服务热线: 0510-88155119
13301510675@163.com
Language
项目案例 Case
Case 激光测量案例

靶丸内表面轮廓的白光共焦光谱测量技术

日期: 2022-01-17
浏览次数: 31

摘要:靶丸内表面轮廓是激光核聚变靶丸的关键参数,需要精密检测。本文首先分析了基于白光共焦光谱和精密气浮轴系的靶丸内表面轮廓测量基本原理,建立了靶丸内表面轮廓的白光共焦光谱测量方法。此外,搭建了靶丸内表面轮廓测量实验装置,建立了基于靶丸光学图像的辅助调心方法,实现了靶丸内表面轮廓的精密测量,获得了准确的靶丸内表面轮廓曲线;最后,对测量结果的可靠性进行了实验验证和不确定度分析,结果表明,白光共焦光谱能实现靶丸内表面低阶轮廓的精密测量,其测量不确定度优于01μm


关键词:白光共焦光谱;内表面轮廓;靶丸;激光聚变

1     引言

在激光惯性约束聚变(ICF)实验中,靶丸内、外表面轮廓的非理想球形度偏差将会在靶丸内爆过程中造成瑞利-泰勒流体力学不稳定性的快速增长,降低压缩效率,甚至导致球壳破裂。因此,精密测量靶丸内、外表面圆周轮廓特征对理解激光核聚变靶丸内爆物理过程和改进靶丸制备工艺均有着十分重要的意义。为了检测靶丸的表面轮廓信息,国内外ICF研究机构建立了基于精密气浮轴系和原子力显微镜(AFM)的靶丸表面轮廓测量技术,实现了靶丸外表面轮廓的全表面检测,其测量不确定度可达到纳米量级。对于靶丸内表面轮廓的无损检测,目前常用的技术手段是X射线照相法。该方法利用靶丸X射线吸收强度在界面处不连续的特点,通过计算吸收强度曲线的亮度或二阶微分来确定各壳层的轮廓信息,其低阶圆周轮廓测量不确定度为03μm,不能完全满足靶物理实验对靶丸内表面圆周轮廓测量的精度需求。因此,如何实现靶丸内表面轮廓的高精度测量,目前还是一个亟待解决的技术难题。

近年来,共焦测量方法由于具有高精度的三维成像能力,已经广泛用于表面轮廓与三维精细结构的精密测量。本文通过分析白光共焦光谱的基本原理,建立了透明靶丸内表面圆周轮廓测量校准模型;同时,基于白光共焦光谱并结合精密旋转轴系,建立了靶丸内表面圆周轮廓精密测量系统和靶丸圆心精密定位方法,实现了透明靶丸内、外表面圆周轮廓的纳米级精度测量。

2     测量原理

1(a)是白光共焦光谱传感器的工作原理示意图,白光光源通过物镜组形成一系列连续的沿着光轴的单色光点像,分别对应λ1λn,每一种波长对应一个纵向位置。当待测样品置于测量范围内时,某一种特定的波长λM正好聚焦到样品表面的M点并被反射,反射光被分光镜反射后经针孔滤波,滤波后变为以λM为中心的窄带光信号(带宽为Δλ),被光谱仪接收。通过分析样品表面反射光的波长,可高精度地确定样品表面的纵向位置。将靶丸安装在精密气浮主轴前端,使白光共焦光谱传感器聚焦于靶丸赤道位置(白光共焦光谱聚焦光斑在数微米量级,靶丸表面的测量区域可近似为平面),由于靶丸内、外表面的反射,此时,反射光谱中将会出现两个峰值,根据这两个反射光谱的波长,可同时获得透明靶丸的内、外表面相对于传感器零点的高度数据。利用精密气浮轴系带动靶丸平稳旋转,同时采集靶丸各个位置的内、外表面轮廓高度数据,当气浮轴系旋转360°,即可获得靶丸的内、外表面圆周轮廓数据,对应位置内、外表面轮廓数据之差即为靶丸的壳层厚度。

当光线通过靶丸壳层时,由于光线的折射,靶丸内表面轮廓的直接测量数据不能表征其真实轮廓特征,为得到真实的内表面轮廓数据,需要对白光共焦光谱的直接测量数据进行修正。


靶丸内表面轮廓的白光共焦光谱测量技术


靶丸内表面轮廓的白光共焦光谱测量技术

1 (a)白光共焦光谱传感器的工作原理示意图和(b)透明样品下表面轮廓的测量原理

1(b)是透明样品下表面轮廓的白光共焦光谱测量原理示意图,图中,p1p2是样品上表面相对于传感器零点的位置,p3p4是样品下表面相对于传感器零点的位置。

利用白光共焦光谱测量靶丸壳层内表面轮廓数据时,其测量结果与白光共焦光谱传感器光线的入射角、靶丸壳层厚度、壳层材料折射率、靶丸内外表面轮廓的直接测量数据等因素紧密相关。

