服务热线: 0510-88155119
13301510675@163.com
Language
项目案例 Case
Case 激光位移

激光在线测厚振动分析与精度优化

日期: 2022-01-17
浏览次数: 132

摘要:激光测厚具有安全可靠、测量精度高、测量范围大等优点,广泛应用于纸张、电池极片等薄膜类材料厚度的在线测量。带材宽幅方向扫描测厚时由于扫描架往复运动会产生机械振动,影响在线测厚精度。针对该问题,以锂离子电池极片厚度测量为例,使用双激光差动式测厚平台对电池极片和铜箔分别进行厚度测量,然后对测厚数据进行频谱分析,探究其振动规律的相似性,并基于频谱分析结果采用滑动带阻滤波方式对测厚数据进行处理,滤波后极片和铜箔的厚度极差分别降低了33.4%和73.8%,有效过滤了机械振动导致的测量误差,可满足极片和铜箔厚度测量的精度要求。


关键词:激光测厚;振动;频谱;滤波


0引言

激光测厚具有安全可靠、测量精度高、测量范围大等优点,广泛应用于纸张、木板、钢板、传输带、橡胶片、电池极片等材料厚度的在线检测。如在锂离子电池生产制造过程中,激光测厚就被用于极片涂布和辊压厚度的在线测量,以保证电池极片的良品率,从而保障电池的安全性、容量和寿命等关键指标。薄膜材料的制造大多采用低成本、高效率的卷对卷制造工艺,在加工制造的过程中,为了实现带材宽幅方向的厚度测量,一般需要采用多传感器或扫描式测量的方式,后者由于低成本优势在工业界应用较多。


扫描式测厚时由于扫描架的往复运动产生的机械振动,极大地影响了其测量精度,使得其无法满足电池极片等高精度应用领域的测量需求。在扫描过程中,激光位移传感器固定于扫描架上,受扫描运动影响,会产生姿态和相对位置的变化,大致测量值出现波动,最终导致测量结果出现偏差。除了振动之外,其他因素如激光束旋转、带材偏转等也会引起测量误差,但这些均属于静态误差,可通过标定的方式去除。因此,在激光测厚的过程中,对振动的控制和消除成为保证测量精度的关键。


对于如何降低激光测厚中的动态偏差,研究人员做了多方面的研究。在扫描架结构优化方面,中南大学的周俊峰和敖世奇对激光测厚C型架进行了模态分析与振动实验,并改进了C型架的结构;Kramer等提出了矩形框架结构,并通过添加额外的激光器和探测器来实现对上下激光位移传感器之间距离波动的补偿。在数据处理方面,郭媛等通过对钢板厚度测量结果进行补偿,弥补了因温度、板材材质不同及振动偏移引起的误差,大大提高了测量精度;关淑玲等运用数据处理的方法来消除环境白噪声的污染,比较了多种滤波方式对激光测厚振动误差消除的效果,运用加权平均法和小波滤波对数据进行处理,提高了测量精度;陈功等使用多尺度小波变换、稀疏矩阵解法对激光测厚的数据进行处理,降低了振动对测量结果的影响。这些技术和研究工作在不同层面上减小了激光扫描测厚过程中振动导致的测量误差,但同时也存在着成本高、安装精度要求高等局限性,无法满足薄膜激光测厚的需求。


基于此,本文以高精度的锂离子电池极片厚度测量为例,通过多次实验测量,探究扫描式机械振动所致误差的规律性,并分析比较了测量数据的频谱。在此基础上,采用滑动带阻滤波方法,通过匹配频率相似区间并对测量结果进行修正,来消除了振动对测量结果的影响,提高了测量精度。


基于滑动带阻滤波的振动补偿方法

振动干扰对应的频率并非是固定的,而是表现为一定区间的复杂频谱,是许多不同频率和不同振幅的谐振组合。解决复杂频谱去噪问题的关键是要有效区分有用信号和噪声信号,并去除噪声信号。为此,本文提出一种滑动带阻滤波的方法,通过滑动区间的方式寻找频谱之间相似度最大的部分,从而确定振动噪声频率段,最终达到去除噪声的目的。


在激光测厚过程中,有用信息为待测材料的厚度波动信息,噪声信号主要成分为机械振动。基于此,含机械振动噪声的厚度数据滑动带阻滤波的具体步骤如下:

1)在同一工作条件下采集不同对象的多组厚度数据,对采集到的厚度信号值进行傅里叶变换并进行归一化处理;

