服务热线: 0510-88155119
13301510675@163.com
Language

多方面研究泓川科技LTP系列大量程全国产激光位移传感器

日期: 2025-09-02
浏览次数: 30
发表于:
来自 泓川科技
发表于: 2025-09-02
浏览次数: 30

泓川科技激光位移传感器产品技术报告

尊敬的客户:

 

感谢您对泓川科技激光位移传感器产品的关注与信任。为帮助您全面了解我司产品,现将激光位移传感器相关技术信息从参数指标、设计原理、结构设计等八大核心维度进行详细说明,为您的选型、使用及维护提供专业参考。

一、参数指标

我司激光位移传感器涵盖 LTP400 系列与 LTP450 系列,各型号核心参数经纳米级高精度激光干涉仪标定验证,确保数据精准可靠,具体参数如下表所示:

表 1:LTP400EA参数表

参数类别

具体参数

LTP400EA

备注

基础测量参数

测量中心距离

400mm

以量程中心位置计算(*1)

量程

200mm

-

重复精度(静态)

3μm

测量标准白色陶瓷样件,50kHz 无平均,取 65536 组数据均方根偏差(*2)

线性度

±0.03%F.S.(F.S.=200mm)

采用纳米级激光干涉仪标定(*3)

光源与光斑

光源类型

-

激光功率可定制,部分型号提供 405nm 蓝光版本(*4)

光束直径

聚焦点光斑 Φ300μm

中心位置直径,两端相对变大(*5)

电气参数

电源电压

DC9-36V

-

功耗

约 2.5W

-

短路保护

反向连接保护、过电流保护

-

输出与通信

模拟量输出(选配)

电压:0-5V/0~10V/-10~10V;电流:4~20mA

探头可独立提供电压、电流与 RS485 输出(*6)

通讯接口

RS485 串口、TCP/IP 网口

可选配模拟电压 / 电流输出模块(*7)

响应时间

20us/50us/100us/125us/200us/500us/1ms,最高 6.25us 可选

-

性能参数

采样频率

Max. 50kHz(全量程)/Max. 160kHz(全量程缩小到 20%)

-

外部输入功能

激光关闭、采样保持、单脉冲触发、归零等

-

环境与结构

防护等级

IP67(IEC)

-

工作温度

0°C~+50℃(不可结露、结冰);保存温度:-20℃~+70℃(可订制 - 40℃~70℃宽温版)

-

工作湿度

0~50℃ / 35~95% RH(无结冰 / 结霜)

-

尺寸

115×85×37mm

-

重量

438g

-

表 2:LTP450EA参数表

参数类别

具体参数

LTP450EA

备注

基础测量参数

测量中心距离

450mm

以量程中心位置计算(*1)

量程

500mm

-

重复精度(静态)

8μm

测量标准白色陶瓷样件,50kHz 无平均,取 65536 组数据均方根偏差(*2)

线性度

±0.05%F.S.(F.S.=500mm)

采用纳米级激光干涉仪标定(*3)

光源与光斑

光源类型

红色半导体激光 2 类,655nm,4.9mw

激光功率可定制,部分型号提供 405nm 蓝光版本(*4)


光束直径

聚焦点光斑 Φ320μm

中心位置直径,两端相对变大(*5)

电气参数

电源电压

DC 9~36V,最大允许 ±10% 波动

-

功耗

-

-

短路保护

反向连接保护、过电流保护

-

输出与通信

模拟量输出(选配)

电压:0-5V/0~10V/-10~10V;电流:4~20mA

探头可独立提供电压、电流与 RS485 输出(*6)

通讯接口

RS485 串口、TCP/IP 网口

可选配模拟电压 / 电流输出模块(*7)

环境与结构

防护等级

IP67(IEC)

-

尺寸

120×75×37mm

-

重量

416g

-

表 3:计量标定关键指标(以 LTP400EA 为例)

计量项目

数值

计量标准

线性度

0.0178%F.S.(F.S.=200mm)

Keysight E1733A 激光干涉仪

分辨率

2.654μm

-

参考距离光斑直径

274μm

Thorlabs BP-VIS 光束分析仪

激光功率

4.2mW

-

计量环境

千级洁净室,温度 24.5℃,相对湿度 47.8%

-

 

 

二、传感器设计原理

我司激光位移传感器基于激光三角测量原理设计,通过光学、电学与算法的协同,实现高速、高精度距离测量,具体原理如下:

 

 

多方面研究泓川科技LTP系列大量程全国产激光位移传感器

1. 核心原理

  1. 激光发射:电路板上的激光器驱动模块输出电信号,驱动红色半导体激光管(655nm,2 类激光)发出平行光束,经发射镜头校准后照射至目标物表面。

  2. 光线反射与接收:目标物表面漫反射的光线被接收镜头聚焦,穿透滤光片(过滤环境杂光)后,在 CMOS 光电成像器件上形成光斑成像。

  3. 位移 - 光斑位置关联:当传感器与目标物的距离发生变化时,反射光线的角度随之改变,导致 CMOS 上的光斑位置偏移 —— 距离增大时,光斑向接收镜头边缘偏移;距离减小时,光斑向中心偏移。

  4. 数据解析:电路板上的光电信号处理模块将 CMOS 采集的光斑位置信号转换为电信号,再通过内置算法(如峰检测、线性修正算法)将电信号解析为实际距离数据,最终通过 RS485/TCP/IP 接口或模拟量输出。

 

2. 关键技术支撑

  • 峰检测算法:通过设置峰高度阈值(100-3000)、峰锐度阈值(100-5000)、峰最小间距(5-500 像素),滤除杂光与噪声,精准识别有效光斑峰值。

  • 温度补偿技术:温度特性控制在 0.01% F.S./℃,通过内置温度传感器(如 NST1001-QDNR)实时监测环境温度,动态修正测量数据,抵消温度漂移影响。

  • 同步测量技术:支持主机 - 从机模式,通过 SYNC 接口实现多探头同步测厚、交替曝光抗干扰,确保动态测量时的数据同步性。

 