3     测量装置

利用精密气浮旋转轴系及白光共焦光谱传感器,搭建了透明靶丸内表面轮廓测量实验装置,该测量装置示意图如图2所示。该装置主要由精密气浮主轴、辅助轴系、白光共焦光谱仪、数据采集单元以及靶丸调心机构等几部分组成,其中,传感器采用法国STIL公司的白光共焦光谱仪,其测量范围为400μm,光斑尺寸为17μm。测量过程中,将靶丸放置于精密气浮旋转轴系上端的负压吸附吸嘴上,白光共焦光谱传感器垂直聚焦于靶丸表面赤道位置,通过控制软件使轴系旋转与光谱数据采集同步。在旋转轴系开始转动时同步采集靶丸内外表面的轮廓数据,旋转轴系旋转一周就可以得到靶丸赤道位置的圆周轮廓数据;利用辅助轴系可实现靶丸指定角度的翻转,从而实现靶丸不同位置的内表面轮廓测量。


靶丸内表面轮廓的白光共焦光谱测量技术

2 白光共焦光谱轮廓检测系统

放置于旋转轴系吸嘴上的靶丸可能出现偏心,从而导致靶丸在旋转过程中内外表面超出有效量程范围,不能实现靶丸内表面圆周轮廓的测量,因此,在测量靶丸内表面轮廓之前,需要调整靶丸中心和旋转轴系中心的相对位置,使其尽可能重合。本文采用了图像辅助调心方法,其调心原理如图3所示


靶丸内表面轮廓的白光共焦光谱测量技术

3 靶丸旋转调心原理图

通过公式,可求解靶丸旋转到某一位置时靶丸光学图像中心的位置坐标,将靶丸圆心调整到与回转中心重合;再将靶丸旋转到下一位置,调整靶丸光学图像中心与回转中心的相对位置,使二者重合;重复上述过程,若靶丸旋转一周,靶丸光学图像中心与回转中心均重合,则靶丸调心过程完成。该方法的调心精度与视频CCD的放大倍数及测量精度有关,本装置可实现小于10μm的调心精度。

4     测量结果与讨论

41靶丸内表面轮廓测量

利用上述测量方法和实验装置,对单层塑料靶丸的内、外表面轮廓进行了测量。图4是基于白光共焦光谱的靶丸外表面轮廓和校准后的内表面测量曲线,从图中可以看出,靶丸内、外表面低阶轮廓整体形状相似,局部轮廓存在一定的差异。从公式可知,靶丸内表面轮廓的校准与靶丸壳层折射率相关,而折射率可表示为入射光波长的函数,计算过程中,对于靶丸壳层,其折射率在可见光范围内的偏差较小,可取为15。此外,根据白光共焦光谱传感器的数值孔径和工作距离等参数,可计算出入射角约为28°。与外表面轮廓相比较,靶丸内表面轮廓的信噪比较差,分析认为,靶丸内表面的真实轮廓测量值与靶丸内、外表面的白光共焦光谱直接测量数据相关,其测量噪声是二者的综合效应,因此,其测量数据信噪比相对较差,这表明,利用白光共焦光谱方法,可实现靶丸低阶轮廓的测量,其高阶轮廓信息测量置信度相对较低。


靶丸内表面轮廓的白光共焦光谱测量技术

4 靶丸内外表面轮廓的白光共焦光谱测量曲线

42内表面轮廓测量数据的可靠性验证

靶丸内表面轮廓的白光共焦光谱测量技术


靶丸内表面轮廓的白光共焦光谱测量技术

5 靶丸外表面轮廓(a)及其功率谱曲线(b)

