服务热线:
0510-88155119
13301510675@163.com
Language
Contact
首页
产品中心
高精度光谱共焦
高速高精度激光位移
通用激光位移
高性能激光位移
白光干涉测厚仪
激光测振传感器
激光干涉测距仪
3D线激光轮廓仪
项目案例
激光位移
光谱共聚焦
进口品替代
激光测振
白光干涉测厚
3D线激光
高速摄像机
新闻资讯
公司新闻
行业新闻
传感器知识大讲堂
关于我们
公司简介
联系我们
联系方式
高精度光谱共焦
高速高精度激光位移
通用激光位移
高性能激光位移
白光干涉测厚仪
激光测振传感器
激光干涉测距仪
3D线激光轮廓仪
您现在的位置:
首页
→
项目案例
→
项目案例
Case
激光位移
光谱共聚焦
进口品替代
激光测振
白光干涉测厚
3D线激光
高速摄像机
基于自动力锤与扫描式激光测振仪的MIMO模态测试技术研究
高速激光位移传感器在托盘计数中的创新应用:精准高效,应对高速流水线挑战
滚动轮胎系统的振动分析与验证:结合有限元模型与激光测振技术
光学振动测量技术在轮毂电机声学特性优化中的应用研究
四台3D线激光轮廓仪构建的高精度轮胎均匀性检测系统技术案例
3D线激光位移传感器在铸造件字符识别中的应用
高精度陶瓷圆盘表面平面度非接触测量技术案例研究-光谱共焦位移测量
晶圆表面瑕疵与加工精度检测技术案例研究:基于单点光谱共焦位移传感器的解决方案
激光测振传感器在风机电机旋转振动状态非接触测量中的案例分析与技术方案
共
197
条
页次9/22
首页
上一页
...
4
5
6
7
8
9
10
11
12
13
...
下一页
尾页
产品中心
项目案例
新闻资讯
关于我们
联系我们
About Us
关于泓川科技
专业从事激光位移传感器,激光焊缝跟踪系统研发及销售的科技公司
中国 · 无锡 · 总部地址:无锡新吴区天山路6号
销售热线:0510-88155119
图文传真:0510-88152650
Working Time
我们的工作时间
周一至周五:8:00-18:00
周六至周日:9:00-15:00
Shown
企业秀
More
65
求购激光位移传感器:量程200mm/500mm、采样>48kHz、±0.05%线性度?-泓川科技给您答案!
2025
-
03
-
14
泓川科技LTP系列激光位移传感器全面匹配您的技术需求尊敬的客户: 感谢您对泓川科技产品的关注!针对您提出的高精度激光位移传感器需求,我司LTP系列产品凭借卓越性能与灵活定制能力,可完全满足您的技术要求,具体对应如下:一、核心参数精准匹配需求项LTP400(200mm)LTP450(500mm)量程200mm(±100mm)500mm(±250mm)线性度±0.03%F.S.(优于要求)±0.05%F.S.(达标)重复精度(静态)±0.03%F.S.±0.05%F.S.采样频率50kHz全量程(达标)50kHz全量程(达标)输出信号-10V~10V(选配模块)-10V~10V(选配模块)技术优势说明:超高采样频率:LTP400/LTP450全量程下支持50kHz采样(48kHz),且可缩短量程至20%时提升至160kHz,满足高速动态测量需求(如振动检测、高速产线)。响应时间最低6.25μs(通过参数表*6可选配置),确保实时数据捕获能力。纳米级标定精度:基于纳米级激光干涉仪标定技术(参数表*3),线性度与重复性指标通过严格验证,确保长期稳定性。多输出模式兼容:支持**-10V~10V模拟输出**(需选配模块)、4~20mA电流输出、RS485及TCP/IP通讯,适配各类工业控制系统。48kHz、±0.05%线性度...