2)选择起始频率值f(f大于厚度波动频率)、终止频率值f和振动频率所在范围边界f。利用余弦相似度计算公式计算待测带材在所选频率区间内的余弦相似度C,其计算公式为

激光在线测厚振动分析与精度优化

式中,X,Y为两组频谱所选区间的数据点,n为带宽,n=f-f

3)将频率区间向右扩展L,即起始频率值为fa,终止频率值为f+L,利用余弦相似度计算公

式计算待测带材在新频率区间内的余弦相似度C1,同时记录对应的频率区间;

4)重复步骤3)m次,每次计算的余弦相似度为C,直至终止频率值f+mL到达振动频率所在的范围边界f

5)比较多次计算得到的余弦相似度(C~C),选择最大相似度Cmax的对应区间作为相似区间;

6)当数据组数量超过2时,应综合考虑各个数据组之间的相似度,依据平均相似度选择最终的相似区间,平均相似度Cavg的计算方法见式(2):

激光在线测厚振动分析与精度优化

式中,αij为权重,Cij,m为第i组与第j组数据在第m次时的相似度,Cavg,m为第m次的相似度平均值,不做特殊说明时α=1/n;

7)针对相似区间,设计带阻滤波器对数据进行滤波处理,实现振动补偿。整个算法的流程如图1所示。

激光在线测厚振动分析与精度优化

图1滑动带阻滤波算法流程图


2激光测厚实验

2.1实验装置

双激光位移传感器上下差动式测厚系统主要包括激光测量装置、校准装置、横向扫描运动机构、机架等四部分。系统原理图如图2所示,整个装置通过地脚固定在地面,极片经张力辊绷直后水平铺放在传送辊之间,激光位移传感器固定于扫描C架上下两臂,对极片进行差动式测厚。激光测厚系统基本原理如图2所示,根据C架间隔距离S和两个激光位移传感器测得的位移值A,B可得带材厚度h=S-A-B。激光测量装置采用某品牌激光位移传感器(测量范围为±3mm,重复精度为0.02μm),能够满足极片测厚的精度要求;电机控制C架做扫描运动,实现对带材宽幅方向厚度的动态测量。测量过程中,激光位移传感器将测得的厚度数据实时传输至上位机进行读取和存储。

激光在线测厚振动分析与精度优化

图2测厚系统原理图


为了探究测厚系统的精度以及振动对测量结果的影响,设计并进行了多组实验。实验材料包括500μm(制造精度为±μm)的标准厚度量块、15μm的空铜箔(制造精度为±μm)和180.5μm的电池极片(制造精度为±μm)。其中标准厚度量块用于测厚系统的精度检验和标定,其余材料用于检验测厚系统的有效性并分析机械振动对测量精度的影响。实验方式包括静态测厚和动态扫描测厚,其中静态实验为静态定点测厚,动态实验为C架以55mm/s速度移动的扫描测厚。


2.2实验步骤

1)测厚系统精度检验实验

首先对500μm的标准厚度量块进行厚度测量,将标准厚度量块置于中空载物台,进行单点静态测厚,检验静态条件下该测厚系统的厚度测量结果是否满足精度要求。

2)测厚系统标定

将标准片调整为水平状态,移动C型架到标准片的位置进行测量,重复多次得到平均厚度测量值H,与标准片实际厚度值h相减得到差值,则标准片的测量值H被校准成了实际值h,系统静态误差得以消除,实现系统标定。

3)重复性测量实验

系统标定后,将带材绷紧固定于张力辊和过辊上,对厚度为180.5μm的电池极片同一部分进行多

次厚度扫描测量,对比测量结果,检验该测厚系统是否具有较高的重复精度。

4)空铜箔、极片厚度测量实验

将15μm的空铜箔和180.5μm的电池极片固定于张力辊和过辊上,用55mm/s的扫描速度对铜箔和电池极片进行动态横向扫描测量。根据测厚结果检验测厚系统是否满足实际锂离子电池极片生产制造过程中的测量精度要求。


3结果与讨论

3.1测厚实验标定及重复性验证

本实验采用500μm的标准厚度量块,目的是检验测厚系统的精度,测量结果如图3(a)所示,厚度极差仅为0.28μm(优于制造精度1μm),说明测厚平台的精度满足测量要求。