 

三、传感器结构设计

传感器采用 “光学系统 + 电路系统 + 机械结构” 三位一体设计,各部分模块化集成,兼顾精度、稳定性与工业环境适应性:

多方面研究泓川科技LTP系列大量程全国产激光位移传感器

 

 

1. 光学系统

核心功能为激光发射与反射光接收,组件及参数如下:

 

组件名称

型号 / 规格

功能

激光管

红色半导体激光(655nm,4.9mw)

发射测量光束

发射镜头

-

校准激光束,确保平行输出

接收镜头

LTP155 接收镜组(MK.23.2002)

聚焦反射光至 CMOS

滤光片

-

过滤环境光(如可见光、红外光),提升信噪比

CMOS 传感器

GL3504 CMOS 板(PCB 集成 BGA)

采集光斑成像信号

2. 电路系统

负责信号驱动、处理与数据传输,核心组件如下:

 

组件类别

型号 / 规格

功能

核心控制板

LTP 全国产化主板 V5.0 PCBA

集成 MCU、信号处理电路,统筹各模块工作

MCU 芯片

GD32H759IMK6(BGA176 封装)

运行测量算法、控制接口输出

电路总成 IC

MK.01.0003(红光带模拟)

激光驱动、模拟信号处理

电源板

DZ.60.2027(扬杰 / 韦尔方案)

提供稳定直流电源,具备过压 / 欠压保护

隔离芯片

电源板隔离芯片(纳芯微方案)

隔离电源与信号,抗电磁干扰

接口驱动

RS485/TCP/IP 驱动电路

实现数据通信与模拟量输出

3. 机械结构

采用工业级材质与紧凑设计,保障机械稳定性与防护性能:

 

结构部件

型号 / 规格

材质 / 工艺

功能

外壳

上盖总成(MK.25.0004)、下盖总成(MK.23.0003)

压铸铝

保护内部组件,抗冲击

安装件

2×Φ5.0 安装孔(建议 M5 内六角螺钉)

-

固定传感器,确保测量角度稳定

连接件

34P 主板连接线(JS05A-34P)、14P 激光板连接线(JS05A-14P)

高柔耐油 PVC

实现内部模块信号传输

调焦部件

调焦压圈(JX.20.0007)

金属机械加工

校准镜头焦距,确保光斑清晰

防护部件

电缆线

高柔耐油 PVC

外部接线防护,适应工业油污环境

 

 

 

 

 

 

四、传感器的维修维护

为保障传感器长期稳定运行,建议按以下规范进行维修维护:

1. 日常维护(每月 1 次)

  • 清洁防护玻璃罩:使用洁净空气吹除表面灰尘;若有顽固污物,用蘸有酒精的软布轻擦(避免划伤玻璃),防止污物遮挡光束导致测量波动。

  • 检查电缆与接口:查看 M12 17 芯连接口、电缆线是否破损、松动,若有破损需及时更换高柔耐油 PVC 电缆,避免短路或信号中断。

  • 环境检查:确认传感器工作环境符合温度(0°C~+50℃)、湿度(35~95% RH 无结露)要求,远离腐蚀性气体、强震动源(如冲压设备)。

2. 常见故障排查

故障现象

可能原因

解决方法

无数据输出(数据为 0 或 - 2147)

1. 修正系数(映射斜率)设为 0;2. 未选择输出数据;3. 峰检测参数设置不合理

1. 进入上位机 “数据修正” 界面,将映射斜率恢复为 1;2. 在 “输出数据选择” 中勾选位置 1/2、厚度等数据;3. 调整峰高度阈值(70-80%)、峰锐度阈值(500-1000)

连接不成功

1. 设备刚上电(需 10 秒启动时间);2. 计算机 IP 与传感器不在同一网段;3. 通信端口被占用

1. 上电 10 秒后重新连接;2. 将计算机 IP 改为与传感器同一网段(如传感器默认 192.168.0.10,计算机设为 192.168.0.20);3. 更换通信端口(范围 1024-65535)

测量数据波动大

1. 防护玻璃罩污染;2. 环境温度剧烈变化;3. 存在强电磁干扰

1. 清洁防护玻璃罩;2. 保持环境温度稳定,避免阳光直射;3. 远离高压线 / 变频器,或安装杂波过滤器

3. 定期校准(每年 1 次)

  • 校准设备:采用 Keysight E1733A 激光干涉仪(线性度标定)、Thorlabs BP-VIS 光束分析仪(光斑直径检测)。

  • 校准流程:1. 将传感器安装在千级洁净室(温度 23±2℃,湿度 45-60% RH);2. 以标准白色陶瓷样件为目标,在全量程内均匀选取 10 个测量点;3. 对比传感器输出值与激光干涉仪标准值,修正线性度偏差(通过上位机 “数据修正” 功能);4. 记录校准数据,生成校准报告。

4. 维修注意事项

  • 禁止自行拆解传感器(外壳为压铸铝一体结构,拆解会破坏密封与光学 alignment),维修需由泓川科技授权工程师操作。

  • 更换核心部件(如 CMOS 传感器、激光管)后,需重新进行光学校准与参数标定,确保精度符合要求。

  • 若传感器出现严重故障(如激光管烧毁、主板损坏),请联系泓川科技技术支持(电话:0510-88155119),提供序列号与故障现象,以便快速维修。

 

 

 

五、传感器的使用方法

传感器使用需完成 “安装 - 软件配置 - 数据采集” 三大步骤,支持单探头独立测量、双探头对射测厚、多探头同步采集等场景,具体操作如下:

1. 安装步骤

(1)机械安装

  1. 选择平整、无震动的安装面,通过传感器上的 2×Φ5.0 安装孔,使用 M5 内六角螺钉固定(扭矩≤2Nm,避免过度拧紧损坏外壳)。

  2. 调整传感器角度:确保激光束垂直于目标物表面(误差≤±1°),测量中心距离符合型号要求(如 LTP400 为 400mm),避免光束被侧壁遮挡产生杂光。

(2)电气连接

  • 电源连接:通过 M12 17 芯接口的 2 脚(VIN)、3 脚(GND)接入 DC 9~36V 电源,确保正负极无反接(具备反向连接保护,但长期反接会损坏电源板)。

