服务热线: 0510-88155119
13301510675@163.com
Language
项目案例 Case
Case 激光位移

靶丸内表面轮廓的白光共焦光谱测量技术

日期: 2022-01-17
浏览次数: 83

摘要:靶丸内表面轮廓是激光核聚变靶丸的关键参数,需要精密检测。本文首先分析了基于白光共焦光谱和精密气浮轴系的靶丸内表面轮廓测量基本原理,建立了靶丸内表面轮廓的白光共焦光谱测量方法。此外,搭建了靶丸内表面轮廓测量实验装置,建立了基于靶丸光学图像的辅助调心方法,实现了靶丸内表面轮廓的精密测量,获得了准确的靶丸内表面轮廓曲线;最后,对测量结果的可靠性进行了实验验证和不确定度分析,结果表明,白光共焦光谱能实现靶丸内表面低阶轮廓的精密测量,其测量不确定度优于01μm


关键词:白光共焦光谱;内表面轮廓;靶丸;激光聚变

1     引言

在激光惯性约束聚变(ICF)实验中,靶丸内、外表面轮廓的非理想球形度偏差将会在靶丸内爆过程中造成瑞利-泰勒流体力学不稳定性的快速增长,降低压缩效率,甚至导致球壳破裂。因此,精密测量靶丸内、外表面圆周轮廓特征对理解激光核聚变靶丸内爆物理过程和改进靶丸制备工艺均有着十分重要的意义。为了检测靶丸的表面轮廓信息,国内外ICF研究机构建立了基于精密气浮轴系和原子力显微镜(AFM)的靶丸表面轮廓测量技术,实现了靶丸外表面轮廓的全表面检测,其测量不确定度可达到纳米量级。对于靶丸内表面轮廓的无损检测,目前常用的技术手段是X射线照相法。该方法利用靶丸X射线吸收强度在界面处不连续的特点,通过计算吸收强度曲线的亮度或二阶微分来确定各壳层的轮廓信息,其低阶圆周轮廓测量不确定度为03μm,不能完全满足靶物理实验对靶丸内表面圆周轮廓测量的精度需求。因此,如何实现靶丸内表面轮廓的高精度测量,目前还是一个亟待解决的技术难题。

近年来,共焦测量方法由于具有高精度的三维成像能力,已经广泛用于表面轮廓与三维精细结构的精密测量。本文通过分析白光共焦光谱的基本原理,建立了透明靶丸内表面圆周轮廓测量校准模型;同时,基于白光共焦光谱并结合精密旋转轴系,建立了靶丸内表面圆周轮廓精密测量系统和靶丸圆心精密定位方法,实现了透明靶丸内、外表面圆周轮廓的纳米级精度测量。

2     测量原理

1(a)是白光共焦光谱传感器的工作原理示意图,白光光源通过物镜组形成一系列连续的沿着光轴的单色光点像,分别对应λ1λn,每一种波长对应一个纵向位置。当待测样品置于测量范围内时,某一种特定的波长λM正好聚焦到样品表面的M点并被反射,反射光被分光镜反射后经针孔滤波,滤波后变为以λM为中心的窄带光信号(带宽为Δλ),被光谱仪接收。通过分析样品表面反射光的波长,可高精度地确定样品表面的纵向位置。将靶丸安装在精密气浮主轴前端,使白光共焦光谱传感器聚焦于靶丸赤道位置(白光共焦光谱聚焦光斑在数微米量级,靶丸表面的测量区域可近似为平面),由于靶丸内、外表面的反射,此时,反射光谱中将会出现两个峰值,根据这两个反射光谱的波长,可同时获得透明靶丸的内、外表面相对于传感器零点的高度数据。利用精密气浮轴系带动靶丸平稳旋转,同时采集靶丸各个位置的内、外表面轮廓高度数据,当气浮轴系旋转360°,即可获得靶丸的内、外表面圆周轮廓数据,对应位置内、外表面轮廓数据之差即为靶丸的壳层厚度。

当光线通过靶丸壳层时,由于光线的折射,靶丸内表面轮廓的直接测量数据不能表征其真实轮廓特征,为得到真实的内表面轮廓数据,需要对白光共焦光谱的直接测量数据进行修正。


靶丸内表面轮廓的白光共焦光谱测量技术


靶丸内表面轮廓的白光共焦光谱测量技术

1 (a)白光共焦光谱传感器的工作原理示意图和(b)透明样品下表面轮廓的测量原理

1(b)是透明样品下表面轮廓的白光共焦光谱测量原理示意图,图中,p1p2是样品上表面相对于传感器零点的位置,p3p4是样品下表面相对于传感器零点的位置。

利用白光共焦光谱测量靶丸壳层内表面轮廓数据时,其测量结果与白光共焦光谱传感器光线的入射角、靶丸壳层厚度、壳层材料折射率、靶丸内外表面轮廓的直接测量数据等因素紧密相关。