激光在线测厚振动分析与精度优化

(a)测厚数据


实验中对同一极片的同一部位以55mm/s的扫描速度进行两次扫描测量,结果如图3(b)所示,两次测厚结果基本吻合,相差最大值约为1.5μm,验证了测厚系统的重复精度。

激光在线测厚振动分析与精度优化

(b)两次重复扫描测量结果

图3标准厚度量块测厚及重复性验证结果


3.2极片、空铜箔扫描测厚

在上一节图3(b)中,扫描测厚过程测量结果波动较大,对图3(b)测厚数据进行频谱分析,结果如图4所示。对比静态测量数据的频谱和扫描测量数据的频谱,可以看出静态误差对频域的影响远低于振动和带材本身厚度波动带来的影响,因而去除测量过程中振动的影响是保证测量精度的关键。此外,在测厚数据的频域分析中,厚度波动为低频信号,而振动带来的干扰在频谱中也体现为低频信号,故在数据处理时,应注意保留真实的厚度波动信息。

激光在线测厚振动分析与精度优化

图4静态、扫描测量频谱图


极片和铜箔在55mm/s的扫描速度下得到的测厚数据的频谱如图5所示。可以看出,极片与铜箔的频谱变化规律十分相似,在低频、250Hz和400Hz附近都有着相近的频率分布,且高幅值的信号主要集中在低频部分,与实际机械振动和厚度波动的频谱相符。由频谱的相似性推断,在相同的试验环境下,极片和铜箔测厚过程受到的影响是相近的。在本文的实验条件下,C架的振动是低频的,在对测厚数据进行处理的过程中,运用求交的思想,找到低频段中相似的部分,以此作为振动的影响。

激光在线测厚振动分析与精度优化

(a)电极1       (b)铜箔1


激光在线测厚振动分析与精度优化

(c)电极2       (d)铜箔2


激光在线测厚振动分析与精度优化

(e)电极3       (f)铜箔3

图5电池极片、铜箔振动频谱图


匹配最佳相似区间采用第1节中所述方法,对频谱数据进行滑动带阻滤波处理。根据图5及机械振动频率,选择fa=10Hz,fb=15Hz,fv=150Hz,L=1Hz,最终选择Cmax对应频率区间10~103Hz作为相似区间,此时极片1,2,3和铜箔1,2,3相似度结果如图6所示。

激光在线测厚振动分析与精度优化

图6相似度


通过对比极片和铜箔频谱,发现在10~103Hz区间极片与铜箔的频谱吻合度较高,而极片和铜箔基于相同条件进行扫描测量,因此该频率段即为振动干扰的体现;而在1~5Hz区间,极片幅值远大于铜箔幅值,可视为本身厚度的波动体现。由此可见,厚度本身的波动频率和振动所致的频率有着数量级上的区别,通过滑动带阻滤波能较好地分离出厚度信息。


基于此,设计带阻滤波器对数据进行处理,滤除10~103Hz区间信号,得到了修正后的数据,结果如图7及表1所示。可看出在C架移动扫描的情况下,滤波处理前极片和空铜箔厚度测量值波动较大,经滤波处理后,整体数据较为平稳。其中铜箔滤波后极差为0.73μm(降低了73.8%),满足铜箔制造精度±1μm的要求。极片滤波后极差为4.06μm(降低了33.4%),此外,在工业生产中,极片本身涂布厚度约有±2μm的精度偏差,图7中修正后的数据波动符合实际厚度变化,说明滑动带阻滤波处理有效消除了振动对测厚结果的干扰,同时较好地保留了厚度的真实值。

激光在线测厚振动分析与精度优化

(a)极片厚度


激光在线测厚振动分析与精度优化

(b)铜箔厚度

图7扫描厚度测量结果


激光在线测厚振动分析与精度优化


4结语

带材宽幅方向动态扫描测厚时,扫描架的往复运动会产生复杂的机械振动,影响激光测厚精度。本文以锂离子电池极片和空铜箔测量为例,发现空铜箔测厚数据的频谱和电池极片测厚数据频谱十分相似,且高幅值干扰信号主要集中于低频部分,其频率与机械振动频率较为符合,说明二者在测量的过程中受到了相似机械振动的干扰,最终导致了测量误差。基于此,提出了滑动带阻滤波的方法,寻找信号频谱最佳相似区间作为振动噪声区间,并设计滤波器对测量数据进行处理。通过相似度匹配可得,振动所致的噪声频率为10~103Hz,与带材本身厚度波动频率(1~5Hz)存在数量级上的差别,两者能够较好地分离。通过带阻滤波器去除10~103Hz区间的振动频率,滤波后极片和铜箔的极差分别降低了33.4%和73.8%,可满足实际的测厚精度要求。



