服务热线: 0510-88155119
13301510675@163.com
Language
项目案例 Case
Case 激光测振

光学振动测量技术在轮毂电机声学特性优化中的应用研究

日期: 2024-11-15
浏览次数: 26

标题:光学振动测量技术在轮毂电机声学特性优化中的应用研究

摘要

本文介绍了德国马格德堡大学(Otto von Guericke University Magdeburg)Editha工作小组对轮毂电机声学特性的深入研究。通过采用光学振动测量技术,对轮毂电机在运行状态下的振动响应进行了精确测量与分析,旨在为优化电动汽车的声学性能提供科学依据。文章详细阐述了测量原理、实验方法、数据处理及结果分析,并展望了未来研究方向。

光学振动测量技术在轮毂电机声学特性优化中的应用研究

1. 引言

随着电动汽车的快速发展,轮毂电机作为其核心部件之一,其声学特性的优化成为研究热点。轮毂电机的振动和噪音不仅影响驾乘体验,还关系到电动汽车的整体性能和市场竞争力。本文基于Editha工作小组的研究成果,探讨了光学振动测量技术在轮毂电机声学特性优化中的应用。

2. 近轮电驱动研究背景

自2011年以来,马格德堡大学Editha工作小组致力于电动汽车电驱动技术的研发。从Editha 1到Editha 3,团队逐步将直流电机替换为永磁同步电机,并最终采用轮毂电机,以实现更高的空间利用率和更智能的车辆动力学控制。然而,轮毂电机的引入也带来了簧下质量增加和声音辐射增强等新问题,亟需对其声学特性进行深入评估和优化。

3. 光学振动测量技术原理

光学振动测量技术是一种基于激光多普勒效应的非接触式测量方法,能够精确测量物体表面的振动速度和位移。本研究一维扫描式激光多普勒测振仪,通过激光束照射到被测物体表面,并接收反射回来的光信号,利用多普勒频移原理计算物体表面的振动速度。

测量原理公式

光学振动测量技术在轮毂电机声学特性优化中的应用研究


其中,为振动速度,为激光波长,为多普勒频移,为激光束与被测物体表面的夹角。

4. 实验方法与装置

4.1 实验装置搭建

实验采用自由-自由安装方式,将轮毂电机悬吊在铝型材框架上,以避免外部激励与被测结构因耦合产生的不确定的边界条件。使用力锤激励保证自由边界条件不变,并将力锤的头部安装在电动激振器上,以实现可重复的激励。

4.2 测量网格与反旋器

为了全面测量轮毂电机表面的振动情况,设定了密集的测量网格。由于轮毂电机转子旋转,传统加速度计无法测量其局部面外振动。因此,在测振仪前安装了一个可旋转的玻璃棱镜(反旋器),使测振仪能够按照预设的测量网格对旋转表面进行测量。

4.3 数据采集与处理

实验过程中,电动闸用于施加不同的负载,以实现不同的稳态工作点。使用增量编码器确保反旋器玻璃棱镜的角速度与被测物的角速度保持完全同步。采集的数据通过专业的软件进行处理,得到振动幅值、频率等关键参数。

光学振动测量技术在轮毂电机声学特性优化中的应用研究

光学振动测量技术在轮毂电机声学特性优化中的应用研究

5. 实验结果与分析

5.1 振动幅值谱图

图4显示了不同负载和速度变化情况下,测量网格各点的平均振动幅值的频响函数。结果表明,高负载和高速度均会导致更明显的声学特性,电机典型的声频组成清晰可见,尤其在3.7 ~ 4kHz的频率范围具有很高的幅值。


5.2 振动模态分析

图5显示了稳态怠速时的典型结果及平均频谱图,以及最为明显的振动模态。系统存在对称和非对称两种振动模式,非对称模态是非对称电激励或非对称边界条件的明确标志。图6则显示了在同等速度和特定扭矩下的工作模态,与怠速时相比,电激励力明显较高,电机运行时的非对称振动模式可能是由空间上不均匀的电激励所引起的。