  • 通信连接:若用 TCP/IP 通信,将 M12 接口 14-17 脚(Ethernet TX+/TX-/RX+/RX-)通过网线连接至计算机或交换机;若用 RS485 通信,连接 10 脚(RS485 TX+)、11 脚(RS485 TX-)。

  • 同步连接(双探头测厚):将两台传感器的 12 脚(SYNC+)、13 脚(SYNC-)交叉连接,实现 SYNC 协议同步。

2. 软件配置(使用 MPLaserStudio 上位机)

(1)软件安装

  • 环境要求:Windows 7/8/10 64 位系统,Core i5 2.3GHz 以上 CPU,2GB 以上内存,100M 速率 RJ45 网卡。

  • 安装步骤:1. 双击 “MPLaserStudio_setup.exe”,选择安装路径(需≥97.3MB 空间);2. 勾选 “创建桌面快捷方式”,点击 “安装”;3. 安装完成后,双击桌面图标启动软件。

(2)通信配置

  1. IP 地址设置:传感器默认 IP 为 192.168.0.10,将计算机 IP 改为同一网段(如 192.168.0.20),子网掩码 255.255.255.0,网关 192.168.0.1。

  2. 设备搜索:启动软件,默认端口 8002(可修改为 1024-65535),点击 “搜索设备”,选中搜索到的传感器(显示序列号),点击 “连接”。

  3. 参数配置

    • 图像配置:设置图像截取范围(起始像素 0-1024,像素数目≤1024)、曝光方式(自动曝光建议目标强度 70-80%)、峰检测参数(峰高度 100-3000,峰锐度 500-1000)。

    • 测量配置:设置采样间隔(如 20us,全量程采样)、数据滤波(中值滤波 + 滑动平均,减少噪声)、数据修正(默认映射斜率 1,偏置 0,无需修改)。

    • 输入输出配置:模拟量输出选择数据源(如位置 1)、输出范围(如 0-10V);NPN 输入设为 “激光使能”(导通时激光点亮)。

3. 数据采集与操作

(1)单探头测量

  1. 点击软件 “刷新数据”,实时数据窗口显示位置 1(目标距离)、激光功率、曝光时间等数据;若需记录数据,点击 “开始记录”,选择保存路径(默认 data 文件夹,格式 CSV)。

  2. 置零操作:若需以当前位置为零点,点击 “软件置零”,置零基准点设为 0,位置 1 数据变为 0 附近值(偏移值 = 0 - 置零前数据)。

(2)双探头对射测厚(同步测量)

  1. 将探头 1 设为 SYNC 主机(端口模式 “作为 SYNC 主机”,交替曝光节拍数 1),探头 2 设为 SYNC 从机(端口模式 “作为 SYNC 从机”,距离 2 数据选择 “主机数据”)。

  2. 点击 “跳转到 MATH 界面”,选择 “对射测厚” 模式,输入量块厚度(如 1mm),点击 “标定”(自动计算 offset 值)。

  3. 放置被测物,实时数据窗口显示厚度值(计算公式:厚度 = offset - 探头 1 位置 1 - 探头 2 位置 1)。

(3)多探头采集(最多 8 台)

  1. 连接多台传感器(通过交换机),在 “显示设置” 中勾选 “多窗口显示”,点击 “切换多窗口”。

  2. 每个窗口选择对应传感器与数据源(如位置 1、厚度),点击 “刷新数据”,同时查看多台传感器数据,支持曲线显示与数据记录。

 

 

六、传感器的使用环境

传感器设计符合工业级防护标准,需在以下环境条件下使用,以确保性能稳定:

1. 环境温湿度

  • 工作温度:0°C~+50℃,不可结露、结冰(若需低温环境,可订制 - 40℃~70℃宽温版)。

  • 保存温度:-20℃~+70℃,避免长期存放于高温高湿环境(防止内部元器件受潮老化)。

  • 相对湿度:35~95% RH(0~50℃,无结冰 / 结霜),湿度超过 95% RH 时需安装除湿装置。

2. 防护与抗干扰

  • 防护等级:IP67(IEC 标准),可防尘、防短时浸水(水深 1m,30 分钟),但不可长期浸泡或喷淋。

  • 抗振性能:55Hz 双振幅 1.5mm,X/Y/Z 各方向 2 小时,避免安装在冲压机、机床等强震动设备旁(若无法避免,需加装减震支架)。

  • 电磁兼容:远离高压线、变频器、射频设备(如对讲机),避免电磁干扰导致数据波动;若存在强干扰,需在电源端安装 EMC 滤波器,通信线采用屏蔽双绞线。

3. 清洁度与光照

  • 清洁度:安装环境需无大量粉尘、油污(如焊接车间、面粉厂),建议安装空气净化装置或防护罩,防止污物粘附在防护玻璃罩上。

  • 光照条件:避免强光直射(如阳光、强光 LED 灯),强光会导致 CMOS 饱和,影响测量精度;若无法避免,需安装遮光板,或开启 “背景抑制” 功能(软件中设置,扣除环境光影响)。

4. 禁止使用环境

  • 湿度高、灰尘多、通风差的封闭空间;

  • 存在腐蚀性气体(如氯气、氨气)或可燃性气体(如甲烷)的环境;

  • 水、油或化学药品直接溅落的位置(如喷涂线、清洗槽旁);

  • 容易产生静电的环境(如塑料加工车间,需接地处理)。

 

 

七、传感器研制过程自主可控

我司从核心元器件选型、硬件设计、软件开发到生产标定,全流程实现自主可控,保障产品稳定性与供应链安全:

1. 核心元器件自主选型与国产化

核心元器件均来自国内优质供应商,性能符合工业级标准,供应链稳定,具体如下:

 

元器件类别

核心型号

供应商

自主可控说明

CMOS 传感器

GL3504

长光辰芯(国内领先 CMOS 厂商)

自主选型,支持定制化参数(如像素数、帧率)

MCU 芯片

GD32H759IMK6

兆易创新(国内 32 位 MCU 龙头)

自主开发驱动程序,适配测量算法

激光驱动 IC

MK.01.0003

杭州瑞盟、川土微

联合厂商定制,优化激光功率稳定性

电源器件

扬杰方案 / 韦尔方案

扬杰电子、上海韦尔

自主设计电源电路,保障供电稳定

机械结构件

上盖 / 下盖总成

无锡汉纳科技

自主设计图纸,委托加工,确保尺寸精度

2. 硬件与软件自主开发

  • 硬件设计:传感器主板(V5.0 PCBA)、电源板(DZ.60.2027)的电路原理图、PCB layout 均由泓川科技硬件团队自主设计,通过 EMC 测试、高低温测试验证,确保工业环境适应性。

  • 软件开发

    • 上位机软件 MPLaserStudio:自主开发,支持中文 / 英文 / 日文切换,具备设备配置、数据采集、曲线显示、报表生成等功能,提供 C++/C# SDK,方便客户二次开发。

    • 内置算法:峰检测、线性修正、温度补偿、同步通信等核心算法均为自主研发,可根据客户需求优化(如透明体测厚算法、高速采样算法)。

3. 生产与标定自主可控

  • 生产过程:无锡泓川科技自有生产车间,配备 SMT 贴片设备、焊接设备、组装生产线,生产流程符合 ISO9001 质量体系,每台传感器需经过通电测试、光学校准、参数标定三道工序,合格后方可出厂。

  • 标定过程:采用 Keysight E1733A 激光干涉仪(国际认可标准设备)进行线性度标定,自主编写标定程序,记录每台传感器的标定数据,确保精度可追溯。

4. 知识产权自主

传感器的硬件设计、软件算法已申请多项专利(如 “一种激光位移传感器的同步测厚方法”“一种抗干扰激光位移测量电路”),软件著作权(MPLaserStudio 上位机软件)归属无锡泓川科技,无知识产权纠纷。

 

 

 

八、传感器的计量

传感器计量严格遵循国家计量标准与行业规范,确保测量结果准确、可靠、可追溯:

1. 计量标准与设备

计量项目

计量标准设备

设备精度

计量依据

线性度

Keysight E1733A 激光干涉仪

线性误差≤±0.5ppm

JJF 1303-2011《激光位移传感器校准规范》

重复精度

标准白色陶瓷样件(平面度≤0.1μm)

-

GB/T 26824-2011《激光位移传感器通用技术条件》

光斑直径

Thorlabs BP-VIS 光束分析仪

测量误差≤±2%

ISO 11146-1:2005《激光光束宽度、发散角和光束传输比的测试方法》

激光功率

激光功率计(量程 0-10mw,精度 ±3%)

-

JJG 245-2005《激光功率计检定规程》

2. 计量项目与流程

(1)计量前准备

  • 环境条件:千级洁净室,温度 23±2℃,相对湿度 45-60% RH,无震动、无强光干扰。

  • 设备准备:传感器上电预热 30 分钟(确保电路稳定);激光干涉仪、光束分析仪校准合格(在检定有效期内);标准陶瓷样件清洁无污物。

(2)核心计量项目流程

  1. 线性度计量

    • 将传感器固定在精密导轨上,标准陶瓷样件置于导轨滑块上,激光干涉仪与传感器同轴对准样件。

    • 在传感器全量程内均匀选取 10 个测量点(如 LTP400 为 - 100mm、-80mm…+100mm),移动导轨至每个点,记录传感器输出值(X1)与激光干涉仪标准值(X2)。

    • 计算线性误差:Δ=(X1-X2)/F.S.×100%,要求≤±0.03% F.S.(LTP400)、≤±0.05% F.S.(LTP450)。

  2. 重复精度计量

    • 固定传感器与样件距离(如 LTP400 为 400mm),设置采样频率 50kHz,无平均,采集 65536 组数据。

    • 计算均方根偏差(1δS),要求≤3μm(LTP400)、≤8μm(LTP450)、≤12μm(LTP450-OT)。

  3. 光斑直径计量

    • 将光束分析仪置于传感器参考距离处(如 LTP400 为 400mm),接收激光光斑,记录光斑中心直径(1/e² 能量法)。

    • 要求聚焦点光斑≤Φ300μm(LTP400)、≤Φ320μm(LTP450),宽光斑符合型号规格。

  4. 激光功率计量

    • 将激光功率计探头置于激光输出路径上,距离传感器 1m,记录功率值。

    • 要求功率≈4.9mw(红光型号)、≈50mw(LTP450-OT),偏差≤±10%。

3. 计量结果与报告

  • 计量结果判定:所有计量项目均符合设计要求(如线性度≤±0.03% F.S.、重复精度≤3μm),判定为 “通过”,出具《激光位移传感器计量标定报告》(含传感器序列号、计量设备、环境条件、数据表格、误差分析)。

  • 计量周期:建议每年进行 1 次计量标定;若传感器用于关键工序(如精密制造)或环境恶劣(如高温、高震动),建议每 6 个月标定 1 次。

  • 追溯性:计量报告加盖泓川科技计量专用章,计量设备的检定证书可提供查询,确保测量结果可追溯至国家计量基准。

结语

泓川科技激光位移传感器凭借高精度、高稳定性、高适应性的特点,广泛应用于精密制造、汽车零部件、电子半导体等领域。我们始终坚持自主研发与品质管控,为客户提供从产品选型、技术支持到维修维护的全生命周期服务。若您需进一步了解产品细节或定制化需求,欢迎联系我司技术支持团队(电话:0510-88155119,官网:www.chuantec.com)。

 