3     测量装置

利用精密气浮旋转轴系及白光共焦光谱传感器,搭建了透明靶丸内表面轮廓测量实验装置,该测量装置示意图如图2所示。该装置主要由精密气浮主轴、辅助轴系、白光共焦光谱仪、数据采集单元以及靶丸调心机构等几部分组成,其中,传感器采用法国STIL公司的白光共焦光谱仪,其测量范围为400μm,光斑尺寸为17μm。测量过程中,将靶丸放置于精密气浮旋转轴系上端的负压吸附吸嘴上,白光共焦光谱传感器垂直聚焦于靶丸表面赤道位置,通过控制软件使轴系旋转与光谱数据采集同步。在旋转轴系开始转动时同步采集靶丸内外表面的轮廓数据,旋转轴系旋转一周就可以得到靶丸赤道位置的圆周轮廓数据;利用辅助轴系可实现靶丸指定角度的翻转,从而实现靶丸不同位置的内表面轮廓测量。


靶丸内表面轮廓的白光共焦光谱测量技术

2 白光共焦光谱轮廓检测系统

放置于旋转轴系吸嘴上的靶丸可能出现偏心,从而导致靶丸在旋转过程中内外表面超出有效量程范围,不能实现靶丸内表面圆周轮廓的测量,因此,在测量靶丸内表面轮廓之前,需要调整靶丸中心和旋转轴系中心的相对位置,使其尽可能重合。本文采用了图像辅助调心方法,其调心原理如图3所示


靶丸内表面轮廓的白光共焦光谱测量技术

3 靶丸旋转调心原理图

通过公式,可求解靶丸旋转到某一位置时靶丸光学图像中心的位置坐标,将靶丸圆心调整到与回转中心重合;再将靶丸旋转到下一位置,调整靶丸光学图像中心与回转中心的相对位置,使二者重合;重复上述过程,若靶丸旋转一周,靶丸光学图像中心与回转中心均重合,则靶丸调心过程完成。该方法的调心精度与视频CCD的放大倍数及测量精度有关,本装置可实现小于10μm的调心精度。

4     测量结果与讨论

41靶丸内表面轮廓测量

利用上述测量方法和实验装置,对单层塑料靶丸的内、外表面轮廓进行了测量。图4是基于白光共焦光谱的靶丸外表面轮廓和校准后的内表面测量曲线,从图中可以看出,靶丸内、外表面低阶轮廓整体形状相似,局部轮廓存在一定的差异。从公式可知,靶丸内表面轮廓的校准与靶丸壳层折射率相关,而折射率可表示为入射光波长的函数,计算过程中,对于靶丸壳层,其折射率在可见光范围内的偏差较小,可取为15。此外,根据白光共焦光谱传感器的数值孔径和工作距离等参数,可计算出入射角约为28°。与外表面轮廓相比较,靶丸内表面轮廓的信噪比较差,分析认为,靶丸内表面的真实轮廓测量值与靶丸内、外表面的白光共焦光谱直接测量数据相关,其测量噪声是二者的综合效应,因此,其测量数据信噪比相对较差,这表明,利用白光共焦光谱方法,可实现靶丸低阶轮廓的测量,其高阶轮廓信息测量置信度相对较低。


靶丸内表面轮廓的白光共焦光谱测量技术

4 靶丸内外表面轮廓的白光共焦光谱测量曲线

42内表面轮廓测量数据的可靠性验证

靶丸内表面轮廓的白光共焦光谱测量技术


靶丸内表面轮廓的白光共焦光谱测量技术

5 靶丸外表面轮廓(a)及其功率谱曲线(b)