采用对比测试方法,首先对基于白光共焦光谱技术的靶丸外表面轮廓测量精度进行了考核,图5(a)是靶丸外表面轮廓的原子力显微镜轮廓仪和白光共焦光谱轮廓仪的测量曲线。为了便于比较,将原子力显微镜轮廓仪的测量数据进行了偏移。从图中可以看出,二者的低阶轮廓整体相似,局部的轮廓信息存在一定的偏差,原因在于二者在靶丸赤道附近的精确测量圆周轮廓结果不一致;此外,白光共焦光谱的信噪比较原子力低,这表明白光共焦光谱适用于靶丸表面低阶的轮廓误差的测量。图5(b)是靶丸外表面轮廓原子力显微镜轮廓仪测量数据和白光共焦光谱轮廓仪测量数据的功率谱曲线,从图中可以看出,在模数低于100的功率谱范围内,两种方法的测量结果一致性较好,当模数大于100时,白光共焦光谱的测量数据大于原子力显微镜的测量数据,这也反应了白光共焦光谱仪在高频段测量数据信噪比相对较差的特点。由于光谱传感器Z向分辨率比原子力低一个量级,同时,受环境振动、光谱仪采样率及样品表面散射光等因素的影响,共焦光谱检测数据高频随机噪声可达100nm左右。对于ICF靶丸,模数大于100的表面粗糙度信息一般在数纳米至数十纳米量级,靶丸表面真实高频轮廓数据全部淹没在白光共焦光谱系统的随机噪声之中,故白光共焦光谱仪难以获得靶丸表面轮廓的高频信息。

为进一步验证内表面轮廓测量数据的可靠性,对单面具有正弦调制结构的薄膜样品进行了测试,该薄膜样品基底厚度约为10μm,正弦调制振幅约为05μm,波长约为50μm。图6(a)是正弦调制结构向上时利用白光共焦光谱对调制样品上表面轮廓的测量数据和拟合数据,从图中可以看出,测量数据与拟合数据一致性较好,其正弦调制振幅为434nm,波长为482μm;6(b)是正弦调制薄膜(正弦调制结构向上)上表面轮廓曲线和校准前后的下表面轮廓曲线,从图中可以看出,由于受上表面的影响,校准前下表面轮廓曲线呈现周期性的调制特征,其振幅分布与上表面相反,利用公式(3)进行校准后,下表面轮廓曲线可近似为一条直线。图7(a)是正弦调制薄膜(正弦调制结构向下)上表面轮廓曲线和校准前后的下表面轮廓曲线,从图中可以看出,上表面轮廓近似为一条直线,这与图6(b)中调制薄膜校准后的轮廓曲线是一致的,此外,由于受调制薄膜折射率的影响,图7(a)中调制薄膜下表面校准前后轮廓曲线的振幅明显不同;7(b)是调制薄膜下表面轮廓曲线(校准后)的测量数据和拟合数据,相对于图6(a)的测量结果,该测量数据与拟合数据的离散性相对增大,通过正弦拟合方法所获得的正弦调制振幅为439nm,波长为482μm。当调制样品分别向上、向下放置时,白光共焦光谱的测量结果波形整体一致性较好,二者波长一致,拟合振幅偏差为5nm。该测量结果表明,利用白光共焦光谱技术可实现样品内表面低阶轮廓的精确测量。

靶丸内表面轮廓的白光共焦光谱测量技术


靶丸内表面轮廓的白光共焦光谱测量技术

6 正弦调制样品向上时的上表面轮廓测量数据(a)和校准前后的下表面轮廓数据(b)

靶丸内表面轮廓的白光共焦光谱测量技术


靶丸内表面轮廓的白光共焦光谱测量技术

7 正弦调制样品向下时的上表面轮廓测量数据(a)和校准前后的下表面轮廓数据(b)

43测量不确定度分析

利用白光共焦光谱传感器测量靶丸内表面轮廓,其测量不确定度来源主要有靶丸内、外表面的白光共焦光谱仪直接测量误差、轴系的回转误差、装置的重复性测量误差以及校准模型的误差等。上述不确定度分量中,白光共焦光谱传感器的直接测量误差主要来源于光谱传感器的分辨率和线性误差,测量结果表明,本装置所采用的光谱传感器直接测量误差最大为39nm。气浮主轴系回转精度是保证整个系统测量精度的关键因素之一,其回转误差直接叠加到测量结果中。通过测试直径为2mm的标准Cr(BallTech公司,标称球形度偏差为76nm)的圆周轮廓,对模数大于100的圆周轮廓进行滤波并计算其最小二乘圆度,由于最小二乘圆度包括了标准球的圆度误差和轴系的回转误差,可通过和方根公式计算轴系回转精度的大小。实验结果表明,标准球的最小二乘圆度为88nm,由此可得本装置主轴的回转误差约为44nm。对靶丸内表面轮廓进行多次测量,由各测量值最小二乘圆度重复性评价系统的重复测量误差。10次测量结果的最小二乘圆度为:7.1587.1767.2437.1547.0967.1437.1037.1777.1337.155μm,计算可得该测量列的标准偏差,即系统重复性误差为41nm。校准模型的误差主要来源于折射率的近似和光线入射角的近似,数值计算结果表明,折射率近似导致的最大误差约为16nm,光线入射角近似导致的最大误差约为50nm,根据和方根计算公式,可得到校准模型的测量误差为52nm