无锡泓川科技有限公司
2024 年 8 月


News / 推荐阅读 +More
2025 - 09 - 05
点击次数: 12
高精度测量传感器全系列:赋能精密制造,适配多元检测需求聚焦半导体、光学膜、机械加工等领域的精密检测核心痛点,我们推出全系列高性能测量传感器,覆盖 “测厚、对焦、位移” 三大核心应用场景,以 “高精准、高速度、高适配” 为设计核心,为您的工艺控制与质量检测提供可靠技术支撑。以下为各产品系列的详细介绍:1.LTS-IR 红外干涉测厚传感器:半导体材料测厚专属核心用途:专为硅、碳化硅、砷化镓等半导体材料设计,精准实现晶圆等器件的厚度测量。性能优点:精度卓越:±0.1μm 线性精度 + 2nm 重复精度,确保测量数据稳定可靠;量程适配:覆盖 10μm2mm 测厚范围,满足多数半导体材料检测需求;高效高速:40kHz 采样速度,快速捕捉厚度数据,适配在线检测节奏;灵活适配:宽范围工作距离设计,可灵活匹配不同规格的检测设备与场景。2. 分体式对焦传感器:半导体 / 面板缺陷检测的 “高速对焦...
2025 - 09 - 02
点击次数: 30
泓川科技激光位移传感器产品技术报告尊敬的客户: 感谢您对泓川科技激光位移传感器产品的关注与信任。为帮助您全面了解我司产品,现将激光位移传感器相关技术信息从参数指标、设计原理、结构设计等八大核心维度进行详细说明,为您的选型、使用及维护提供专业参考。一、参数指标我司激光位移传感器涵盖 LTP400 系列与 LTP450 系列,各型号核心参数经纳米级高精度激光干涉仪标定验证,确保数据精准可靠,具体参数如下表所示:表 1:LTP400EA参数表参数类别具体参数LTP400EA备注基础测量参数测量中心距离400mm以量程中心位置计算(*1)量程200mm-重复精度(静态)3μm测量标准白色陶瓷样件,50kHz 无平均,取 65536 组数据均方根偏差(*2)线性度±0.03%F.S.(F.S.=200mm)采用纳米级激光干涉仪标定(*3)光源与光斑光源类型-激光功率可定制,部分型号提供 4...
2025 - 08 - 30
点击次数: 14
泓川科技发布 LT-CP 系列 ETHERCAT 总线高光谱共焦控制器,32KHz 高速采样引领工业高精度测量革新近日,工业高精度测量领域迎来技术突破 —— 泓川科技正式推出LT-CP 系列 ETHERCAT 总线高光谱共焦传感器控制器(含单通道 LT-CPS、双通道 LT-CPD、四通道 LT-CPF 三款型号,含普通光源与高亮激光光源版本)。该系列产品以 “32KHz 高速采样” 与 “ETHERCAT 工业总线” 为核心亮点,填补了行业内 “高频响应 + 实时协同” 兼具的技术空白,为新能源、半导体、汽车制造等高端领域的动态高精度测量需求提供了全新解决方案。一、核心突破:32KHz 高速采样,破解 “多通道降速” 行业痛点光谱共焦技术的核心竞争力在于 “高精度” 与 “响应速度” 的平衡,而 LT-CP 系列在速度维度实现了关键突破 ——单通道模式下最高采样频率达 32KHz,意味着...
2025 - 08 - 12
点击次数: 32
在半导体芯片制造、精密电子组装等高端工业场景中,一个棘手的矛盾始终存在:一方面,设备内部空间日益紧凑,毫米级的安装高度都可能成为 “禁区”;另一方面,随着产品结构复杂化,对测量量程的需求不断提升,5mm 以上的大量程检测已成为常态。如何在狭小空间内实现大量程精密测量?无锡泓川科技给出了突破性答案 ——光学转折镜,以创新设计让光谱共焦传感器的测量方向 “直角转向”,既节省安装空间,又兼容大量程需求,重新定义精密测量的空间可能性。传统方案的痛点:空间与量程难以两全在精密测量领域,侧出光传感器曾是狭小空间的 “救星”。泓川科技旗下 LTCR 系列作为 90° 侧向出光型号,凭借紧凑设计广泛应用于深孔、内壁等特征测量。但受限于结构设计,其量程多集中在 2.5mm 以内(如 LTCR4000 量程为 ±2mm),难以满足半导体晶圆厚度、大型精密构件高度差等大量程场景的需求。若选择...
2025 - 06 - 22
点击次数: 92
一、国产化背景与战略意义在全球供应链竞争加剧的背景下,激光位移传感器作为工业自动化核心测量部件,其国产化生产对打破技术垄断、保障产业链安全具有重要战略意义。泓川科技 LTP 系列依托国内完整的光学、电子、机械产业链体系,实现了从核心零部件到整机制造的全流程国产化,彻底解决了接口卡脖子问题,产品精度与稳定性达到国际先进水平,同时具备更强的成本竞争力与定制化服务能力。二、核心部件全国产化组成体系(一)光学系统组件激光发射单元激光二极管:采用深圳镭尔特光电 655nm 红光 PLD650 系列(功率 0.5-4.9mW)及埃赛力达 905nm 红外三腔脉冲激光二极管,支持准直快轴压缩技术,波长稳定性 ±0.1nm,满足工业级高稳定性需求。准直透镜:选用杭州秋籁科技 KEWLAB CL-UV 系列,表面粗糙度 光学滤光片:深圳激埃特光电定制窄带滤光片,红外截止率 99.9%,有效消除环...
About Us
关于泓川科技
专业从事激光位移传感器,激光焊缝跟踪系统研发及销售的科技公司
中国 · 无锡 · 总部地址:无锡新吴区天山路6号
销售热线:0510-88155119 
图文传真:0510-88152650
Working Time
我们的工作时间
周一至周五:8:00-18:00
周六至周日:9:00-15:00
Shown 企业秀 More
  • 1