采用对比测试方法,首先对基于白光共焦光谱技术的靶丸外表面轮廓测量精度进行了考核,图5(a)是靶丸外表面轮廓的原子力显微镜轮廓仪和白光共焦光谱轮廓仪的测量曲线。为了便于比较,将原子力显微镜轮廓仪的测量数据进行了偏移。从图中可以看出,二者的低阶轮廓整体相似,局部的轮廓信息存在一定的偏差,原因在于二者在靶丸赤道附近的精确测量圆周轮廓结果不一致;此外,白光共焦光谱的信噪比较原子力低,这表明白光共焦光谱适用于靶丸表面低阶的轮廓误差的测量。图5(b)是靶丸外表面轮廓原子力显微镜轮廓仪测量数据和白光共焦光谱轮廓仪测量数据的功率谱曲线,从图中可以看出,在模数低于100的功率谱范围内,两种方法的测量结果一致性较好,当模数大于100时,白光共焦光谱的测量数据大于原子力显微镜的测量数据,这也反应了白光共焦光谱仪在高频段测量数据信噪比相对较差的特点。由于光谱传感器Z向分辨率比原子力低一个量级,同时,受环境振动、光谱仪采样率及样品表面散射光等因素的影响,共焦光谱检测数据高频随机噪声可达100nm左右。对于ICF靶丸,模数大于100的表面粗糙度信息一般在数纳米至数十纳米量级,靶丸表面真实高频轮廓数据全部淹没在白光共焦光谱系统的随机噪声之中,故白光共焦光谱仪难以获得靶丸表面轮廓的高频信息。

为进一步验证内表面轮廓测量数据的可靠性,对单面具有正弦调制结构的薄膜样品进行了测试,该薄膜样品基底厚度约为10μm,正弦调制振幅约为05μm,波长约为50μm。图6(a)是正弦调制结构向上时利用白光共焦光谱对调制样品上表面轮廓的测量数据和拟合数据,从图中可以看出,测量数据与拟合数据一致性较好,其正弦调制振幅为434nm,波长为482μm;6(b)是正弦调制薄膜(正弦调制结构向上)上表面轮廓曲线和校准前后的下表面轮廓曲线,从图中可以看出,由于受上表面的影响,校准前下表面轮廓曲线呈现周期性的调制特征,其振幅分布与上表面相反,利用公式(3)进行校准后,下表面轮廓曲线可近似为一条直线。图7(a)是正弦调制薄膜(正弦调制结构向下)上表面轮廓曲线和校准前后的下表面轮廓曲线,从图中可以看出,上表面轮廓近似为一条直线,这与图6(b)中调制薄膜校准后的轮廓曲线是一致的,此外,由于受调制薄膜折射率的影响,图7(a)中调制薄膜下表面校准前后轮廓曲线的振幅明显不同;7(b)是调制薄膜下表面轮廓曲线(校准后)的测量数据和拟合数据,相对于图6(a)的测量结果,该测量数据与拟合数据的离散性相对增大,通过正弦拟合方法所获得的正弦调制振幅为439nm,波长为482μm。当调制样品分别向上、向下放置时,白光共焦光谱的测量结果波形整体一致性较好,二者波长一致,拟合振幅偏差为5nm。该测量结果表明,利用白光共焦光谱技术可实现样品内表面低阶轮廓的精确测量。

靶丸内表面轮廓的白光共焦光谱测量技术


靶丸内表面轮廓的白光共焦光谱测量技术

6 正弦调制样品向上时的上表面轮廓测量数据(a)和校准前后的下表面轮廓数据(b)

靶丸内表面轮廓的白光共焦光谱测量技术


靶丸内表面轮廓的白光共焦光谱测量技术

7 正弦调制样品向下时的上表面轮廓测量数据(a)和校准前后的下表面轮廓数据(b)

43测量不确定度分析

利用白光共焦光谱传感器测量靶丸内表面轮廓,其测量不确定度来源主要有靶丸内、外表面的白光共焦光谱仪直接测量误差、轴系的回转误差、装置的重复性测量误差以及校准模型的误差等。上述不确定度分量中,白光共焦光谱传感器的直接测量误差主要来源于光谱传感器的分辨率和线性误差,测量结果表明,本装置所采用的光谱传感器直接测量误差最大为39nm。气浮主轴系回转精度是保证整个系统测量精度的关键因素之一,其回转误差直接叠加到测量结果中。通过测试直径为2mm的标准Cr(BallTech公司,标称球形度偏差为76nm)的圆周轮廓,对模数大于100的圆周轮廓进行滤波并计算其最小二乘圆度,由于最小二乘圆度包括了标准球的圆度误差和轴系的回转误差,可通过和方根公式计算轴系回转精度的大小。实验结果表明,标准球的最小二乘圆度为88nm,由此可得本装置主轴的回转误差约为44nm。对靶丸内表面轮廓进行多次测量,由各测量值最小二乘圆度重复性评价系统的重复测量误差。10次测量结果的最小二乘圆度为:7.1587.1767.2437.1547.0967.1437.1037.1777.1337.155μm,计算可得该测量列的标准偏差,即系统重复性误差为41nm。校准模型的误差主要来源于折射率的近似和光线入射角的近似,数值计算结果表明,折射率近似导致的最大误差约为16nm,光线入射角近似导致的最大误差约为50nm,根据和方根计算公式,可得到校准模型的测量误差为52nm