1是基于白光共焦光谱的靶丸内表面轮廓测量不确定度分量表,根据和方根计算公式可得,白光共焦光谱测量靶丸内表面低阶轮廓(模数<100)的不确定度约为89nm

1 测量不确定度分量表

靶丸内表面轮廓的白光共焦光谱测量技术


5     结论

本文通过分析光线经过靶丸壳层后的传播途径,建立了靶丸内表面轮廓的白光共焦光谱测量校准模型;搭建了基于白光共焦光谱和精密气浮轴系的靶丸内表面轮廓测量实验装置,获得了靶丸内、外表面轮廓曲线。与原子力显微镜比对测试结果表明,白光共焦光谱技术可实现靶丸模数小于100的低阶轮廓的准确测量;不确定度分析结果表明,白光共焦光谱测量靶丸内表面轮廓的不确定度约为90nm。白光共焦光谱技术不仅是精密检测靶丸内表面轮廓的可行技术手段,还可广泛应用于各类透明薄膜材料和器件内表面及厚度的精密测量领域。

论文题目:靶丸内表面轮廓的白光共焦光谱测量技术

作者:唐兴,王琦,马小军,高党忠,王宗伟,孟婕(中国工程物理研究院-激光聚变研究中心)


Case / 相关推荐
2023 - 03 - 26
点击次数: 1
2.0/4.5mm透明玻璃测厚,使用C10000探头,放置在二维工作台上记录左右移动的极差范围,如下表:测量方案:运动机构控制探头沿内壁进行扫描,通过运动机构编码器触发控制器采样,获取待测点位置数据和高度数据(即探头测量值),对扫描得到的轮廓进行计算分析,得到粗糙度。风险项:1.控制器目前仅输出距离值,粗糙度计算涉及频域滤波,计算相对复杂,PLC上实现较为困难,需要通过工控机计算后通过特定协议转发...
2023 - 02 - 05
点击次数: 12
今天我们利用线光谱共焦传感器来对陶瓷基板的沟槽进行扫描测量,首先我们介绍下光谱感觉传感器的工作原理。光谱共焦测量通过使用特殊透镜,延长不同颜色光的焦点光晕范围,形成特殊放大色差,使其根据不同的被测物体到透镜的距离,会对应一个精确波长 的光聚焦到被测物体上。通过测量反射光的波长,就可以得到被测物体到透镜的精确距离。反射光的光强不会影响测量结果。这意味着,无论有多少反射光从被测物体反射回来,测量的距离...
2022 - 12 - 08
点击次数: 24
1969年人们把激光射上月球表面,通过发射到接收的时间,成以光速所得数据再减半,测得了地月的准确距离这种通过激光行走的路程来测量距离的方法简称激光测距。同时通过调整激光发射的角度,还可测量多点的距离,我们以激光雷达为例,labels安装有两个棱镜,通过旋转棱镜使激光改变发射方向是往不同点,从而获得多点的具体信息。       如果需要对一个面进行多点测量,又...
2022 - 03 - 15
点击次数: 111
具有复杂自由曲面的超精密光学越来越多地应用于航空、航天、生物、消费电子等领域。优异的轮廓精度和表面光洁度是自由曲面光学成像性能的重要保证,同时这也给制造带来了严峻的挑战,限制了其广泛的应用。砂轮的几何误差、安装误差、轮廓误差等重要误差源都会对加工表面的轮廓精度产生影响。利用在线测量的方法对轮廓线误差进行补偿是提高轮廓线精度的有效途径,另一方面自由曲面光学系统的测量在不能损伤被加工表面的同时,需要实...
2022 - 03 - 15
点击次数: 108
为了提高自由曲面等元件的加工质量,需要对制造过程中产生的误差进行评估,以便及时发现偏差,从而反馈给后续加工工序。特别是在不从机床上卸载工件的情况下进行的在位测量(OMM),可以消除坐标损失带来的误差。近年来,采用激光位移传感器的激光三角测量OMM(LTOMM),是机械探头之外新发展起来的在位测量技术。来自南京航空航天大学机电工程学院的DaweiDing等人提出了一种LTOMM误差模型和一种在设定精...
2022 - 03 - 15
点击次数: 59
在超高精密加工中,在线测量(OMM)系统是实现高效轮廓补偿和改善加工条件的有效装置。在此,我们报告了一个新的OMM系统与共焦彩色探针在五轴超高精密机床上构造使用实时位置捕获方法。使用个人计算机同步捕获探头和机床位置,以产生轮廓测量数据。长期和短期稳定性、微阶跃响应和重复性测试表明,该系统的精度约为±10 nm。使用参考球进行的轮廓测量试验表明,在±45◦的大倾角下,OMM系统的...