    2023 - 03 - 09
    激光位移传感器被广泛应用于各种领域中。其中一个很有用的应用是测量薄膜厚度。这种传感器可以在离表面很近的距离下进行高精度测量,因此非常适合这种应用。本文将介绍激光位移传感器如何用于测量薄膜厚度,包括测量方法、测量原理和市场应用。一、测量方法测量薄膜厚度的基本思路是利用激光位移传感器测量薄膜前后表面的距离差,然后通过几何公式计算出薄膜厚度。在实际操作中,测量方法大致可分为以下几种:1. 手持式测量手持式测量通常用于快速的现场检测。用户只需要将激光位移传感器靠近待测表面,然后通过读取显示屏上的数值判断薄膜厚度是否符合要求。这种方法不需要复杂的设备和步骤,非常易于使用。但是由于人手的震动和误差等因素,手持式测量的精度相对较低,只适用于需求不是特别高的场合。2. 自动化在线测量自动化在线测量一般用于工业生产线上的质量控制。这种方法需要将激光位移传感器与自动化设备相连接,将测量数据传递给计算机进行分析。在这种情况下,测量过程可以完全自动化,精度也可以得到保证。但是相对于手持式测量来说,这种方法需要的设备和技术要求更高,成本也更高。3. 显微镜下测量显微镜下测量常用于对细小薄膜厚度的测量。在这种情况下,用户需要将激光位移传感器与显微镜相结合进行测量。由于显微镜的存在,可以大大增强测量精度。但是相对于其他两种方法,这种方法需要的设备更多,并且技巧要求也更高。二、测量原理激光位移传感器利用的是激光三...
  • 2
    2025 - 01 - 14
    四、光学传感器应用对薄膜涂布生产的影响4.1 提升生产效率4.1.1 实时监测与反馈在薄膜涂布生产的复杂乐章中,光学传感器实时监测与反馈机制宛如精准的指挥棒,引领着生产的节奏。凭借其卓越的高速数据采集能力,光学传感器能够如同闪电般迅速捕捉涂布过程中的关键参数变化。在高速涂布生产线以每分钟数百米的速度运行时,传感器能够在瞬间采集到薄膜厚度、涂布速度、位置偏差等数据,为生产过程的实时监控提供了坚实的数据基础。这些采集到的数据如同及时的情报,被迅速传输至控制系统。控制系统则如同智慧的大脑,对这些数据进行深入分析。一旦发现参数偏离预设的理想范围,控制系统会立即发出指令,如同指挥官下达作战命令,对涂布设备的相关参数进行精准调整。当检测到薄膜厚度略微超出标准时,控制系统会迅速调整涂布头的压力,使涂布量精确减少,确保薄膜厚度回归正常范围。这种实时监测与反馈机制的存在,使得生产过程能够始终保持在最佳状态。它避免了因参数失控而导致的生产中断和产品质量问题,如同为生产线安装了一个智能的 “稳定器”。与传统的生产方式相比,生产调整的时间大幅缩短,从过去的数小时甚至数天,缩短至现在的几分钟甚至几秒钟,极大地提高了生产效率。4.1.2 减少停机时间在薄膜涂布生产的漫长旅程中,设备故障和产品质量问题如同隐藏在道路上的绊脚石,可能导致停机时间的增加,严重影响生产效率。而光学传感器的实时监测功能,就像一位警惕的卫...
  • 3
    2023 - 08 - 21
    摘要:基膜厚度是许多工业领域中重要的参数,特别是在薄膜涂覆和半导体制造等领域。本报告提出了一种基于高精度光谱感测的基膜厚度测量方案,该方案采用非接触测量技术,具有高重复性精度要求和不损伤产品表面的优势。通过详细的方案设计、设备选择和实验验证,展示了如何实现基膜厚度的准确测量,并最终提高生产效率。引言基膜厚度的精确测量对于许多行业来说至关重要。传统测量方法中的接触式测量存在损伤产品表面和对射测量不准确的问题。相比之下,高精度光谱感测技术具有非接触、高重复性和高精度的优势,因此成为了基膜厚度测量的理想方案。方案设计基于高精度光谱感测的基膜厚度测量方案设计如下:2.1 设备选择选择一台高精度光谱感测仪器,具备以下特点:微米级或亚微米级分辨率:满足对基膜厚度的高精度要求。宽波长范围:覆盖整个感兴趣的波长范围。快速采集速度:能够快速获取数据,提高生产效率。稳定性和重复性好:确保测量结果的准确性和可靠性。2.2 光谱感测技术采用反射式光谱感测技术,原理如下:在感测仪器中,发射一个宽光谱的光源,照射到待测样品表面。根据不同厚度的基膜对光的反射率不同,形成一个光谱反射率图像。通过对反射率图像的分析和处理,可以确定基膜的厚度。2.3 实验设计设计实验验证基膜厚度测量方案的准确性和重复性。选择一系列已知厚度的基膜作为标准样品。使用高精度光谱感测仪器对标准样品进行测量,并记录测量结果。重复多次测量,并计...
  • 4
    2023 - 12 - 23
    摘要:圆筒内壁的检测在工业生产中具有重要意义,传统方法存在诸多问题。本文介绍了一种新型的检测系统,该系统结合了改进的激光三角测距法和机器视觉技术,旨在解决传统方法的不足。新方法可以在高温环境下工作,对小径圆筒进行测量,且测量精度高、速度快。通过实验验证,该系统能够实现圆筒内壁的高质量、高速度的在线检测,为现代工业生产提供了有力支持。关键词:圆筒内壁检测;机器视觉;激光三角测距法;在线检测引言圆筒内壁检测是工业生产中的重要环节,其质量直接关系到产品的性能和使用寿命。传统的检测方法存在诸多问题,如检测精度不高、速度慢、无法在线检测等。为了解决这些问题,本文提出了一种新型的检测系统,该系统结合了改进的激光三角测距法和机器视觉技术,旨在实现圆筒内壁的高质量、高速度的在线检测。工作原理本系统采用激光三角测距法作为主要测量手段。激光三角测距法是一种非接触式测量方法,通过激光投射到被测物体表面并反射回来,再通过传感器接收,经过处理后可以得到被测物体的距离和尺寸信息。本系统对传统的激光三角测距法进行了改进,使其能够在高温环境下工作,并对小径圆筒进行测量。同时,本系统还采用了机器视觉技术进行辅助测量和判断。机器视觉技术是通过计算机模拟人类的视觉功能,实现对图像的采集、处理和分析。本系统利用机器视觉技术对圆筒内壁表面进行图像采集和处理,通过算法识别和判断内壁表面的缺陷和尺寸信息。通过将激光三角测距法和...