1是基于白光共焦光谱的靶丸内表面轮廓测量不确定度分量表,根据和方根计算公式可得,白光共焦光谱测量靶丸内表面低阶轮廓(模数<100)的不确定度约为89nm

1 测量不确定度分量表

靶丸内表面轮廓的白光共焦光谱测量技术


5     结论

本文通过分析光线经过靶丸壳层后的传播途径,建立了靶丸内表面轮廓的白光共焦光谱测量校准模型;搭建了基于白光共焦光谱和精密气浮轴系的靶丸内表面轮廓测量实验装置,获得了靶丸内、外表面轮廓曲线。与原子力显微镜比对测试结果表明,白光共焦光谱技术可实现靶丸模数小于100的低阶轮廓的准确测量;不确定度分析结果表明,白光共焦光谱测量靶丸内表面轮廓的不确定度约为90nm。白光共焦光谱技术不仅是精密检测靶丸内表面轮廓的可行技术手段,还可广泛应用于各类透明薄膜材料和器件内表面及厚度的精密测量领域。

论文题目:靶丸内表面轮廓的白光共焦光谱测量技术

作者:唐兴,王琦,马小军,高党忠,王宗伟,孟婕(中国工程物理研究院-激光聚变研究中心)


Case / 相关推荐
2025 - 05 - 28
点击次数: 9
一、行业背景:智能手机摄影技术升级催生精密检测需求随着智能手机摄影技术向高像素、超广角、长焦等多元化方向发展,摄像头模组的微型化与精密化程度显著提升。作为摄像头光学元件的核心承载结构,摄像头支架的平面度精度直接影响镜头光轴对准、感光元件贴合等关键工艺,进而决定成像质量的稳定性。传统人工目视检测或接触式测量方法因主观性强、效率低、易损伤工件等缺陷,已难以满足微米级精度检测需求。如何实现非接触式、高精...
2025 - 05 - 14
点击次数: 7
一、引言在锂电池生产中,电极厚度是影响电池性能的关键参数。基片涂覆活性物质后形成的粗糙表面,使用传统点光斑传感器测量时易受表面微观形貌影响,导致数据波动大、测量精度不足。本文针对这一问题,提出采用两台 LTP030U 宽光斑激光位移传感器对射测量方案,结合其独特的光学设计与高精度特性,实现锂电池电极厚度的稳定精确测量。二、应用挑战与传感器选型依据(一)测量难点分析锂电池电极基片涂粉后,表面粗糙度可...
2025 - 05 - 06
点击次数: 11
一、PCB 生产痛点:超薄板叠片检测难在电子制造中,PCB 板厚度仅 0.1-1.6mm,高速传输时极易出现多层重叠,传统检测手段却力不从心:接触式测量:机械探针易压弯薄板,且每秒仅测百次,跟不上产线速度;视觉检测:依赖稳定光源,机台振动(±50μm 级)让图像模糊,漏检率高达 5%。这些问题导致 3%-5% 的废料率,更可能让不良品流入下工序,引发焊接短路等连锁故障,成为产线效率和质量...
2025 - 03 - 22
点击次数: 25
一、传感器选型与技术优势对比颠覆性成本结构传统激光多普勒测振仪价格区间:¥150,000~¥500,000LTP080系列成本:¥11,000~¥15,000(视配置),降低设备投入90%以上维护成本对比:无光学镜片损耗,寿命>50,000小时,年维护费用低于¥500性能参数解析指标LTP080参数传统测振仪典型值采样频率50kHz(全量程)/160kHz(20%量程)1MHz~10MHz线性度&...
2025 - 03 - 19
点击次数: 26
一、项目背景与需求随着智慧交通和道路养护数字化的发展,对路面病害(如裂缝、车辙、坑槽)的高效检测需求日益迫切。传统人工巡检效率低、主观性强,而车载激光雷达方案成本高昂(单套设备超百万元)。因此,某省级公路养护中心采用泓川科技LTP系列传感器,构建低成本、高精度的路面扫描系统,目标如下:全幅覆盖:单次扫描覆盖3.5m标准车道,横向分辨率≤5mm,纵向分辨率≤2mm(车速60km/h时)。抗干扰能力:...
2025 - 03 - 11
点击次数: 34
在光伏硼扩散工艺中,石英舟(石墨舟)到位检测是确保工艺精准度和产品质量的关键环节。然而,该工况面临着两大技术难题:一是高温环境,普通传感器难以承受;二是石英舟的透光材质特性,常规检测手段无法有效检测其位置。泓川科技的 HC8-400 系列激光位移传感器凭借其卓越的性能,成功攻克这些难题,在 85°C 的石英舟工况环境下发挥了关键作用。一、项目背景在光伏产业蓬勃发展的当下,提高电池片转换效...
About Us
关于泓川科技