66
一场关于基恩士光谱共焦传感器:原理、特性与应用的深度全面剖析好文(下)
2025
-
01
-
14
四、与其他品牌光谱共焦传感器对比4.1 性能差异对比4.1.1 精度、稳定性等核心指标对比在精度方面,基恩士光谱共焦传感器展现出卓越的性能。以其超高精度型CL - L(P)015为例,直线性误差可达±0.49µm,这一精度在众多测量任务中都能实现极为精确的测量。相比之下,德国某知名品牌的同类型传感器,其精度虽也能达到较高水平,但在一些对精度要求极高的应用场景中,仍稍逊于基恩士。在测量高精度光学镜片的曲率时,基恩士传感器能够更精确地测量出镜片的微小曲率变化,确保镜片的光学性能符合严格标准。在稳定性上,基恩士光谱共焦传感器同样表现出色。其采用了先进的光学设计和稳定的机械结构,能够有效减少因环境因素和机械振动对测量结果的影响。即使在生产车间等振动较大的环境中,也能保持稳定的测量输出。而法国某品牌的传感器,在稳定性方面则存在一定的不足。在受到轻微振动时,测量结果可能会出现波动,影响测量的准确性和可靠性。在精密机械加工过程中,法国品牌的传感器可能会因为机床的振动而导致测量数据不稳定,需要频繁进行校准和调整,而基恩士传感器则能保持稳定的测量,为生产过程提供可靠的数据支持。响应速度也是衡量光谱共焦传感器性能的重要指标。基恩士光谱共焦传感器在这方面具备快速响应的优势,能够快速捕捉被测物体的位置变化。在对高速运动的物体进行测量时,能够及时反馈物体的位置信息,确保测量的实时性。相比...
67
非接触激光测量和接触式测量的优缺点分析及市场应用
2023
-
03
-
08
一、概述随着现代工业的不断发展和进步,精度对于工业生产过程中所需要的各种测试测量技术要求也越来越高。而激光测量技术则是在这种背景下得以应用的,这是利用激光作为工具进行测量分析的一种方法。激光测量可以分为非接触式和接触式两种方式。二、非接触激光测量非接触激光测量技术是指激光束在不与被测物体表面发生接触的情况下,对被测物体进行测量操作。它主要利用激光的高亮度、高单色性、高方向性等特点,将测量对象和激光之间的无线电辐射或光辐射联系起来,通过对测量信号的处理,来获得被测物体的相关参数。可以广泛应用于自动化制造、工业检测、生命科学、质量控制检测等领域。2.1 非接触式测量优点(1)不会对被测物体造成损伤。激光测量技术是无损伤性的,测量过程中不会对被测物体造成任何损伤,也不会影响被测物体的结构、形状和性能。(2)精度高。非接触激光测量技术具有高精密性、高灵敏性和高分辨力,能够以亚微米级的精度获得被测物体的相关参数,减小了人为误差和测量结果的不确定性。(3)高速度。非接触激光测量技术具有快速高效的特点,对于一些需要进行即时在线检测或高频率的质检要求,非接触激光测量技术具有独特的优势。(4)测量安全。由于非接触激光测量技术可以在安全距离的范围内进行,因此保障了测量人员的身体健康和安全。2.2 非接触式测量缺点(1)不适用于暗面测量。非接触激光测量技术无法对于有光线被挡住的部位进行测量,因此适用于透...
68
光学传感器:薄膜涂布生产工艺的革新驱动力(上)
2025
-
01
-
14
一、引言1.1 研究背景与意义在现代工业的广阔版图中,薄膜涂布生产工艺宛如一颗璀璨的明星,闪耀于包装、电子、光学等诸多关键领域。从日常生活中轻盈便捷的食品包装,到电子产品里精细入微的电子元件,再到光学仪器中不可或缺的光学镜片,薄膜涂布工艺的身影无处不在,它以独特的方式赋予产品卓越的性能与品质。在包装领域,经过精心涂布的薄膜,能够摇身一变成为食品的忠诚守护者,有效阻挡氧气、水汽等外界因素的侵袭,极大地延长食品的保鲜期,确保其新鲜美味。在电子领域,薄膜涂布工艺如同神奇的魔法,为电子元件披上一层特殊的 “外衣”,显著提升其绝缘性、导电性等关键性能,为电子产品的高效稳定运行奠定坚实基础。而在光学领域,它更是大展身手,通过精确控制涂布的厚度与均匀度,制造出具有高透光率、低反射率等优异光学性能的薄膜,让我们的视野更加清晰,成像更加精准。然而,传统的薄膜涂布生产工艺在发展过程中逐渐遭遇瓶颈。涂布厚度的均匀性难以精准把控,这就如同在一幅精美的画卷上出现了瑕疵,不仅会影响产品的性能,还可能导致产品的废品率居高不下。同时,生产过程中的实时监测与调控也面临诸多挑战,就像在茫茫大海中航行的船只,难以准确把握前进的方向。而光学传感器的横空出世,宛如一道曙光,为薄膜涂布生产工艺带来了全新的变革契机。凭借其高精度、非接触、响应速度快等一系列卓越特性,光学传感器能够像敏锐的探测器一样,实时、精准地监测涂布过程中的...