  • 5
    2025 - 03 - 05
    在工业自动化领域,激光位移传感器是精密测量的核心器件。本文以国产泓川科技的LTP150与基恩士的LK-G150为对比对象,从核心技术参数、功能设计及性价比等维度,解析国产传感器的创新突破与本土化优势。一、核心参数对比:性能旗鼓相当,国产线性度更优精度与稳定性LTP150的线性度为±0.02%F.S.,优于LK-G150的±0.05%F.S.,表明其全量程范围内的测量一致性更佳。重复精度方面,LK-G150(0.5μm)略高于LTP150(1.2μm),但需注意LK-G150数据基于4096次平均化处理,而LTP150在无平均条件下的65536次采样仍保持1.2μm偏差,实际动态场景下稳定性更可靠。采样频率与响应速度LTP150支持50kHz全量程采样,并可扩展至160kHz(量程缩小至20%),远超LK-G150的1kHz上限。高频采样能力使其在高速生产线(如电池极片、半导体晶圆检测)中可捕捉更多细节,避免数据遗漏。环境适应性两者均具备IP67防护与抗振设计,但LTP150可选**-40°C至70°C宽温版本**,覆盖极寒或高温车间环境,而LK-G150仅支持050°C,适用场景受限。以下是 LTP150(泓川科技) 与 LK-G150(基恩士) 激光位移传感器的核心参数对比表格,重点突出国产...
  • 6
    2025 - 01 - 14
    一、引言1.1 研究背景与意义在工业制造、科研等众多领域,精密测量技术如同基石,支撑着产品质量的提升与科学研究的深入。光谱共焦传感器作为精密测量领域的关键技术,正以其独特的优势,在诸多行业中发挥着无可替代的作用。它能精确测量物体的位移、厚度、表面轮廓等参数,为生产过程的精确控制与产品质量的严格把控提供了关键数据支持。基恩士作为传感器领域的佼佼者,其推出的光谱共焦传感器在市场上备受瞩目。基恩士光谱共焦传感器凭借卓越的性能,如高精度、高稳定性、快速响应等,在精密测量领域中脱颖而出。在半导体制造过程中,芯片的生产对精度要求极高,基恩士光谱共焦传感器可精准测量芯片的厚度、线宽等关键参数,保障芯片的性能与质量。在光学元件制造领域,其能够精确测量透镜的曲率、厚度等参数,助力生产出高质量的光学元件。研究基恩士光谱共焦传感器,对于推动精密测量技术的发展具有重要意义。通过深入剖析其原理、结构、性能以及应用案例,能够为相关领域的技术创新提供参考,促进测量技术的不断进步。在实际应用中,有助于用户更合理地选择和使用该传感器,提高生产效率,降低生产成本。在汽车制造中,利用基恩士光谱共焦传感器对零部件进行精密测量,可优化生产流程,减少废品率。 1.2 研究现状在国外,光谱共焦传感器的研究起步较早,技术也相对成熟。法国的STIL公司作为光谱共焦传感器的发明者,一直处于该领域的技术前沿。其研发的光谱共焦...
  • 7
    2025 - 02 - 19
    一、测量原理与技术框架高精度激光位移传感器实现1μm以下精度的核心在于三角测量法的深度优化。如图1所示,当激光束投射到被测表面时,散射光斑经接收透镜在CMOS/CCD阵列上形成位移图像。根据几何关系:\Delta x = \frac{L \cdot \sinθ}{M \cdot \cos(α±θ)}Δx=M⋅cos(α±θ)L⋅sinθ其中L为基距,θ为接收角,M为放大倍数。要实现亚微米分辨率需突破传统三角法的三个技术瓶颈:光斑质量退化、环境噪声干扰、信号处理延迟。二、关键算法突破1. 光斑中心定位算法采用改进型高斯混合模型(GMM)结合小波变换降噪,可有效抑制散斑噪声。研究显示[1],基于Marr小波的边缘检测算法可使定位精度提升至0.12像素(对应0.05μm)。2. 动态补偿算法LTP系列采用专利技术(CN202310456789.1)中的自适应卡尔曼滤波:PYTHONclass AdaptiveKalman:    def update(self, z):        # 实时调整过程噪声协方差Q        se...
  • 8
    2023 - 03 - 20
    介绍工业光电传感器是现代制造业中最常用的检测设备之一,广泛应用于自动化生产线、机械加工、装配、物流搬运等行业。随着国民经济的不断发展,中国的工业光电传感器制造业也不断发展壮大,成为制造业的一支重要力量。本文旨在对中国产的工业光电传感器现状进行描述。发展历史20世纪80年代初期,我国的工业自动化程度比较低,大部分生产线仍采用人力操作,制造业存在高人力成本、低效率、品质难以保证等问题。为了提高制造业的效率和品质,中国开始引入外国的工业自动化设备,其中就包括工业光电传感器。80年代中后期,国内开始试水制造工业光电传感器,并逐步发展壮大。90年代初期,随着国民经济的增长和工业自动化的加速推进,中国的工业光电传感器制造业进入快速发展期。如今,中国的工业光电传感器制造业已经处于全球领先地位,成为世界闻名的光电传感器生产基地之一。产业链分析商业模式中国的工业光电传感器制造业商业模式主要是以生产销售为主,较少采用研发生产销售一体化模式。生产企业主要供应给自动化设备制造商,然后这些自动化设备制造商销售给最终用户,最终用户则使用这些设备来自动化生产线。除此之外,还有一些企业将工业光电传感器产品应用到自己的设备制造中,以提高自己产品的品质和效率,然后再将自己的产品销售给最终用户。在商业模式上,中国的工业光电传感器制造业与欧美等发达国家还存在一定的差距。技术研发中国的工业光电传感器制造业在技术研发方面逐渐...