论文标题: Vibration Analysis And Precision Optimization of Laser OnlineThickness Measuremen


Case / 相关推荐
2026 - 01 - 23
点击次数: 3
0. 概述 (Abstract)随着高端制造业中3C玻璃面板、晶圆表面涂胶、透明薄膜以及光学透镜的广泛应用,透明材质的非接触式在线测量成为了视觉检测领域的“深水区”。传统的激光检测往往因透明物体的透射特性(光线穿透)和内部多重反射(“鬼影”杂波),导致测量数值漂移、精度下降。针对透明物体平面度及倾斜度的高精度量测,** 本方案采用“收光模组改良+半透明算法消除机制”的双重技术架构**,依托 高速高...
2025 - 12 - 23
点击次数: 23
摘要激光三角法测量技术凭借非接触、高精度、高效率的优势,已成为现代制造业中复杂曲面检测的核心手段。本文以LTP系列高速高精度激光三角位移传感器为研究对象,系统梳理激光三角法测量原理,深入分析复杂曲面几何特性(倾角、转角)对测量精度的影响机制,依托马晓帆硕士论文《复杂曲面激光三角法测量的精度提高技术研究》中的实验数据与误差修正模型,结合工业部署案例,论证LTP系列传感器在摆线齿轮等典型复杂曲面测量中...
2025 - 12 - 23
点击次数: 15
基于激光位移测量的动静压主轴回转精度测试技术研究——兼论泓川科技 LTP 激光位移传感器在高端装备中的工程应用价值一、引言:高端制造对主轴回转精度测试提出的新要求在高端数控机床、精密磨床以及超精密加工装备中,主轴回转精度被公认为影响零件加工质量的核心指标之一。主轴的回转精度不仅直接决定了工件的圆度、表面粗糙度和形位公差,还与加工系统的动态稳定性、加工一致性和设备可靠性密切相关。随着制造业向高精度、...
2025 - 12 - 19
点击次数: 17
核心摘要:在一段时期内,日本基恩士(KEYENCE)的LK系列特别是LK-G5000系列定义了高速激光位移传感器的行业基准。然而,随着本土传感器技术从模仿走向创新,中国厂商泓川科技(Chuantec)凭借LTP系列高速高精度激光三角位移传感器,以“技术指标在工业甜蜜区看齐”和“1/2价格的绝对优势”,正在锂电、3C、半导体及重工行业迅速确立“头部平替”的地位。本文将从光路架构、运算控制模式、详细核...
2025 - 12 - 19
点击次数: 13
——深度解构FMCW干涉式激光测距仪在长超程精密测量中的算法与数据逻辑Meta Description: 探索如何在不牺牲精度的情况下摆脱长度限制。本文深度技术解析干涉式激光测距仪利用FMCW光子集成技术,打破百米量程与1nm分辨率的物理矛盾。适用于高端半导体、精密机床与大型自动化领域。如果将工业级位置反馈传感器市场画在一张图表上,我们会看到绝大多数产品都挤在两条轴线上:一条是“短量程极高精度”(...
2025 - 12 - 17
点击次数: 11
摘要动力电池极片辊压后的厚度均匀性直接决定电池能量密度、功率密度及安全性能,微米级的厚度偏差可能导致内阻不一致、热失控风险升高。本文基于无锡泓川科技 LTP 系列激光三角位移传感器,设计一套辊压极片在线厚度实时监测系统,通过双探头对射式安装、160kHz 高速采样与温漂补偿算法,实现极片厚度 0.03μm 级重复精度测量。结合动力电池极片制造工艺需求,详细阐述系统测量原理、结构设计、实施步骤,通过...
About Us
关于泓川科技
专业从事激光位移传感器,激光焊缝跟踪系统研发及销售的科技公司
中国 · 无锡 · 总部地址:无锡新吴区天山路6号
销售热线:0510-88155119 
图文传真:0510-88152650
Working Time
我们的工作时间
周一至周五:8:00-18:00
周六至周日:9:00-15:00
Shown 企业秀 More
  • 1
    2023 - 02 - 21