6. 讨论与展望

本研究通过光学振动测量技术,成功获取了轮毂电机在运行状态下的振动响应数据,为优化其声学特性提供了重要依据。然而,轮毂电机的声学特性受到多种因素的影响,如电机设计、材料选择、边界条件等。因此,未来的研究需要综合考虑这些因素,采用更先进的测量技术和仿真方法,对轮毂电机的声学特性进行更深入的研究和优化。

此外,随着电动汽车市场的不断发展,对轮毂电机的性能要求也将不断提高。未来的研究应关注新型材料、新型电机结构以及智能控制算法在轮毂电机声学特性优化中的应用,以实现电动汽车性能、轻量化设计和声学之间的最佳平衡。

7. 结论

本文介绍了光学振动测量技术在轮毂电机声学特性优化中的应用,详细阐述了测量原理、实验方法、数据处理及结果分析。实验结果表明,光学振动测量技术能够有效参数化轮毂电机的声振特性,为解决噪音问题提供科学依据。未来的研究将在此基础上,进一步探索轮毂电机声学特性的优化方法和技术,推动电动汽车技术的不断进步和发展。


Case / 相关推荐
2025 - 03 - 03
点击次数: 166
1. 背景与测试需求压电陶瓷是超声波焊接设备的核心驱动元件,其振动特性(谐振频率、振幅一致性、动态响应速度等)直接决定焊接质量。某厂商开发新型超声波焊接换能器时,需对直径8mm的PZT-4压电陶瓷片进行以下测试:谐振频率点:在20kHz120kHz范围内精确标定;振幅稳定性:10V驱动电压下,位移峰峰值波动需5%;动态响应:阶跃信号激励下的上升时间与过冲量。技术难点:高频振动(120kHz)需MH...
2024 - 12 - 17
点击次数: 93
摘要:后坐位移是火炮设计中的一个重要参数,它关系到火炮射击过程中的稳定性、精度以及整体性能。为了准确测量火炮的后坐位移,本文介绍了一种采用激光测振仪进行测量的新方法。该方法基于多普勒效应和激光外差干涉原理,通过测量火炮后坐过程中产生的多普勒频移来计算位移量。实验结果表明,该方法具有较高的实用性和准确性,为火炮的设计和优化提供了有力的支持。关键词:火炮;后坐位移;激光测振仪;多普勒效应;激光外差干涉...
2024 - 12 - 11
点击次数: 32
在当今科技日新月异的时代,能量收集系统作为实现自持续运行的关键技术,正日益受到广泛关注。这些系统通过捕捉环境中的各种能量形式,如机械振动、热能等,并将其转化为电能,为微型设备提供源源不断的动力。其中,激光测振仪作为一种高精度的测量工具,在能量收集系统的研发与优化中发挥着举足轻重的作用。为何激光测振仪如此重要?能量收集系统的性能评估与优化离不开对振动特性的精确测量。激光测振仪以其非接触、高精度、实时...
2024 - 12 - 11
点击次数: 60
激光测量振动传感器作为一种先进的测试技术,正逐渐成为评估超声波换能器性能的关键工具。超声波换能器,作为能量转换的核心部件,其振动特性的精确测量对于确保设备的高效运行至关重要。通过激光测量技术,我们可以非接触、高精度地捕捉到换能器的振动数据,为产品优化和质量控制提供有力支持。超声波换能器在医疗、工业检测、材料科学等领域有着广泛的应用,其性能的稳定性和可靠性直接关系到整个系统的效能。相较于传统的测量手...
2024 - 12 - 04
点击次数: 73
摘要:本文深入探讨了3D扫描激光测振仪在金属超声疲劳试验中的高精度应用,通过详细的数据分析、算法公式以及测量步骤的阐述,展示了其在非接触式应力应变测试中的独特优势。结合德国凯泽斯劳滕大学材料科学与工程学院的实际研究案例,本文揭示了3D扫描激光测振仪在金属疲劳特性研究中的重要作用,为高性能材料的可靠性评估提供了有力的技术支持。一、引言随着现代动力系统的不断发展,对高性能材料的疲劳特性研究提出了更高的...