Message 最新动态
泓川科技国产系列光谱共焦/激光位移传感器/白光干涉测厚产品性能一览 2025 - 09 - 05 高精度测量传感器全系列:赋能精密制造,适配多元检测需求聚焦半导体、光学膜、机械加工等领域的精密检测核心痛点,我们推出全系列高性能测量传感器,覆盖 “测厚、对焦、位移” 三大核心应用场景,以 “高精准、高速度、高适配” 为设计核心,为您的工艺控制与质量检测提供可靠技术支撑。以下为各产品系列的详细介绍:1.LTS-IR 红外干涉测厚传感器:半导体材料测厚专属核心用途:专为硅、碳化硅、砷化镓等半导体材料设计,精准实现晶圆等器件的厚度测量。性能优点:精度卓越:±0.1μm 线性精度 + 2nm 重复精度,确保测量数据稳定可靠;量程适配:覆盖 10μm2mm 测厚范围,满足多数半导体材料检测需求;高效高速:40kHz 采样速度,快速捕捉厚度数据,适配在线检测节奏;灵活适配:宽范围工作距离设计,可灵活匹配不同规格的检测设备与场景。2. 分体式对焦传感器:半导体 / 面板缺陷检测的 “高速对焦助手”核心用途:针对半导体、面板领域的高精度缺陷检测场景,提供高速实时对焦支持,尤其适配显微对焦类检测设备。性能优点:对焦速度快:50kHz 高速对焦,同步匹配缺陷检测的实时性需求;对焦精度高:0.5μm 对焦精度,保障缺陷成像清晰、检测无偏差;设计灵活:分体式结构,可根据检测设备的安装空间与布局灵活调整,降低适配难度。3. LT-R 反射膜厚仪:极薄膜厚检测的 “精密管家”核心用途:专注于极薄膜...
多方面研究泓川科技LTP系列大量程全国产激光位移传感器 2025 - 09 - 02 泓川科技激光位移传感器产品技术报告尊敬的客户: 感谢您对泓川科技激光位移传感器产品的关注与信任。为帮助您全面了解我司产品,现将激光位移传感器相关技术信息从参数指标、设计原理、结构设计等八大核心维度进行详细说明,为您的选型、使用及维护提供专业参考。一、参数指标我司激光位移传感器涵盖 LTP400 系列与 LTP450 系列,各型号核心参数经纳米级高精度激光干涉仪标定验证,确保数据精准可靠,具体参数如下表所示:表 1:LTP400EA参数表参数类别具体参数LTP400EA备注基础测量参数测量中心距离400mm以量程中心位置计算(*1)量程200mm-重复精度(静态)3μm测量标准白色陶瓷样件,50kHz 无平均,取 65536 组数据均方根偏差(*2)线性度±0.03%F.S.(F.S.=200mm)采用纳米级激光干涉仪标定(*3)光源与光斑光源类型-激光功率可定制,部分型号提供 405nm 蓝光版本(*4)光束直径聚焦点光斑 Φ300μm中心位置直径,两端相对变大(*5)电气参数电源电压DC9-36V-功耗约 2.5W-短路保护反向连接保护、过电流保护-输出与通信模拟量输出(选配)电压:0-5V/010V/-1010V;电流:420mA探头可独立提供电压、电流与 RS485 输出(*6)通讯接口RS485 串口、TCP/IP 网口可选配模拟电压 / 电流输出模块(*7)响应...
泓川科技发布 LT-CP 系列 ETHERCAT 总线高光谱共焦控制器,32KHz 高速采样引领工业... 2025 - 08 - 30 泓川科技发布 LT-CP 系列 ETHERCAT 总线高光谱共焦控制器,32KHz 高速采样引领工业高精度测量革新近日,工业高精度测量领域迎来技术突破 —— 泓川科技正式推出LT-CP 系列 ETHERCAT 总线高光谱共焦传感器控制器(含单通道 LT-CPS、双通道 LT-CPD、四通道 LT-CPF 三款型号,含普通光源与高亮激光光源版本)。该系列产品以 “32KHz 高速采样” 与 “ETHERCAT 工业总线” 为核心亮点,填补了行业内 “高频响应 + 实时协同” 兼具的技术空白,为新能源、半导体、汽车制造等高端领域的动态高精度测量需求提供了全新解决方案。一、核心突破:32KHz 高速采样,破解 “多通道降速” 行业痛点光谱共焦技术的核心竞争力在于 “高精度” 与 “响应速度” 的平衡,而 LT-CP 系列在速度维度实现了关键突破 ——单通道模式下最高采样频率达 32KHz,意味着每秒可完成 32000 次精准距离 / 厚度测量,相当于对动态移动的被测物体(如高速传输的电池极片、晶圆)实现 “无遗漏” 的高频捕捉,测量分辨率与动态响应能力远超行业常规 10-20KHz 级别控制器。更具稀缺性的是,该系列打破了 “多通道即降速” 的传统局限:即使在双通道模式(最高 16KHz)、四通道模式(最高 8KHz)下,仍保持高频响应的稳定性。以四通道 LT-CPF 为例,其每通道 8...
Copyright ©2005 - 2013 无锡泓川科技有限公司

1

犀牛云提供企业云服务
Our Link
X
3

SKYPE 设置

4

阿里旺旺设置

等待加载动态数据...

等待加载动态数据...

5

电话号码管理

  • 0510-88155119
6

二维码管理

等待加载动态数据...

等待加载动态数据...

展开