69
详解激光三角位移传感器的原理及市场应用
2023
-
09
-
16
大家好,今天给大家详细说明下目前我们市面上用的激光位移传感器内部构造及详细原理、应用、市场种类、及未来发展,我在网上搜索了很多资料,发现各大平台或者厂商提供的信息大多千篇一律或者式只言片语,要么是之说出大概原理,要买只讲出产品应用,对于真正想了解激光位移传感器三角回差原理的朋友们来说总是没有用办法说透,我今天花点时间整理了各大平台的大牛们的解释,再结合自己对产品这么多年来的认识,整理出以下这篇文章,希望能给想要了解这种原理的小伙伴一点帮助!好了废话不多说我们直接上干货首先我们要说明市面上的激光测量位移或者距离的原理有很多,比如最常用的激光三角原理,TOF时间飞行原理,光谱共焦原理和相位干涉原理,我们今天给大家详细介绍的是激光三角测量法和激光回波分析法,激光三角测量法一般适用于高精度、短距离的测量,而激光回波分析法则用于远距离测量,下面分别介绍激光三角测量原理和激光回波分析原理。让我们给大家分享一个激光位移传感器原理图,一般激光位移传感器采用的基本原理是光学三角法:半导体激光器:半导体激光器①被镜片②聚焦到被测物体⑥。反射光被镜片③收集,投射到CMOS阵列④上;信号处理器⑤通过三角函数计算阵列④上的光点位置得到距物体的距离。一 、激光位移传感器原理之激光三角测量法原理1.激光发射器通过镜头将可见红色激光射向被测物体表面,经物体反射的激光通过接收器镜头,被内部的CCD线性相机接收,根据...
70
白光干涉测厚传感器在晶圆水膜厚度测量中的应用及操作步骤详解
2024
-
01
-
21
白光干涉测厚仪是一种非接触式测量设备,广泛应用于测量晶圆上液体薄膜的厚度。其原理基于分光干涉原理,通过利用反射光的光程差来测量被测物的厚度。白光干涉测厚仪工作原理是将宽谱光(白光)投射到待测薄膜表面上,并分析返回光的光谱。被测物的上下表面各形成一个反射,两个反射面之间的光程差会导致不同波长(颜色)的光互相增强或者抵消。通过详细分析返回光的光谱,可以得到被测物的厚度信息。白光干涉测厚仪在晶圆水膜厚度测量中具有以下优势:1. 测量范围广:能够测量几微米到1mm左右范围的厚度。2. 小光斑和高速测量:采用SLD(Superluminescent Diode)作为光源,具有小光斑和高速测量的特点,能够实现快速准确的测量。下面是使用白光干涉测厚仪测量晶圆上水膜厚度的详细步骤:1. 准备工作:确保待测晶圆样品表面清洁平整,无杂质和气泡。2. 参数设置:调整白光干测厚涉仪到合适的工作模式,并确定合适的测量参数和光学系统设置。根据具体要求选择光谱范围、采集速度等参数。3. 样品放置:将待测晶圆放置在白光干涉测厚仪的测量台上,并固定好位置,使其与光学系统保持稳定的接触。确保样品与测量台平行,并避免外界干扰因素。4. 启动测量:启动白光干涉测厚仪,开始测量水膜厚度。通过记录和分析返回光的光谱,可以得到晶圆上水膜的厚度信息。可以通过软件实时显示和记录数据。5. 连续监测:对于需要连续监测晶圆上水膜厚度变...