About Us
关于泓川科技
专业从事激光位移传感器,激光焊缝跟踪系统研发及销售的科技公司
中国 · 无锡 · 总部地址:无锡新吴区天山路6号
销售热线:0510-88155119 
图文传真:0510-88152650
Working Time
我们的工作时间
周一至周五:8:00-18:00
周六至周日:9:00-15:00
Shown 企业秀 More
  • 1
    2023 - 02 - 21
    激光位移传感器是一种用于测量距离和轮廓表面的自动光学传感技术。它的工作原理是发射激光束,激光束被目标表面或区域反射,然后光束返回所需的时间被转换为距离测量。它的主要应用是尺寸计量,可以精确测量长度、距离和粗糙度轮廓。激光位移传感器也用于工业自动化、机器人和机器视觉应用。什么是激光位移传感器?       激光位移传感器是一种用于测量距离和轮廓表面的自动光学传感技术。该系统通过从激光源发射激光来工作。然后,该激光束从目标表面或区域反射回来。然后,光束覆盖距离和返回所花费的时间被转换为距离测量或轮廓。激光位移传感器通常由三个主要部分组成:*激光源*光学探测器*处理器      激光源通常是激光二极管,其波长适合于目标区域及其光学特性。激光二极管产生激光束,该激光束被引导到目标表面或区域上。然后光束被反射回检测器。根据应用,可以用一定范围的脉冲频率调制光束。光束由光学检测器检测。检测器将光转换成电信号,然后将其发送到处理器。然后处理器处理信息并将测量数据发送到数字显示器或计算机。然后,数据可用于进一步分析或控制自动化过程。历史:       激光位移传感器最初是在20世纪70年代开发的,是麻省理工学院研究项目的一部分。这项研究由美国陆军研究实验室和美国空军赖特实验室赞助。该技术最...
  • 2
    2023 - 02 - 26
    今天我为大家展示安全激光扫描仪产品,安全激光扫描仪适用于各种应用技术领域,      在设备开发期间我们给予了特别关注,以确保它能够在广泛应用中发挥最佳功能,尤其重视大型工作区域的防护,例如机床正面区域或机器人工作区域。      其他应用包括移动车辆的防护,例如侧向滑动装置或移动运输设备,无人驾驶运输系统。甚至垂直安装激光扫描仪的出入口保护系统。尽管我们在安全激光扫描与领域,已经有数10年的经验了,但该应用领域仍然面对许多挑战。不过我们的激光安全扫描仪具有独一无二的功能属性,例如具有8.25米检测距离和270度扫描范围。       属于目前市场上的高端设备,非常适合侧向滑动装置正面区域等大型区域或长距离的防护。该设备的另一个亮点就是能够同时监测两个保护功能。这在许多应用领域中,独具优势以前需要使用两个设备,如今只需要使用一台这样的安全激光扫描仪,即可完成两台设备的功能。               实践中遇到的一项挑战是设计一款异常强骨的激光安全扫描仪。能够适应周围环境中可能存在的灰尘和颗粒等恶劣条件,因此我们提供了较分辨率达到0.1度的设备。它在目前市场上具有非常高的价值。   ...
  • 3
    2023 - 03 - 07
    本次应用报告旨在介绍超声波测距传感器在锂电池生产过程中测量卷绕直径的应用情况。首先,本文将介绍超声波测距传感器的基本工作原理和特点,然后详细介绍其在锂电池生产中的应用情况,并对其应用效果进行评估和总结。一、超声波测距传感器的基本工作原理和特点超声波测距传感器是一种通过超声波测量距离的传感器,其测量原理非常简单,就是利用超声波在空气中的传播速度快,而且与环境中的温度、湿度等因素无关的特点。具体来说,超声波测距传感器通过发射超声波信号,当这些信号遇到物体时就会反射回来,传感器通过感受这些反射信号的到达时间,从而计算出物体与传感器之间的距离。超声波测距传感器具有响应速度快、距离测量范围广、测量精度高和使用方便等特点。因此,在工业自动化、机器人、汽车和航空等领域已经广泛应用。二、超声波测距传感器在锂电池生产中的应用锂电池的核心部件是电芯,而电芯的生产过程中就需要进行锂电池卷绕。卷绕的直径大小对于电芯的性能有很大的影响。因此,测量卷绕直径是电芯生产过程中非常重要的环节。传统的测量方法是利用拉尺、卡尺等工具进行物理测量,但是由于电芯内部结构复杂、精度要求高、测量效率低等因素,往往会出现误差较大的情况。超声波测距传感器可以很好地解决这个问题。具体来说,在电芯卷绕时,只需要将超声波测距传感器置于卷绕机上方,然后通过发射超声波信号测量卷绕轴的直径大小即可。由于超声波的反射信号可以穿透物体,因此不会对...