2024 - 11 - 27
点击次数: 81
引言在水下环境中进行振动测试,对于理解水下结构物的动态行为至关重要。例如,超声医疗换能器、海洋勘探设备以及潜艇结构等,都需要在水下进行精确的振动测试。本文将以一个简单的金属梁为测试样品,利用三维激光测振仪PSV-500-3D,详细阐述如何在水下进行振动测试,并通过数据分析揭示物体在水中的振动特性变化。实验搭建测试仪器与配置泓川科技提供了两种扫描式激光测振仪,分别适用于不同测量场合:红外式扫描头:激...
About Us
关于泓川科技
专业从事激光位移传感器,激光焊缝跟踪系统研发及销售的科技公司
中国 · 无锡 · 总部地址:无锡新吴区天山路6号
销售热线:0510-88155119 
图文传真:0510-88152650
Working Time
我们的工作时间
周一至周五:8:00-18:00
周六至周日:9:00-15:00
Shown 企业秀 More
  • 1
    2023 - 02 - 21
    激光位移传感器是一种用于测量距离和轮廓表面的自动光学传感技术。它的工作原理是发射激光束,激光束被目标表面或区域反射,然后光束返回所需的时间被转换为距离测量。它的主要应用是尺寸计量,可以精确测量长度、距离和粗糙度轮廓。激光位移传感器也用于工业自动化、机器人和机器视觉应用。什么是激光位移传感器?       激光位移传感器是一种用于测量距离和轮廓表面的自动光学传感技术。该系统通过从激光源发射激光来工作。然后,该激光束从目标表面或区域反射回来。然后,光束覆盖距离和返回所花费的时间被转换为距离测量或轮廓。激光位移传感器通常由三个主要部分组成:*激光源*光学探测器*处理器      激光源通常是激光二极管,其波长适合于目标区域及其光学特性。激光二极管产生激光束,该激光束被引导到目标表面或区域上。然后光束被反射回检测器。根据应用,可以用一定范围的脉冲频率调制光束。光束由光学检测器检测。检测器将光转换成电信号,然后将其发送到处理器。然后处理器处理信息并将测量数据发送到数字显示器或计算机。然后,数据可用于进一步分析或控制自动化过程。历史:       激光位移传感器最初是在20世纪70年代开发的,是麻省理工学院研究项目的一部分。这项研究由美国陆军研究实验室和美国空军赖特实验室赞助。该技术最...
  • 2
    2025 - 01 - 09
    一、光谱共焦传感技术解密光谱共焦技术的起源,要追溯到科学家们对传统成像精度局限的深刻洞察。在 20 世纪 70 年代,传统成像在精密测量领域遭遇瓶颈,为突破这一困境,基于干涉原理的光谱共焦方法应运而生,开启了高精度测量的新篇章。进入 80 年代,科研人员不断改进仪器设计,引入特殊的分光元件,如同给传感器装上了 “精密滤网”,精准分辨不同波长光信号;搭配高灵敏度探测器,将光信号转化为精确数字信息。同时,计算机技术强势助力,实现数据快速处理、动态输出测量结果,让光谱共焦技术稳步走向成熟。90 年代,纳米技术、微电子学蓬勃发展,对测量精度要求愈发苛刻。科研团队迎难而上,开发新算法、模型优化测量,减少误差;增设温度控制、机械振动抑制功能,宛如为传感器打造 “稳定护盾”,确保在复杂实验环境下结果稳定可靠,至此,光谱共焦技术成为精密测量领域的关键力量。添加图片注释,不超过 140 字(可选)二、HCY 光谱共焦传感器工作原理(一)核心原理阐释HCY 光谱共焦传感器的核心在于巧妙运用光学色散现象。当内部的白光点光源发出光线后,光线会迅速射向精密的透镜组。在这里,白光如同被解开了神秘面纱,依据不同波长被精准地色散开来,形成一道绚丽的 “彩虹光带”。这些不同波长的光,各自沿着独特的路径前行,最终聚焦在不同的高度之上,构建起一个精密的测量范围 “标尺”。当光线抵达物体表面,会发生反射,其中特定波长的光...