    激光位移传感器是一种用于测量距离和轮廓表面的自动光学传感技术。它的工作原理是发射激光束,激光束被目标表面或区域反射,然后光束返回所需的时间被转换为距离测量。它的主要应用是尺寸计量,可以精确测量长度、距离和粗糙度轮廓。激光位移传感器也用于工业自动化、机器人和机器视觉应用。什么是激光位移传感器?       激光位移传感器是一种用于测量距离和轮廓表面的自动光学传感技术。该系统通过从激光源发射激光来工作。然后,该激光束从目标表面或区域反射回来。然后,光束覆盖距离和返回所花费的时间被转换为距离测量或轮廓。激光位移传感器通常由三个主要部分组成:*激光源*光学探测器*处理器      激光源通常是激光二极管,其波长适合于目标区域及其光学特性。激光二极管产生激光束,该激光束被引导到目标表面或区域上。然后光束被反射回检测器。根据应用,可以用一定范围的脉冲频率调制光束。光束由光学检测器检测。检测器将光转换成电信号,然后将其发送到处理器。然后处理器处理信息并将测量数据发送到数字显示器或计算机。然后,数据可用于进一步分析或控制自动化过程。历史:       激光位移传感器最初是在20世纪70年代开发的,是麻省理工学院研究项目的一部分。这项研究由美国陆军研究实验室和美国空军赖特实验室赞助。该技术最...
  • 2
    2025 - 01 - 09
    一、光谱共焦传感技术解密光谱共焦技术的起源,要追溯到科学家们对传统成像精度局限的深刻洞察。在 20 世纪 70 年代,传统成像在精密测量领域遭遇瓶颈,为突破这一困境,基于干涉原理的光谱共焦方法应运而生,开启了高精度测量的新篇章。进入 80 年代,科研人员不断改进仪器设计,引入特殊的分光元件,如同给传感器装上了 “精密滤网”,精准分辨不同波长光信号;搭配高灵敏度探测器,将光信号转化为精确数字信息。同时,计算机技术强势助力,实现数据快速处理、动态输出测量结果,让光谱共焦技术稳步走向成熟。90 年代,纳米技术、微电子学蓬勃发展,对测量精度要求愈发苛刻。科研团队迎难而上,开发新算法、模型优化测量,减少误差;增设温度控制、机械振动抑制功能,宛如为传感器打造 “稳定护盾”,确保在复杂实验环境下结果稳定可靠,至此,光谱共焦技术成为精密测量领域的关键力量。添加图片注释,不超过 140 字(可选)二、HCY 光谱共焦传感器工作原理(一)核心原理阐释HCY 光谱共焦传感器的核心在于巧妙运用光学色散现象。当内部的白光点光源发出光线后,光线会迅速射向精密的透镜组。在这里,白光如同被解开了神秘面纱,依据不同波长被精准地色散开来,形成一道绚丽的 “彩虹光带”。这些不同波长的光,各自沿着独特的路径前行,最终聚焦在不同的高度之上,构建起一个精密的测量范围 “标尺”。当光线抵达物体表面,会发生反射,其中特定波长的光...
  • 3
    2025 - 09 - 02
    泓川科技激光位移传感器产品技术报告尊敬的客户: 感谢您对泓川科技激光位移传感器产品的关注与信任。为帮助您全面了解我司产品,现将激光位移传感器相关技术信息从参数指标、设计原理、结构设计等八大核心维度进行详细说明,为您的选型、使用及维护提供专业参考。一、参数指标我司激光位移传感器涵盖 LTP400 系列与 LTP450 系列,各型号核心参数经纳米级高精度激光干涉仪标定验证,确保数据精准可靠,具体参数如下表所示:表 1:LTP400EA参数表参数类别具体参数LTP400EA备注基础测量参数测量中心距离400mm以量程中心位置计算(*1)量程200mm-重复精度(静态)3μm测量标准白色陶瓷样件,50kHz 无平均,取 65536 组数据均方根偏差(*2)线性度±0.03%F.S.(F.S.=200mm)采用纳米级激光干涉仪标定(*3)光源与光斑光源类型-激光功率可定制,部分型号提供 405nm 蓝光版本(*4)光束直径聚焦点光斑 Φ300μm中心位置直径,两端相对变大(*5)电气参数电源电压DC9-36V-功耗约 2.5W-短路保护反向连接保护、过电流保护-输出与通信模拟量输出(选配)电压:0-5V/010V/-1010V;电流:420mA探头可独立提供电压、电流与 RS485 输出(*6)通讯接口RS485 串口、TCP/IP 网口可选配模拟电压 / 电流输出模块(*7)响应...