  • 4
    2023 - 03 - 08
    一、概述随着现代工业的不断发展和进步,精度对于工业生产过程中所需要的各种测试测量技术要求也越来越高。而激光测量技术则是在这种背景下得以应用的,这是利用激光作为工具进行测量分析的一种方法。激光测量可以分为非接触式和接触式两种方式。二、非接触激光测量非接触激光测量技术是指激光束在不与被测物体表面发生接触的情况下,对被测物体进行测量操作。它主要利用激光的高亮度、高单色性、高方向性等特点,将测量对象和激光之间的无线电辐射或光辐射联系起来,通过对测量信号的处理,来获得被测物体的相关参数。可以广泛应用于自动化制造、工业检测、生命科学、质量控制检测等领域。2.1 非接触式测量优点(1)不会对被测物体造成损伤。激光测量技术是无损伤性的,测量过程中不会对被测物体造成任何损伤,也不会影响被测物体的结构、形状和性能。(2)精度高。非接触激光测量技术具有高精密性、高灵敏性和高分辨力,能够以亚微米级的精度获得被测物体的相关参数,减小了人为误差和测量结果的不确定性。(3)高速度。非接触激光测量技术具有快速高效的特点,对于一些需要进行即时在线检测或高频率的质检要求,非接触激光测量技术具有独特的优势。(4)测量安全。由于非接触激光测量技术可以在安全距离的范围内进行,因此保障了测量人员的身体健康和安全。2.2 非接触式测量缺点(1)不适用于暗面测量。非接触激光测量技术无法对于有光线被挡住的部位进行测量,因此适用于透...
  • 5
    2023 - 03 - 09
    激光位移传感器被广泛应用于各种领域中。其中一个很有用的应用是测量薄膜厚度。这种传感器可以在离表面很近的距离下进行高精度测量,因此非常适合这种应用。本文将介绍激光位移传感器如何用于测量薄膜厚度,包括测量方法、测量原理和市场应用。一、测量方法测量薄膜厚度的基本思路是利用激光位移传感器测量薄膜前后表面的距离差,然后通过几何公式计算出薄膜厚度。在实际操作中,测量方法大致可分为以下几种:1. 手持式测量手持式测量通常用于快速的现场检测。用户只需要将激光位移传感器靠近待测表面,然后通过读取显示屏上的数值判断薄膜厚度是否符合要求。这种方法不需要复杂的设备和步骤,非常易于使用。但是由于人手的震动和误差等因素,手持式测量的精度相对较低,只适用于需求不是特别高的场合。2. 自动化在线测量自动化在线测量一般用于工业生产线上的质量控制。这种方法需要将激光位移传感器与自动化设备相连接,将测量数据传递给计算机进行分析。在这种情况下,测量过程可以完全自动化,精度也可以得到保证。但是相对于手持式测量来说,这种方法需要的设备和技术要求更高,成本也更高。3. 显微镜下测量显微镜下测量常用于对细小薄膜厚度的测量。在这种情况下,用户需要将激光位移传感器与显微镜相结合进行测量。由于显微镜的存在,可以大大增强测量精度。但是相对于其他两种方法,这种方法需要的设备更多,并且技巧要求也更高。二、测量原理激光位移传感器利用的是激光三...
  • 6
    2020 - 09 - 14
    现如今在很多的行业里面都离不开激光位移传感器的应用,因为这种特殊激光位移传感器特点‍是能够对长度以及方位等来进行高精度的准确测量,而且用起来简便且很耐用所以受到了无数用户们的认可。而面对市场上众多的激光位移传感器品牌用户们究竟该怎么去选择呢?一、根据需要测量的目标结构与材质进行选择激光位移传感器虽然有着强大的测量功能,但是对于测量的目标结构与材质也是有着相应的需求的,因为激光位移传感器的测量过程是需要一个完整三角光路的,如果被测量目标的表面凹入不平就会造成三角光路无法形成,这样的话自然也就无法顺利的得到测量数据了。如果被测量目标的表面吸光这样也是无法形成完整三角光路进而无法完成测量工作的,因此用户们在选择激光位移传感器产品之时应着重考虑到这些问题才行。