  • 3
    2025 - 09 - 02
    泓川科技激光位移传感器产品技术报告尊敬的客户: 感谢您对泓川科技激光位移传感器产品的关注与信任。为帮助您全面了解我司产品,现将激光位移传感器相关技术信息从参数指标、设计原理、结构设计等八大核心维度进行详细说明,为您的选型、使用及维护提供专业参考。一、参数指标我司激光位移传感器涵盖 LTP400 系列与 LTP450 系列,各型号核心参数经纳米级高精度激光干涉仪标定验证,确保数据精准可靠,具体参数如下表所示:表 1:LTP400EA参数表参数类别具体参数LTP400EA备注基础测量参数测量中心距离400mm以量程中心位置计算(*1)量程200mm-重复精度(静态)3μm测量标准白色陶瓷样件,50kHz 无平均,取 65536 组数据均方根偏差(*2)线性度±0.03%F.S.(F.S.=200mm)采用纳米级激光干涉仪标定(*3)光源与光斑光源类型-激光功率可定制,部分型号提供 405nm 蓝光版本(*4)光束直径聚焦点光斑 Φ300μm中心位置直径,两端相对变大(*5)电气参数电源电压DC9-36V-功耗约 2.5W-短路保护反向连接保护、过电流保护-输出与通信模拟量输出(选配)电压:0-5V/010V/-1010V;电流:420mA探头可独立提供电压、电流与 RS485 输出(*6)通讯接口RS485 串口、TCP/IP 网口可选配模拟电压 / 电流输出模块(*7)响应...
  • 4
    2023 - 10 - 20
    面对反射率不同的目标物时,激光位移传感器需要调整以下方面以确保测量的稳定性:根据目标物的反射率变化,调整接收光量。反射率较高的目标物可能导致光量饱和,而反射率较低的目标物可能无法获得足够的接收光量。因此,需要根据目标物的反射特性,适时调整激光位移传感器的接收光量,以使其处于最佳工作状态。使用光量控制范围调整功能。这种功能可以预先决定接收光量的上限和下限,缩短获取最佳光量的时间,从而可以更快地调整光量。针对反射率较高的目标物,需要减小激光功率和缩短发射时间,以避免光量饱和。而对于反射率较低的目标物,则应增大激光功率和延长发射时间,以确保获得足够的接收光量。在调整过程中,需要注意测量反射率急剧变化位置的稳定程度,以及使用光量调整功能以外功能时的稳定程度。如果无法稳定测量反射率不同的目标物,可能是由于目标物的反射光因颜色、反光、表面状况(粗度、倾斜度)等因素而发生变化,导致感光元件(接收光波形)上形成的光点状态也会随之变化。这种情况下,需要通过反复试验和调整,找到最佳的激光位移传感器工作参数。总结来说,激光位移传感器需要根据目标物的反射率变化,调整接收光量、激光发射时间、激光功率和增益等参数,以确保测量的稳定性和准确性。同时,需要注意目标物的反射特性及其变化情况,以便及时调整激光位移传感器的参数。
  • 5
    2025 - 01 - 19