71
泓川科技LTC2600与基恩士CL-P015光谱共焦传感器全方位对比及国产替代
2025
-
03
-
22
一、核心性能参数对比:精度与场景适配性参数泓川科技LTC2600(标准版)泓川LTC2600H(定制版)基恩士CL-P015(标准版)参考距离15 mm15 mm15 mm测量范围±1.3 mm±1.3 mm±1.3 mm光斑直径9/18/144 μm(多模式)支持定制(最小φ5 μm)ø25 μm(单点式)重复精度50 nm50 nm100 nm线性误差±0.49 μm(标准模式)分辨率0.03 μm0.03 μm0.25 μm(理论值)防护等级IP40IP67(定制)IP67耐温范围0°C ~ +50°C-20°C ~ +200°C(定制)0°C ~ +50°C真空支持不支持支持(10^-3 Pa,定制)支持(10^-6 Pa,标准版)重量228 g250 g(高温版)180 g性能深度解析精度碾压:LTC2600的重复精度(50 nm)显著优于CL-P015(100 nm),线性误差(光斑灵活性:LTC2600支持多光斑模式(最小φ5 μm定制),可兼顾微小目标检测与粗糙面稳定性;CL-P015仅提供单点式光斑(ø25 μm),适用场景受限。环境适应性:CL-P015标准版支持超高真空(10^-6 Pa),但C2600通过...
72
激光测量技术在(ADAS)驾驶辅助系统的应用案例(一)
2025
-
01
-
16
一、引言1.1 研究背景与目的在汽车行业迈向智能化与自动化的进程中,先进驾驶辅助系统(ADAS)作为关键技术,正发挥着愈发重要的作用。ADAS 凭借多种传感器与智能算法,能够实时监测车辆周边环境,为驾驶员提供预警与辅助控制,极大地提升了驾驶的安全性与舒适性。本报告旨在深入剖析《ADAS 相关工具 核心功能 & 技术》中所涉及的 ADAS 相关工具应用案例,通过详细描述各案例的具体应用场景、工作原理及达成的效果,深度挖掘这些工具在汽车制造及 ADAS 系统开发过程中的重要价值,为行业内相关人员提供具有实际参考意义的信息,助力推动 ADAS 技术的进一步发展与广泛应用。 1.2 研究方法与数据来源本报告通过对《ADAS 相关工具 核心功能 & 技术》进行全面细致的整理与深入分析,从中系统地提取出各类 ADAS 相关工具的应用案例。在分析过程中,对每个案例的技术原理、应用场景以及所实现的功能进行了详细阐述,并结合实际情况进行了深入探讨。本文所引用的 ADAS 相关工具的应用案例及技术原理均来自《ADAS 相关工具 核心功能 & 技术》文档,该文档为此次研究提供了丰富且详实的一手资料,确保了研究的准确性与可靠性。 二、车载相机应用案例剖析2.1 底部填充胶涂抹高度测量2.1.1 案例描述在汽车电子制造中,车载相机的底部填充胶涂抹高度对于确保相机的...
Popular Tags
热搜词
本周热门搜索:
激光位移传感器
激光测距传感器
光谱共焦位移传感器
激光测振动传感器
Message
最新动态
泓川科技 LTP 系列激光位移传感器全国产化制造流程细节全披露
2025
-
06
-
22
一、国产化背景与战略意义在全球供应链竞争加剧的背景下,激光位移传感器作为工业自动化核心测量部件,其国产化生产对打破技术垄断、保障产业链安全具有重要战略意义。泓川科技 LTP 系列依托国内完整的光学、电子、机械产业链体系,实现了从核心零部件到整机制造的全流程国产化,彻底解决了接口卡脖子问题,产品精度与稳定性达到国际先进水平,同时具备更强的成本竞争力与定制化服务能力。二、核心部件全国产化组成体系(一)光学系统组件激光发射单元激光二极管:采用深圳镭尔特光电 655nm 红光 PLD650 系列(功率 0.5-4.9mW)及埃赛力达 905nm 红外三腔脉冲激光二极管,支持准直快轴压缩技术,波长稳定性 ±0.1nm,满足工业级高稳定性需求。准直透镜:选用杭州秋籁科技 KEWLAB CL-UV 系列,表面粗糙度 光学滤光片:深圳激埃特光电定制窄带滤光片,红外截止率 99.9%,有效消除环境光干扰。激光接收单元光电探测器:上海欧光电子代理 OTRON 品牌 PSD 位置敏感探测器,分辨率达 0.03μm(如 LTPD08 型号),北京中教金源量子点探测器正在实现自主替代。聚焦透镜组:福州合创光电高精度分光棱镜,偏振消光比 1000:1,配合广州明毅电子阳极氧化支架,确保光路同轴度≤5μm。(二)电子电路组件信号处理模块微处理器:龙芯中科 3A5000 工业级芯片,支持 - 40℃...