专业从事激光位移传感器,激光焊缝跟踪系统研发及销售的科技公司
中国 · 无锡 · 总部地址:无锡新吴区天山路6号
销售热线:0510-88155119 
图文传真:0510-88152650
Working Time
我们的工作时间
周一至周五:8:00-18:00
周六至周日:9:00-15:00
Shown 企业秀 More
  • 1
    2024 - 03 - 05
    在测量被透明物体覆盖的目标时,环境照明补偿和透视测量是提高测量准确性的重要手段。这些技术的应用,在智能手机等电子设备的制造过程中,具有至关重要的作用。首先,让我们来探讨一下环境照明补偿的作用。在生产线环境中,照明条件往往并不稳定,这会对测量精度产生严重影响。环境照明补偿技术通过自动调整传感器参数,以补偿外部光照条件的变化,使得测量系统能在不同的照明条件下都能保持稳定的测量性能。这就使得我们在测量被透明物体(如手机屏幕)覆盖的目标时,能够得到更为准确的结果。其次,透视测量技术则能够解决透明物体对测量造成的干扰。由于透明物体会让部分光线穿过,使得传统的测量技术难以准确捕捉目标的位置和形状。而透视测量技术则能够通过特殊的光学设计和算法处理,使得传感器能够“看透”透明物体,直接对其背后的目标进行测量。这样,我们就可以在不接触目标的情况下,对其进行准确的测量。在智能手机等电子设备的制造过程中,这两种技术都有着广泛的应用。例如,在手机屏幕的生产过程中,环境照明补偿技术可以帮助我们确保屏幕在各种光线条件下都能显示清晰。而透视测量技术则可以用于测量手机屏幕下的各种元器件,如触摸屏、摄像头等,确保它们的位置和尺寸都符合设计要求。此外,这两种技术还可以结合使用,以提高测量的精度和效率。例如,我们可以先使用透视测量技术确定目标的位置,然后使用环境照明补偿技术对其进行精确测量。这样,我们不仅可以得到更准确...
  • 2
    2025 - 04 - 12
    在工业自动化领域,激光位移传感器作为精密测量的核心部件,其性能直接影响生产精度与效率。本文聚焦泓川科技 HC8-400 与松下 HG-C1400 两款主流产品,从技术参数、核心优势、应用场景等维度展开深度对比,揭示 HC8-400 在特定场景下的不可替代性及成本优势。一、技术参数对比:细节见真章1. 基础性能指标参数HC8-400HG-C1400差异分析测量范围400±200mm(200-600mm)400±200mm(200-600mm)两者一致,覆盖中长距离测量场景。重复精度200-400mm:150μm 400-600mm:400μm200-400mm:300μm 400-600mm:800μmHC8-400 在全量程精度表现更优,尤其在 400-600mm 远距段,重复精度提升 50%,适合对稳定性要求高的精密测量。线性度200-400mm:±0.2%F.S. 400-600mm:±0.3%F.S.200-400mm:±0.2%F.S. 400-600mm:±0.3%F.S.线性度一致,满足工业级测量标准。温度特性±0.05%F.S/℃±0.03%F.S/℃HG-C1400 理论温漂略优,但 HC8-400 通过独特热稳设计,实际在高温环境(如 80℃)下表现更可靠,弥补参数...
  • 3
    2025 - 01 - 17
    五、光学传感器测量技术5.1 高精度测量技术5.1.1 关键技术突破在存储硬盘 HDD 的检测领域,高精度测量技术的突破犹如一颗璀璨的明星,照亮了整个行业的发展道路。以基恩士 SI 系列微型传感头型分光干涉式激光位移计为代表,其在高精度测量技术方面实现了令人瞩目的突破。该系列产品成功打造出世界超一流的微型传感头,这一创新成果堪称技术领域的杰作。SI 系列的微型传感头采用了独特的光纤结构,这一结构设计犹如为传感器赋予了强大的 “魔力”。完全无电子部件的设计,使得传感器彻底摆脱了测量仪本身发热所产生的偏移或电磁干扰的困扰。在传统的测量设备中,测量仪发热往往会导致测量结果出现偏差,而电磁干扰更是如同隐藏在暗处的 “幽灵”,难以被彻底隔离和消除,严重影响测量的精度。但 SI 系列通过这一创新设计,成功避开了这些难题,为实现超高精度测量奠定了坚实的基础。其尺寸小、重量轻、耐高温的特点,更是为其在复杂的测量环境中施展 “身手” 提供了极大的便利。小巧的尺寸和轻盈的重量,使得它在选择安装区域时几乎不受限制,能够灵活地安装在传统设备无法触及的狭小空间内。在一些对空间要求极为苛刻的 HDD 生产环节中,SI 系列能够轻松找到合适的安装位置,实现对关键部件的精准测量。而耐高温的特性,则保证了传感器在高温环境下依然能够稳定工作,确保测量结果的准确性和可靠性。 5.1.2 对 HDD 检测的意义...