    一、引言1.1 研究背景与意义在科技飞速发展的当下,半导体和电子部件制造行业正经历着深刻的变革。随着电子产品的功能不断增强,尺寸却日益缩小,对半导体和电子部件的性能、精度以及可靠性提出了极为严苛的要求。从智能手机、平板电脑到高性能计算机、物联网设备,无一不依赖于先进的半导体和电子部件技术。而这些部件的质量与性能,在很大程度上取决于制造过程中的测量、检测和品质管理环节。光学测量技术作为一种先进的测量手段,凭借其高精度、非接触、快速测量等诸多优势,在半导体和电子部件制造领域中发挥着愈发关键的作用。它能够精确测量微小尺寸、复杂形状以及表面形貌等参数,为制造过程提供了不可或缺的数据支持。举例来说,在半导体芯片制造中,芯片的线宽、间距等关键尺寸的精度要求已经达到了纳米级别,光学测量技术能够准确测量这些尺寸,确保芯片的性能符合设计标准。再如,在电子部件的封装过程中,光学测量可以检测焊点的形状、尺寸以及位置,保障封装的可靠性。光学测量技术的应用,不仅能够有效提高产品的质量和性能,还能显著降低生产成本,增强企业在市场中的竞争力。通过实时监测和精确控制制造过程,能够及时发现并纠正生产中的偏差,减少废品率和返工率,提高生产效率。因此,深入研究光学测量在半导体和电子部件制造中的典型应用,对于推动行业的发展具有重要的现实意义。1.2 研究目的与方法本报告旨在深入剖析光学测量在半导体和电子部件制造测量、检测...
  • 6
    2025 - 01 - 14
    一、引言1.1 激光位移传感器概述激光位移传感器,作为工业测量领域的关键设备,凭借其卓越的非接触测量特性,正日益成为众多行业实现高精度测量与自动化控制的核心技术。它主要利用激光的反射特性,通过精确测量反射光的相关参数,实现对目标物体的位移、距离、厚度等几何量的精准测定。这一技术的诞生,为现代制造业、科研实验以及诸多工业生产过程,提供了高效、可靠且精准的测量手段。其工作原理基于激光三角测量法和激光回波分析法。激光三角测量法常用于高精度、短距离测量场景。在该方法中,激光位移传感器发射出一束激光,射向被测物体表面,物体表面反射的激光经由特定的光学系统,被传感器内部的探测器接收。根据激光发射点、反射点以及探测器接收点之间所构成的三角几何关系,通过精密的计算,能够精确得出物体与传感器之间的距离 。激光回波分析法更适用于远距离测量,传感器以每秒发射大量激光脉冲的方式,向被测物体发送信号,随后依据激光脉冲从发射到被接收的时间差,精确计算出物体与传感器之间的距离。在工业测量领域,激光位移传感器的重要地位不容小觑。在汽车制造行业,它被广泛应用于车身零部件的尺寸检测、装配精度控制等环节。通过对汽车零部件的精确测量,能够确保各个部件的尺寸符合设计要求,从而提升整车的装配质量和性能。在电子制造领域,激光位移传感器可用于检测芯片的尺寸、平整度以及电子元件的贴装精度等。在芯片制造过程中,其微小的尺寸和极高的精...
  • 7
    2025 - 01 - 29
    五、光谱共焦传感器测量厚度的局限性及解决措施5.1 局限性分析5.1.1 测量范围限制光谱共焦传感器的测量范围相对有限,一般在几毫米到几十毫米之间。这是由于其测量原理基于色散物镜对不同波长光的聚焦特性,测量范围主要取决于色散物镜的轴向色差范围以及光谱仪的工作波段。在实际应用中,对于一些大尺寸物体的厚度测量,如厚壁管材、大型板材等,可能需要多次测量拼接数据,增加了测量的复杂性和误差来源。例如,在测量厚度超过传感器量程的大型金属板材时,需要移动传感器进行多次测量,然后将测量数据进行拼接处理,但在拼接过程中可能会因测量位置的定位误差、测量角度的变化等因素导致测量结果的不准确。