  • 4
    2023 - 10 - 20
    面对反射率不同的目标物时,激光位移传感器需要调整以下方面以确保测量的稳定性:根据目标物的反射率变化,调整接收光量。反射率较高的目标物可能导致光量饱和,而反射率较低的目标物可能无法获得足够的接收光量。因此,需要根据目标物的反射特性,适时调整激光位移传感器的接收光量,以使其处于最佳工作状态。使用光量控制范围调整功能。这种功能可以预先决定接收光量的上限和下限,缩短获取最佳光量的时间,从而可以更快地调整光量。针对反射率较高的目标物,需要减小激光功率和缩短发射时间,以避免光量饱和。而对于反射率较低的目标物,则应增大激光功率和延长发射时间,以确保获得足够的接收光量。在调整过程中,需要注意测量反射率急剧变化位置的稳定程度,以及使用光量调整功能以外功能时的稳定程度。如果无法稳定测量反射率不同的目标物,可能是由于目标物的反射光因颜色、反光、表面状况(粗度、倾斜度)等因素而发生变化,导致感光元件(接收光波形)上形成的光点状态也会随之变化。这种情况下,需要通过反复试验和调整,找到最佳的激光位移传感器工作参数。总结来说,激光位移传感器需要根据目标物的反射率变化,调整接收光量、激光发射时间、激光功率和增益等参数,以确保测量的稳定性和准确性。同时,需要注意目标物的反射特性及其变化情况,以便及时调整激光位移传感器的参数。
  • 5
    2025 - 01 - 19
    一、引言1.1 研究背景与意义在科技飞速发展的当下,半导体和电子部件制造行业正经历着深刻的变革。随着电子产品的功能不断增强,尺寸却日益缩小,对半导体和电子部件的性能、精度以及可靠性提出了极为严苛的要求。从智能手机、平板电脑到高性能计算机、物联网设备,无一不依赖于先进的半导体和电子部件技术。而这些部件的质量与性能,在很大程度上取决于制造过程中的测量、检测和品质管理环节。光学测量技术作为一种先进的测量手段,凭借其高精度、非接触、快速测量等诸多优势,在半导体和电子部件制造领域中发挥着愈发关键的作用。它能够精确测量微小尺寸、复杂形状以及表面形貌等参数,为制造过程提供了不可或缺的数据支持。举例来说,在半导体芯片制造中,芯片的线宽、间距等关键尺寸的精度要求已经达到了纳米级别,光学测量技术能够准确测量这些尺寸,确保芯片的性能符合设计标准。再如,在电子部件的封装过程中,光学测量可以检测焊点的形状、尺寸以及位置,保障封装的可靠性。光学测量技术的应用,不仅能够有效提高产品的质量和性能,还能显著降低生产成本,增强企业在市场中的竞争力。通过实时监测和精确控制制造过程,能够及时发现并纠正生产中的偏差,减少废品率和返工率,提高生产效率。因此,深入研究光学测量在半导体和电子部件制造中的典型应用,对于推动行业的发展具有重要的现实意义。1.2 研究目的与方法本报告旨在深入剖析光学测量在半导体和电子部件制造测量、检测...
  • 6
    2025 - 01 - 14
    一、引言1.1 激光位移传感器概述激光位移传感器,作为工业测量领域的关键设备,凭借其卓越的非接触测量特性,正日益成为众多行业实现高精度测量与自动化控制的核心技术。它主要利用激光的反射特性,通过精确测量反射光的相关参数,实现对目标物体的位移、距离、厚度等几何量的精准测定。这一技术的诞生,为现代制造业、科研实验以及诸多工业生产过程,提供了高效、可靠且精准的测量手段。其工作原理基于激光三角测量法和激光回波分析法。激光三角测量法常用于高精度、短距离测量场景。在该方法中,激光位移传感器发射出一束激光,射向被测物体表面,物体表面反射的激光经由特定的光学系统,被传感器内部的探测器接收。根据激光发射点、反射点以及探测器接收点之间所构成的三角几何关系,通过精密的计算,能够精确得出物体与传感器之间的距离 。激光回波分析法更适用于远距离测量,传感器以每秒发射大量激光脉冲的方式,向被测物体发送信号,随后依据激光脉冲从发射到被接收的时间差,精确计算出物体与传感器之间的距离。在工业测量领域,激光位移传感器的重要地位不容小觑。在汽车制造行业,它被广泛应用于车身零部件的尺寸检测、装配精度控制等环节。通过对汽车零部件的精确测量,能够确保各个部件的尺寸符合设计要求,从而提升整车的装配质量和性能。在电子制造领域,激光位移传感器可用于检测芯片的尺寸、平整度以及电子元件的贴装精度等。在芯片制造过程中,其微小的尺寸和极高的精...