  • 4
    2025 - 06 - 09
    在工业精密测量领域,无锡泓川科技的HC26系列激光位移传感器凭借出色的性能参数与显著的成本优势,成为替代奥泰斯CD33系列的高竞争力选择。以下从核心性能、特殊应用适配性及成本三方面进行对比分析:一、核心性能参数对标(HC26 vs CD33)参数泓川HC26系列奥泰斯CD33 (行业标准)HC26优势重复精度2μm (30mm款) → 50μm (195mm款)通常1~3μm (高端款)接近主流精度线性度±0.1%F.S.±0.05%~0.1%F.S.达到同级水平响应时间最快333μs (多档可调)通常500μs~1ms速度更快输出接口RS485(Modbus RTU)+模拟量(4-20mA/0-10V)类似接口组合同等兼容性防护等级IP67 (防尘防水)IP67/IP65同等工业防护温度特性0.05%F.S/℃0.03~0.05%F.S/℃稳定性接近注:HC26提供4种基准距离型号(30/50/85/195mm),覆盖小量程高精度(±4mm@30mm)至大量程(±99.98mm@195mm)场景,满足CD33主流应用范围。二、核心替代优势:全系支持正反射安装HC26系列所有型号均内置正反射光路设计,解决CD33在特殊材质检测中的痛点:镜面材料:通过正反射接收强光信号,避免漫反射信号微弱导致的测量失效。透明材质(如玻璃、薄...
  • 5
    2023 - 03 - 20
    介绍工业光电传感器是现代制造业中最常用的检测设备之一,广泛应用于自动化生产线、机械加工、装配、物流搬运等行业。随着国民经济的不断发展,中国的工业光电传感器制造业也不断发展壮大,成为制造业的一支重要力量。本文旨在对中国产的工业光电传感器现状进行描述。发展历史20世纪80年代初期,我国的工业自动化程度比较低,大部分生产线仍采用人力操作,制造业存在高人力成本、低效率、品质难以保证等问题。为了提高制造业的效率和品质,中国开始引入外国的工业自动化设备,其中就包括工业光电传感器。80年代中后期,国内开始试水制造工业光电传感器,并逐步发展壮大。90年代初期,随着国民经济的增长和工业自动化的加速推进,中国的工业光电传感器制造业进入快速发展期。如今,中国的工业光电传感器制造业已经处于全球领先地位,成为世界闻名的光电传感器生产基地之一。产业链分析商业模式中国的工业光电传感器制造业商业模式主要是以生产销售为主,较少采用研发生产销售一体化模式。生产企业主要供应给自动化设备制造商,然后这些自动化设备制造商销售给最终用户,最终用户则使用这些设备来自动化生产线。除此之外,还有一些企业将工业光电传感器产品应用到自己的设备制造中,以提高自己产品的品质和效率,然后再将自己的产品销售给最终用户。在商业模式上,中国的工业光电传感器制造业与欧美等发达国家还存在一定的差距。技术研发中国的工业光电传感器制造业在技术研发方面逐渐...
  • 6
    2025 - 01 - 22
    一、引言1.1 研究背景与目的在当今科技迅猛发展的时代,传感器作为获取信息的关键设备,在工业自动化、智能制造、航空航天、汽车制造等众多领域中发挥着不可或缺的重要作用。激光位移传感器凭借其高精度、非接触式测量、快速响应等显著优势,成为了现代精密测量领域的核心设备之一。近年来,随着国内制造业的转型升级以及对高精度测量需求的不断攀升,我国传感器市场呈现出蓬勃发展的态势。然而,长期以来,高端激光位移传感器市场大多被国外品牌所占据,这不仅限制了国内相关产业的自主发展,还在一定程度上影响了国家的产业安全。在此背景下,国产激光位移传感器的研发与推广显得尤为重要。本研究聚焦于国产激光位移传感器 HCM 系列,旨在深入剖析该系列产品的技术特点、性能优势、应用场景以及市场竞争力。通过对 HCM 系列产品的全面研究,期望能够为相关行业的企业提供有价值的参考依据,助力其在设备选型、技术升级等方面做出更为明智的决策。同时,本研究也希望能够为推动国产激光位移传感器行业的发展贡献一份力量,促进国内传感器产业的技术进步与创新,提升我国在高端传感器领域的自主研发能力和市场竞争力。1.2 研究方法与数据来源本研究综合运用了多种研究方法,以确保研究的全面性、准确性和可靠性。在研究过程中,首先进行了广泛的文献研究,收集并深入分析了国内外关于激光位移传感器的学术论文、行业报告、专利文献等资料,从而对激光位移传感器的发展历程...