5.1.2 对被测物体表面状态的要求虽然光谱共焦传感器对多种材料具有良好的适用性,但被测物体表面的粗糙度、平整度等因素仍会对测量精度产生一定影响。当被测物体表面粗糙度较大时,表面的微观起伏会导致反射光的散射和漫反射增强,使得反射光的强度分布不均匀,从而影响光谱仪对反射光波长的准确检测,导致测量误差增大。对于表面平整度较差的物体,如存在明显翘曲或弯曲的板材,会使传感器与物体表面的距离在不同位置发生变化,超出传感器的测量精度范围,进而影响厚度测量的准确性。例如,在测量表面粗糙的橡胶板材时,由于橡胶表面的微观纹理和不规则性,测量精度会明显下降,难以达到对光滑表面测量时的高精度水平。5.1.3 成本相对较高光谱共焦传感器作为...
  • 8
    2023 - 02 - 26
    今天我为大家展示安全激光扫描仪产品,安全激光扫描仪适用于各种应用技术领域,      在设备开发期间我们给予了特别关注,以确保它能够在广泛应用中发挥最佳功能,尤其重视大型工作区域的防护,例如机床正面区域或机器人工作区域。      其他应用包括移动车辆的防护,例如侧向滑动装置或移动运输设备,无人驾驶运输系统。甚至垂直安装激光扫描仪的出入口保护系统。尽管我们在安全激光扫描与领域,已经有数10年的经验了,但该应用领域仍然面对许多挑战。不过我们的激光安全扫描仪具有独一无二的功能属性,例如具有8.25米检测距离和270度扫描范围。       属于目前市场上的高端设备,非常适合侧向滑动装置正面区域等大型区域或长距离的防护。该设备的另一个亮点就是能够同时监测两个保护功能。这在许多应用领域中,独具优势以前需要使用两个设备,如今只需要使用一台这样的安全激光扫描仪,即可完成两台设备的功能。               实践中遇到的一项挑战是设计一款异常强骨的激光安全扫描仪。能够适应周围环境中可能存在的灰尘和颗粒等恶劣条件,因此我们提供了较分辨率达到0.1度的设备。它在目前市场上具有非常高的价值。   ...
Message 最新动态
蓝光光源激光位移传感器:优势、原理与特殊场景解决方案 —— 泓川科技 LTP 系列 405nm 定制... 2025 - 10 - 21 在工业精密测量中,传统红光激光位移传感器常受高反射、半透明、高温红热等特殊场景限制,而蓝光光源(405nm 波长)凭借独特物理特性实现突破。以下通过 “一问一答” 形式,详解蓝光传感器的优势、原理构造,并结合泓川科技 LTP 系列定制方案,看其如何解决特殊环境测量难题。1. 蓝光光源激光位移传感器相比传统红光,核心优势是什么?蓝光传感器的核心优势源于 405nm 波长的物理特性,相比传统 655nm 左右的红光,主要体现在三方面:更高横向分辨率:根据瑞利判据,光学分辨率与波长成反比。蓝光波长仅为红光的 62%(405nm/655nm≈0.62),相同光学系统下横向分辨率可提升约 38%,能形成更小光斑(如泓川 LTP025 蓝光版光斑最小达 Φ18μm),适配芯片针脚、晶圆等微米级结构测量。更强信号稳定性:蓝光单光子能量达 3.06eV,远高于红光的 2.05eV。在低反射率材料(如橡胶、有机涂层)表面,能激发出更强散射信号;同时穿透性更低,仅在材料表层作用,避免内部折射干扰,适合表面精准测量。更优抗干扰能力:蓝光波段与红热辐射(500nm 以上)、户外强光(可见光为主)重叠度低,搭配专用滤光片后,可有效隔绝高温物体自发光、阳光直射等干扰,这是红光难以实现的。2. 蓝光激光位移传感器的原理构造是怎样的?为何能实现高精度测量?蓝光传感器的高精度的核心是 “光学设计 + 信号处理 + ...