  • 7
    2025 - 01 - 29
    五、光谱共焦传感器测量厚度的局限性及解决措施5.1 局限性分析5.1.1 测量范围限制光谱共焦传感器的测量范围相对有限,一般在几毫米到几十毫米之间。这是由于其测量原理基于色散物镜对不同波长光的聚焦特性,测量范围主要取决于色散物镜的轴向色差范围以及光谱仪的工作波段。在实际应用中,对于一些大尺寸物体的厚度测量,如厚壁管材、大型板材等,可能需要多次测量拼接数据,增加了测量的复杂性和误差来源。例如,在测量厚度超过传感器量程的大型金属板材时,需要移动传感器进行多次测量,然后将测量数据进行拼接处理,但在拼接过程中可能会因测量位置的定位误差、测量角度的变化等因素导致测量结果的不准确。5.1.2 对被测物体表面状态的要求虽然光谱共焦传感器对多种材料具有良好的适用性,但被测物体表面的粗糙度、平整度等因素仍会对测量精度产生一定影响。当被测物体表面粗糙度较大时,表面的微观起伏会导致反射光的散射和漫反射增强,使得反射光的强度分布不均匀,从而影响光谱仪对反射光波长的准确检测,导致测量误差增大。对于表面平整度较差的物体,如存在明显翘曲或弯曲的板材,会使传感器与物体表面的距离在不同位置发生变化,超出传感器的测量精度范围,进而影响厚度测量的准确性。例如,在测量表面粗糙的橡胶板材时,由于橡胶表面的微观纹理和不规则性,测量精度会明显下降,难以达到对光滑表面测量时的高精度水平。5.1.3 成本相对较高光谱共焦传感器作为...
  • 8
    2023 - 02 - 26
    今天我为大家展示安全激光扫描仪产品,安全激光扫描仪适用于各种应用技术领域,      在设备开发期间我们给予了特别关注,以确保它能够在广泛应用中发挥最佳功能,尤其重视大型工作区域的防护,例如机床正面区域或机器人工作区域。      其他应用包括移动车辆的防护,例如侧向滑动装置或移动运输设备,无人驾驶运输系统。甚至垂直安装激光扫描仪的出入口保护系统。尽管我们在安全激光扫描与领域,已经有数10年的经验了,但该应用领域仍然面对许多挑战。不过我们的激光安全扫描仪具有独一无二的功能属性,例如具有8.25米检测距离和270度扫描范围。       属于目前市场上的高端设备,非常适合侧向滑动装置正面区域等大型区域或长距离的防护。该设备的另一个亮点就是能够同时监测两个保护功能。这在许多应用领域中,独具优势以前需要使用两个设备,如今只需要使用一台这样的安全激光扫描仪,即可完成两台设备的功能。               实践中遇到的一项挑战是设计一款异常强骨的激光安全扫描仪。能够适应周围环境中可能存在的灰尘和颗粒等恶劣条件,因此我们提供了较分辨率达到0.1度的设备。它在目前市场上具有非常高的价值。   ...
Message 最新动态
蓝光光源激光位移传感器:优势、原理与特殊场景解决方案 —— 泓川科技 LTP 系列 405nm 定制... 2025 - 10 - 21 在工业精密测量中,传统红光激光位移传感器常受高反射、半透明、高温红热等特殊场景限制,而蓝光光源(405nm 波长)凭借独特物理特性实现突破。以下通过 “一问一答” 形式,详解蓝光传感器的优势、原理构造,并结合泓川科技 LTP 系列定制方案,看其如何解决特殊环境测量难题。1. 蓝光光源激光位移传感器相比传统红光,核心优势是什么?蓝光传感器的核心优势源于 405nm 波长的物理特性,相比传统 655nm 左右的红光,主要体现在三方面:更高横向分辨率:根据瑞利判据,光学分辨率与波长成反比。蓝光波长仅为红光的 62%(405nm/655nm≈0.62),相同光学系统下横向分辨率可提升约 38%,能形成更小光斑(如泓川 LTP025 蓝光版光斑最小达 Φ18μm),适配芯片针脚、晶圆等微米级结构测量。