  • 7
    2023 - 09 - 26
    1 激光光热技术测厚:原理是利用激光照射材料,产生的热量使材料产生变化,再通过光学方式检测这种变化以确定材料的厚度。优点是非接触式、无损伤、准确;缺点也是显而易见的,对于颜色、形状、表面纹理等都有不同程度的影响。2 白光干涉测厚:原理是使用白光干涉仪产生干涉图案,然后通过分析干涉图案得材料厚度。优点是测量精度高、灵敏度高;缺点是设备复杂且成本高昂。3 激光干涉测厚:主要是利用激光波的相干性,测量物体的干涉条纹来反推出物体的厚度。优点是测量精度高、速度快;但激光源的稳定性和调节技术要求比较高。4 光谱共聚焦测厚:该方法是根据材料对不同波长光的反射、折射和吸收特性,同时探测所有波长的光谱,从而计算出材料厚度。优点是测量准确、适用范围广;缺点是设备复杂、操作要求高。5 椭圆偏光法测厚:原理是利用光的偏振特性对材料进行测量,根据计算出材料厚度。优点是接触、无损伤,但适用范围有限。6 红外吸收法测厚:红外吸收法是指通过测定红外光在材料中吸收的程度来推断优点是测量过程简单、直观、精度高;缺点是对材料的红外吸收特性有严格要求。7 X/β射线测厚:主要是利用X射线或者β射线穿透材料时,穿透的射线强度和物体的厚度之间存在一定的关系。优点是精确、可靠;缺点是人体安全需要考虑。8 电容测厚:原理是利用两极板间的电容量与介质厚度成正比,通过测量电容量来测量厚度。优点是设备简单、便宜;缺点是精度较低。9 反...
  • 8
    2024 - 12 - 11
    激光位移传感器作为一种高精度、非接触式的测量工具,在工业自动化、科研、医疗等多个领域发挥着重要作用。其制造过程涉及多个环节和专业技术,以下将详细介绍激光位移传感器的制造全过程及所使用的零部件。一、设计与研发激光位移传感器的制造首先始于设计与研发阶段。根据市场需求和技术趋势,设计团队会确定传感器的主要性能指标,如测量范围、精度、分辨率等。接着,选择合适的激光发射器和接收器,设计光学系统和信号处理电路。这一阶段的关键在于确保传感器能够满足预期的测量要求,并具备良好的稳定性和可靠性。二、原材料采购在设计完成后,进入原材料采购阶段。激光位移传感器的主要零部件包括:激光器:产生高方向性的激光束,用于照射被测物体。激光器的选择直接影响传感器的测量精度和稳定性。光电二极管或CCD/CMOS图像传感器:作为接收器,接收被测物体反射回来的激光,并将其转换为电信号。光学透镜组:包括发射透镜和接收透镜,用于调整激光束的形状和发散角,确保精确照射和接收反射光。电路板:搭载信号处理电路,对接收到的电信号进行处理和分析。外壳:保护传感器内部组件,并提供安装接口。三、加工与制造在原材料到位后,进入加工与制造阶段。这一阶段包括:零部件加工:对金属外壳进行切割、钻孔和打磨等处理,以满足设计要求。同时,对光学透镜进行精密加工,确保其光学性能。组件组装:将激光器、光电二极管、光学透镜组等零部件组装到电路板上,形成完整的...
Message 最新动态
泓川科技HC26激光位移传感器:高性价国产比替代奥泰斯CD33的优选方案 2025 - 06 - 09 在工业精密测量领域,无锡泓川科技的HC26系列激光位移传感器凭借出色的性能参数与显著的成本优势,成为替代奥泰斯CD33系列的高竞争力选择。以下从核心性能、特殊应用适配性及成本三方面进行对比分析:一、核心性能参数对标(HC26 vs CD33)参数泓川HC26系列奥泰斯CD33 (行业标准)HC26优势重复精度2μm (30mm款) → 50μm (195mm款)通常1~3μm (高端款)接近主流精度线性度±0.1%F.S.±0.05%~0.1%F.S.