有没有量程1米,测量精度误差1mm的国产激光位移传感器,频率5Khz以上?
2025
-
06
-
19
有!LTM 系列三款国产激光位移传感器满足需求在工业检测领域,量程 1 米、精度误差 1mm、频率 5KHz 以上的激光位移传感器是高端测量的刚需,而国产传感器常因精度或频率不足被进口品牌垄断。无锡泓川科技的 LTM2-800W、LTM3-800W、LTM5-800W 三款产品,不仅全面覆盖上述指标,更以进口品牌一半的成本优势,成为国产替代的优选方案。以下从性能参数、优劣分析、场景适配及成本对比展开详细介绍。一、核心性能参数对比型号LTM2-800WLTM3-800WLTM5-800W参考距离800mm800mm800mm测量范围±500mm(总量程 1000mm)±500mm(总量程 1000mm)±500mm(总量程 1000mm)光斑尺寸450×6000μm450×6000μm450×6000μm重复精度45μm45μm45μm线性误差采样频率5KHz10KHz31.25KHz工业接口485 串口 / 模拟信号(二选一)以太网 / 485 串口 / 模拟信号以太网 / 485 串口 / 模拟信号光源660nm,Max.50mW660nm,Max.50mW660nm,Max.50mW防护等级IP67IP67IP67工作温度0~+50℃0~+50℃0~+50℃功耗约 2.0W约 2.0W约 2.0W二、产品优势分析(一)...
泓川科技HC26激光位移传感器:高性价国产比替代奥泰斯CD33的优选方案
2025
-
06
-
09
在工业精密测量领域,无锡泓川科技的HC26系列激光位移传感器凭借出色的性能参数与显著的成本优势,成为替代奥泰斯CD33系列的高竞争力选择。以下从核心性能、特殊应用适配性及成本三方面进行对比分析:一、核心性能参数对标(HC26 vs CD33)参数泓川HC26系列奥泰斯CD33 (行业标准)HC26优势重复精度2μm (30mm款) → 50μm (195mm款)通常1~3μm (高端款)接近主流精度线性度±0.1%F.S.±0.05%~0.1%F.S.达到同级水平响应时间最快333μs (多档可调)通常500μs~1ms速度更快输出接口RS485(Modbus RTU)+模拟量(4-20mA/0-10V)类似接口组合同等兼容性防护等级IP67 (防尘防水)IP67/IP65同等工业防护温度特性0.05%F.S/℃0.03~0.05%F.S/℃稳定性接近注:HC26提供4种基准距离型号(30/50/85/195mm),覆盖小量程高精度(±4mm@30mm)至大量程(±99.98mm@195mm)场景,满足CD33主流应用范围。二、核心替代优势:全系支持正反射安装HC26系列所有型号均内置正反射光路设计,解决CD33在特殊材质检测中的痛点:镜面材料:通过正反射接收强光信号,避免漫反射信号微弱导致的测量失效。透明材质(如玻璃、薄...
查看更多》
Copyright ©2005 - 2013 无锡泓川科技有限公司
苏ICP备16036995号-2
苏公网安备 32021402001243号
网站地图
1
犀牛云提供企业云服务
Our Link
X
1
QQ设置
客服
客服
3
SKYPE 设置
4
阿里旺旺设置
等待加载动态数据...
等待加载动态数据...
5
电话号码管理
0510-88155119
6
二维码管理
等待加载动态数据...
等待加载动态数据...
展开
亲,扫一扫
浏览手机云网站