泓川科技国产系列光谱共焦/激光位移传感器/白光干涉测厚产品性能一览 2025 - 09 - 05 高精度测量传感器全系列:赋能精密制造,适配多元检测需求聚焦半导体、光学膜、机械加工等领域的精密检测核心痛点,我们推出全系列高性能测量传感器,覆盖 “测厚、对焦、位移” 三大核心应用场景,以 “高精准、高速度、高适配” 为设计核心,为您的工艺控制与质量检测提供可靠技术支撑。以下为各产品系列的详细介绍:1.LTS-IR 红外干涉测厚传感器:半导体材料测厚专属核心用途:专为硅、碳化硅、砷化镓等半导体材料设计,精准实现晶圆等器件的厚度测量。性能优点:精度卓越:±0.1μm 线性精度 + 2nm 重复精度,确保测量数据稳定可靠;量程适配:覆盖 10μm2mm 测厚范围,满足多数半导体材料检测需求;高效高速:40kHz 采样速度,快速捕捉厚度数据,适配在线检测节奏;灵活适配:宽范围工作距离设计,可灵活匹配不同规格的检测设备与场景。2. 分体式对焦传感器:半导体 / 面板缺陷检测的 “高速对焦助手”核心用途:针对半导体、面板领域的高精度缺陷检测场景,提供高速实时对焦支持,尤其适配显微对焦类检测设备。性能优点:对焦速度快:50kHz 高速对焦,同步匹配缺陷检测的实时性需求;对焦精度高:0.5μm 对焦精度,保障缺陷成像清晰、检测无偏差;设计灵活:分体式结构,可根据检测设备的安装空间与布局灵活调整,降低适配难度。3. LT-R 反射膜厚仪:极薄膜厚检测的 “精密管家”核心用途:专注于极薄膜...
多方面研究泓川科技LTP系列大量程全国产激光位移传感器 2025 - 09 - 02 泓川科技激光位移传感器产品技术报告尊敬的客户: 感谢您对泓川科技激光位移传感器产品的关注与信任。为帮助您全面了解我司产品,现将激光位移传感器相关技术信息从参数指标、设计原理、结构设计等八大核心维度进行详细说明,为您的选型、使用及维护提供专业参考。一、参数指标我司激光位移传感器涵盖 LTP400 系列与 LTP450 系列,各型号核心参数经纳米级高精度激光干涉仪标定验证,确保数据精准可靠,具体参数如下表所示:表 1:LTP400EA参数表参数类别具体参数LTP400EA备注基础测量参数测量中心距离400mm以量程中心位置计算(*1)量程200mm-重复精度(静态)3μm测量标准白色陶瓷样件,50kHz 无平均,取 65536 组数据均方根偏差(*2)线性度±0.03%F.S.(F.S.=200mm)采用纳米级激光干涉仪标定(*3)光源与光斑光源类型-激光功率可定制,部分型号提供 405nm 蓝光版本(*4)光束直径聚焦点光斑 Φ300μm中心位置直径,两端相对变大(*5)电气参数电源电压DC9-36V-功耗约 2.5W-短路保护反向连接保护、过电流保护-输出与通信模拟量输出(选配)电压:0-5V/010V/-1010V;电流:420mA探头可独立提供电压、电流与 RS485 输出(*6)通讯接口RS485 串口、TCP/IP 网口可选配模拟电压 / 电流输出模块(*7)响应...
Copyright ©2005 - 2013 无锡泓川科技有限公司

1

犀牛云提供企业云服务
Our Link
X
3

SKYPE 设置

4

阿里旺旺设置

等待加载动态数据...

等待加载动态数据...

5

电话号码管理

  • 0510-88155119
6

二维码管理

等待加载动态数据...

等待加载动态数据...

展开