达到同级水平响应时间最快333μs (多档可调)通常500μs~1ms速度更快输出接口RS485(Modbus RTU)+模拟量(4-20mA/0-10V)类似接口组合同等兼容性防护等级IP67 (防尘防水)IP67/IP65同等工业防护温度特性0.05%F.S/℃0.03~0.05%F.S/℃稳定性接近注:HC26提供4种基准距离型号(30/50/85/195mm),覆盖小量程高精度(±4mm@30mm)至大量程(±99.98mm@195mm)场景,满足CD33主流应用范围。二、核心替代优势:全系支持正反射安装HC26系列所有型号均内置正反射光路设计,解决CD33在特殊材质检测中的痛点:镜面材料:通过正反射接收强光信号,避免漫反射信号微弱导致的测量失效。透明材质(如玻璃、薄...
泓川科技激光位移传感器HC16系列全方位国产替代OPTEX的CD22系列 2025 - 06 - 09 一、核心参数深度对比维度泓川科技 HC16 系列奥泰斯 CD22 系列差异影响分析型号覆盖15/35/100/150mm(4 款)15/35/100mm(3 款)HC16 新增150mm 基准距离型号(HC16-150),测量范围 ±100mm,填补 CD22 无远距离型号空白。重复精度(静态)15mm:1μm;35mm:6μm;100mm:20μm;150mm:60μm15mm:1μm;35mm:6μm;100mm:20μmHC16-150 精度较低(60μm),适合远距离低精度场景(如放卷料余量粗测),CD22 无对应型号需搭配中继。通讯扩展性支持 EtherCAT 模块(文档提及)、RS485、模拟量仅 RS485、模拟量HC16 对 ** 工业总线系统(如 PLC 集成)** 兼容性更强,可减少额外通讯模块成本。电源适应性全系列 DC12-24V 统一输入模拟量电压型需 DC18-24V,电流 / 485 型 DC12-24V若用户系统电源为12-18V,HC16 电压输出型(如 HC16-15-485V)可直接替代 CD22 电压型,避免电源升级成本。功耗≤100mA(全系列)≤700mA(CD22-15A 为例)HC16 功耗仅为 CD22 的1/7,适合电池供电设备、多传感器阵列场景,降低散热和电源设计压力。体积与重量尺寸未明确标注(参考 CD22 为紧凑型...
泓川科技 LTM3 系列与米铱 ILD1750 系列激光位移传感器深度对比:高性价比之选 2025 - 05 - 26 一、引言在工业自动化领域,激光位移传感器作为精密测量的核心部件,其性能与成本直接影响设备的竞争力。本文聚焦泓川科技 LTM3 系列与米铱 ILD1750 系列,从技术参数、应用场景及成本等维度展开深度对比,揭示 LTM3 系列如何以卓越性能和显著成本优势成为更具性价比的选择。二、核心参数对比指标泓川科技 LTM3 系列米铱 ILD1750 系列测量频率最高 10kHz,适用于高速动态测量场景最高 7.5kHz,满足常规工业速度需求重复性精度0.25μm 起(如 LTM3 - 030),达到亚微米级精度0.1μm 起,精度表现优异线性误差低至 0.06% FSO 起,基于百分比的误差控制防护等级IP67,可抵御粉尘、液体喷射及短时浸水IP65,防护性能良好但略逊于 LTM3外形尺寸605020.4mm,体积小巧,适配狭窄空间未明确标注,但工业通用设计体积较大重量约 150g,轻便易安装未明确标注,推测重于 LTM3 系列输出接口以太网、485 串口、模拟信号(±10V/4 - 20mA),支持工业网络集成模拟量(U/I)、数字量(RS422),传统工业接口配置光源655nm/660nm 红光激光,稳定可靠670nm 红光激光,测量光斑控制优秀工作温度0 - 50°C,适应多数工业环境0 - 50°C,环境适应性相当三、LTM3 系列核心优势解析(一)性能...
Copyright ©2005 - 2013 无锡泓川科技有限公司

1

犀牛云提供企业云服务
Our Link
X
3

SKYPE 设置

4

阿里旺旺设置

等待加载动态数据...

等待加载动态数据...

5

电话号码管理

  • 0510-88155119
6

二维码管理

等待加载动态数据...

等待加载动态数据...

展开