二、根据参数指标的实际要求进行选择激光位移传感器如今在制造业内有着很多的应用特别是对电子行业更是如此,而在选择这种产品时也应当根据具体所需的参数指标的来进行针对性选择才行。事实上这里所说的参数及指包含的面比较广比如说分辨率还有测量的速率等,因为对零部件生产的要求越是精密那么对它的要求也自然要更高也只有这样才能生产制造出真正的好产品。虽然激光位移传感器功能众多在生产过程当中的重要性是很明显的,但是在选择激光位移传感器的时候还是不能盲目应当遵循着上述这两个方面的原则,只有这样才能在众多的激光位移传感器品牌当中顺利地找到更能够满足自身实际需...
  • 7
    2023 - 03 - 20
    介绍工业光电传感器是现代制造业中最常用的检测设备之一,广泛应用于自动化生产线、机械加工、装配、物流搬运等行业。随着国民经济的不断发展,中国的工业光电传感器制造业也不断发展壮大,成为制造业的一支重要力量。本文旨在对中国产的工业光电传感器现状进行描述。发展历史20世纪80年代初期,我国的工业自动化程度比较低,大部分生产线仍采用人力操作,制造业存在高人力成本、低效率、品质难以保证等问题。为了提高制造业的效率和品质,中国开始引入外国的工业自动化设备,其中就包括工业光电传感器。80年代中后期,国内开始试水制造工业光电传感器,并逐步发展壮大。90年代初期,随着国民经济的增长和工业自动化的加速推进,中国的工业光电传感器制造业进入快速发展期。如今,中国的工业光电传感器制造业已经处于全球领先地位,成为世界闻名的光电传感器生产基地之一。产业链分析商业模式中国的工业光电传感器制造业商业模式主要是以生产销售为主,较少采用研发生产销售一体化模式。生产企业主要供应给自动化设备制造商,然后这些自动化设备制造商销售给最终用户,最终用户则使用这些设备来自动化生产线。除此之外,还有一些企业将工业光电传感器产品应用到自己的设备制造中,以提高自己产品的品质和效率,然后再将自己的产品销售给最终用户。在商业模式上,中国的工业光电传感器制造业与欧美等发达国家还存在一定的差距。技术研发中国的工业光电传感器制造业在技术研发方面逐渐...
  • 8
    2022 - 12 - 01
    在烟草分级及仓储环节中有大量的自动化设备,比如高速往复运动的穿梭车堆垛机等,如何建立完善的安全预防措施,保障作业人员的人身安全是企业在思考的方向,我们在烟草工业内部系统里面已经积累了众多的成功案例,我们会通过机械安全控制以及电器这三个维度来帮助企业进行评估,具体的改造场景有,立库输送管道出入口防护百度极速可在经过现场评估后我们会给客户出具评估报告和推荐的安全整改。                机械设备,例如马舵机,泄漏机缠绕机等在快消品行业是广泛存在的,特别是码作机器,经常需要操作人员频繁介入该区域应用的工业机器人运行速度快存在着较高的安全隐患,在转运站码垛技术入口,经常采用一套光幕和光电传感器来实现屏蔽功能,从而实现人物分离,在这个应用中,以物体在传中带上面时,车场光电传感器,从而激活,屏蔽功能,当你为触发屏蔽功能很简单,有些操作人员会拿纸箱或者其他东西遮挡这个光电传感器,从而很容易就操纵了这个屏蔽功能,存在着很大的安全隐患,针对这个问题,我们开发出创新高效的是入口防护替代方案,智能门控系统,无锡屏蔽传感器就和实现pp功能,这项专利技术是基于。             专利技术是激光幕,使出入口防务变得更加高效...
Message 最新动态
国产工业光学传感器大致现状 2023 - 03 - 20 介绍工业光电传感器是现代制造业中最常用的检测设备之一,广泛应用于自动化生产线、机械加工、装配、物流搬运等行业。随着国民经济的不断发展,中国的工业光电传感器制造业也不断发展壮大,成为制造业的一支重要力量。本文旨在对中国产的工业光电传感器现状进行描述。发展历史20世纪80年代初期,我国的工业自动化程度比较低,大部分生产线仍采用人力操作,制造业存在高人力成本、低效率、品质难以保证等问题。为了提高制造业的效率和品质,中国开始引入外国的工业自动化设备,其中就包括工业光电传感器。80年代中后期,国内开始试水制造工业光电传感器,并逐步发展壮大。