更强信号稳定性:蓝光单光子能量达 3.06eV,远高于红光的 2.05eV。在低反射率材料(如橡胶、有机涂层)表面,能激发出更强散射信号;同时穿透性更低,仅在材料表层作用,避免内部折射干扰,适合表面精准测量。更优抗干扰能力:蓝光波段与红热辐射(500nm 以上)、户外强光(可见光为主)重叠度低,搭配专用滤光片后,可有效隔绝高温物体自发光、阳光直射等干扰,这是红光难以实现的。2. 蓝光激光位移传感器的原理构造是怎样的?为何能实现高精度测量?蓝光传感器的高精度的核心是 “光学设计 + 信号处理 + ...
泓川科技国产系列光谱共焦/激光位移传感器/白光干涉测厚产品性能一览 2025 - 09 - 05 高精度测量传感器全系列:赋能精密制造,适配多元检测需求聚焦半导体、光学膜、机械加工等领域的精密检测核心痛点,我们推出全系列高性能测量传感器,覆盖 “测厚、对焦、位移” 三大核心应用场景,以 “高精准、高速度、高适配” 为设计核心,为您的工艺控制与质量检测提供可靠技术支撑。以下为各产品系列的详细介绍:1.LTS-IR 红外干涉测厚传感器:半导体材料测厚专属核心用途:专为硅、碳化硅、砷化镓等半导体材料设计,精准实现晶圆等器件的厚度测量。性能优点:精度卓越:±0.1μm 线性精度 + 2nm 重复精度,确保测量数据稳定可靠;量程适配:覆盖 10μm2mm 测厚范围,满足多数半导体材料检测需求;高效高速:40kHz 采样速度,快速捕捉厚度数据,适配在线检测节奏;灵活适配:宽范围工作距离设计,可灵活匹配不同规格的检测设备与场景。2. 分体式对焦传感器:半导体 / 面板缺陷检测的 “高速对焦助手”核心用途:针对半导体、面板领域的高精度缺陷检测场景,提供高速实时对焦支持,尤其适配显微对焦类检测设备。性能优点:对焦速度快:50kHz 高速对焦,同步匹配缺陷检测的实时性需求;对焦精度高:0.5μm 对焦精度,保障缺陷成像清晰、检测无偏差;设计灵活:分体式结构,可根据检测设备的安装空间与布局灵活调整,降低适配难度。3. LT-R 反射膜厚仪:极薄膜厚检测的 “精密管家”核心用途:专注于极薄膜...
多方面研究泓川科技LTP系列大量程全国产激光位移传感器 2025 - 09 - 02 泓川科技激光位移传感器产品技术报告尊敬的客户: 感谢您对泓川科技激光位移传感器产品的关注与信任。为帮助您全面了解我司产品,现将激光位移传感器相关技术信息从参数指标、设计原理、结构设计等八大核心维度进行详细说明,为您的选型、使用及维护提供专业参考。一、参数指标我司激光位移传感器涵盖 LTP400 系列与 LTP450 系列,各型号核心参数经纳米级高精度激光干涉仪标定验证,确保数据精准可靠,具体参数如下表所示:表 1:LTP400EA参数表参数类别具体参数LTP400EA备注基础测量参数测量中心距离400mm以量程中心位置计算(*1)量程200mm-重复精度(静态)3μm测量标准白色陶瓷样件,50kHz 无平均,取 65536 组数据均方根偏差(*2)线性度±0.03%F.S.(F.S.=200mm)采用纳米级激光干涉仪标定(*3)光源与光斑光源类型-激光功率可定制,部分型号提供 405nm 蓝光版本(*4)光束直径聚焦点光斑 Φ300μm中心位置直径,两端相对变大(*5)电气参数电源电压DC9-36V-功耗约 2.5W-短路保护反向连接保护、过电流保护-输出与通信模拟量输出(选配)电压:0-5V/010V/-1010V;电流:420mA探头可独立提供电压、电流与 RS485 输出(*6)通讯接口RS485 串口、TCP/IP 网口可选配模拟电压 / 电流输出模块(*7)响应...
Copyright ©2005 - 2013 无锡泓川科技有限公司

1

犀牛云提供企业云服务
Our Link
X
3

SKYPE 设置

4

阿里旺旺设置

等待加载动态数据...

等待加载动态数据...

5

电话号码管理

  • 0510-88155119
6

二维码管理

等待加载动态数据...

等待加载动态数据...

展开