导体材料测厚专属核心用途:专为硅、碳化硅、砷化镓等半导体材料设计,精准实现晶圆等器件的厚度测量。性能优点:精度卓越:±0.1μm 线性精度 + 2nm 重复精度,确保测量数据稳定可靠;量程适配:覆盖 10μm2mm 测厚范围,满足多数半导体材料检测需求;高效高速:40kHz 采样速度,快速捕捉厚度数据,适配在线检测节奏;灵活适配:宽范围工作距离设计,可灵活匹配不同规格的检测设备与场景。2. 分体式对焦传感器:半导体 / 面板缺陷检测的 “高速对焦助手”核心用途:针对半导体、面板领域的高精度缺陷检测场景,提供高速实时对焦支持,尤其适配显微对焦类检测设备。性能优点:对焦速度快:50kHz 高速对焦,同步匹配缺陷检测的实时性需求;对焦精度高:0.5μm 对焦精度,保障缺陷成像清晰、检测无偏差;设计灵活:分体式结构,可根据检测设备的安装空间与布局灵活调整,降低适配难度。3. LT-R 反射膜厚仪:极薄膜厚检测的 “精密管家”核心用途:专注于极薄膜...
多方面研究泓川科技LTP系列大量程全国产激光位移传感器 2025 - 09 - 02 泓川科技激光位移传感器产品技术报告尊敬的客户: 感谢您对泓川科技激光位移传感器产品的关注与信任。为帮助您全面了解我司产品,现将激光位移传感器相关技术信息从参数指标、设计原理、结构设计等八大核心维度进行详细说明,为您的选型、使用及维护提供专业参考。一、参数指标我司激光位移传感器涵盖 LTP400 系列与 LTP450 系列,各型号核心参数经纳米级高精度激光干涉仪标定验证,确保数据精准可靠,具体参数如下表所示:表 1:LTP400EA参数表参数类别具体参数LTP400EA备注基础测量参数测量中心距离400mm以量程中心位置计算(*1)量程200mm-重复精度(静态)3μm测量标准白色陶瓷样件,50kHz 无平均,取 65536 组数据均方根偏差(*2)线性度±0.03%F.S.(F.S.=200mm)采用纳米级激光干涉仪标定(*3)光源与光斑光源类型-激光功率可定制,部分型号提供 405nm 蓝光版本(*4)光束直径聚焦点光斑 Φ300μm中心位置直径,两端相对变大(*5)电气参数电源电压DC9-36V-功耗约 2.5W-短路保护反向连接保护、过电流保护-输出与通信模拟量输出(选配)电压:0-5V/010V/-1010V;电流:420mA探头可独立提供电压、电流与 RS485 输出(*6)通讯接口RS485 串口、TCP/IP 网口可选配模拟电压 / 电流输出模块(*7)响应...
Copyright ©2005 - 2013 无锡泓川科技有限公司

1

犀牛云提供企业云服务
Our Link
X
3

SKYPE 设置

4

阿里旺旺设置

等待加载动态数据...

等待加载动态数据...

5

电话号码管理

  • 0510-88155119
6

二维码管理

等待加载动态数据...

等待加载动态数据...

展开