90年代初期,随着国民经济的增长和工业自动化的加速推进,中国的工业光电传感器制造业进入快速发展期。如今,中国的工业光电传感器制造业已经处于全球领先地位,成为世界闻名的光电传感器生产基地之一。产业链分析商业模式中国的工业光电传感器制造业商业模式主要是以生产销售为主,较少采用研发生产销售一体化模式。生产企业主要供应给自动化设备制造商,然后这些自动化设备制造商销售给最终用户,最终用户则使用这些设备来自动化生产线。除此之外,还有一些企业将工业光电传感器产品应用到自己的设备制造中,以提高自己产品的品质和效率,然后再将自己的产品销售给最终用户。在商业模式上,中国的工业光电传感器制造业与欧美等发达国家还存在一定的差距。技术研发中国的工业光电传感器制造业在技术研发方面逐渐...
激光位移传感器如何对薄膜进行测厚? 2023 - 03 - 09 激光位移传感器被广泛应用于各种领域中。其中一个很有用的应用是测量薄膜厚度。这种传感器可以在离表面很近的距离下进行高精度测量,因此非常适合这种应用。本文将介绍激光位移传感器如何用于测量薄膜厚度,包括测量方法、测量原理和市场应用。一、测量方法测量薄膜厚度的基本思路是利用激光位移传感器测量薄膜前后表面的距离差,然后通过几何公式计算出薄膜厚度。在实际操作中,测量方法大致可分为以下几种:1. 手持式测量手持式测量通常用于快速的现场检测。用户只需要将激光位移传感器靠近待测表面,然后通过读取显示屏上的数值判断薄膜厚度是否符合要求。这种方法不需要复杂的设备和步骤,非常易于使用。但是由于人手的震动和误差等因素,手持式测量的精度相对较低,只适用于需求不是特别高的场合。2. 自动化在线测量自动化在线测量一般用于工业生产线上的质量控制。这种方法需要将激光位移传感器与自动化设备相连接,将测量数据传递给计算机进行分析。在这种情况下,测量过程可以完全自动化,精度也可以得到保证。但是相对于手持式测量来说,这种方法需要的设备和技术要求更高,成本也更高。3. 显微镜下测量显微镜下测量常用于对细小薄膜厚度的测量。在这种情况下,用户需要将激光位移传感器与显微镜相结合进行测量。由于显微镜的存在,可以大大增强测量精度。但是相对于其他两种方法,这种方法需要的设备更多,并且技巧要求也更高。二、测量原理激光位移传感器利用的是激光三...
非接触激光测量和接触式测量的优缺点分析及市场应用 2023 - 03 - 08 一、概述随着现代工业的不断发展和进步,精度对于工业生产过程中所需要的各种测试测量技术要求也越来越高。而激光测量技术则是在这种背景下得以应用的,这是利用激光作为工具进行测量分析的一种方法。激光测量可以分为非接触式和接触式两种方式。二、非接触激光测量非接触激光测量技术是指激光束在不与被测物体表面发生接触的情况下,对被测物体进行测量操作。它主要利用激光的高亮度、高单色性、高方向性等特点,将测量对象和激光之间的无线电辐射或光辐射联系起来,通过对测量信号的处理,来获得被测物体的相关参数。可以广泛应用于自动化制造、工业检测、生命科学、质量控制检测等领域。2.1 非接触式测量优点(1)不会对被测物体造成损伤。激光测量技术是无损伤性的,测量过程中不会对被测物体造成任何损伤,也不会影响被测物体的结构、形状和性能。(2)精度高。非接触激光测量技术具有高精密性、高灵敏性和高分辨力,能够以亚微米级的精度获得被测物体的相关参数,减小了人为误差和测量结果的不确定性。(3)高速度。非接触激光测量技术具有快速高效的特点,对于一些需要进行即时在线检测或高频率的质检要求,非接触激光测量技术具有独特的优势。(4)测量安全。由于非接触激光测量技术可以在安全距离的范围内进行,因此保障了测量人员的身体健康和安全。2.2 非接触式测量缺点(1)不适用于暗面测量。非接触激光测量技术无法对于有光线被挡住的部位进行测量,因此适用于透...
Copyright ©2005 - 2013 无锡泓川科技有限公司

1

犀牛云提供企业云服务
Our Link
X
3

SKYPE 设置

4

阿里旺旺设置

等待加载动态数据...

等待加载动态数据...

5

电话号码管理

  • 0510-88155119
6

二维码管理

等待加载动态数据...

等待加载动态数据...

展开