服务热线: 0510-88155119
13301510675@163.com
Language

激光位移传感器测量技巧深度解析与应用指南(下)

日期: 2025-01-14
浏览次数: 102
发表于:
来自 泓川科技
发表于: 2025-01-14
浏览次数: 102


四、关键测量技巧

4.1 特殊环境测量对策

4.1.1 高温环境应对

在高温环境中使用激光位移传感器时,需采取有效措施以确保其正常运行和测量精度。将传感头远离热源是一种简单有效的方法。由于距离热源越近,温度越高,在不影响安装及测量精度的前提下,应优先选择可远距离测量的传感头 。在钢铁冶炼厂的高温炉旁,若需测量炉内工件的位置,可选用具有较长测量距离的激光位移传感器,将传感头安装在远离高温炉的位置,既能避免高温对传感器的直接影响,又能实现对工件的准确测量。
当测量仪周边温度较规定环境温度略高时,可采用传感头用气洗方式隔热。通过向传感头周围吹拂空气,能够将热量带走,从而将温度降至规定环境温度以下。在玻璃制造车间,熔炉附近的温度较高,可在激光位移传感器的传感头处设置气洗装置,持续向传感头输送冷空气,有效降低传感头的温度,保证传感器的稳定工作。
若测量仪的周边温度较高,可采用传感头用外壳或空气隔热的方法。以耐热箱包覆传感头,并向箱内输送空气,使温度控制在测量仪的环境温度范围内。在航空发动机的高温部件测试中,由于部件表面温度极高,可使用陶瓷材料制成的耐热箱将传感头包裹起来,并通过管道向箱内输送冷却空气,确保传感头在高温环境下能够正常工作 。

4.1.2 强光反射环境处理

在测量反射较强的镜面时,传感头的安装方式至关重要。为获取反射光,需将传感头倾斜角度设定为反射角度α的一半,角度α在激光位移传感器的尺寸上有记载 。由于镜面体正反射光较强,受光量饱和,可能无法获取准确测量值。为解决这一问题,基恩士的激光位移传感器LTP系列,选购件为用户准备了ND(减光)滤波器。通过安装ND滤波器,能够有效减少反射光的强度,使传感器能够准确接收反射光信号,从而提高测量精度。

使用正反射专用传感头也是一种有效的解决方案。测量镜面体时,为获取反射光,需将传感头倾斜至正反射方向,而采用正反射专用传感头则无需倾斜传感头,安装更为简单。该正反射专用传感头无需安装ND(减光)滤波器,能够直接对镜面物体进行测量,大大提高了测量的便利性和效率。在光学镜片的制造过程中,需要对镜片的表面平整度进行测量,使用正反射专用传感头能够快速、准确地获取测量数据,确保镜片的质量符合标准 。

激光位移传感器测量技巧深度解析与应用指南(下)

4.2 障碍物应对策略

4.2.1 光轴范围图运用

在实际测量过程中,障碍物的存在是一个常见且棘手的问题,它可能严重影响激光位移传感器的测量准确性和可靠性。为有效解决这一问题,光轴范围图成为了一种极为实用的工具。以LK - H050系列激光位移传感器为例,其光轴范围图清晰地展示了传感器在不同工作条件下的光轴覆盖范围以及障碍物可能产生干扰的区域 。
通过仔细研究光轴范围图,我们可以准确判断障碍物的位置是否会对测量造成影响。在图中,障碍物在特定着色区域外时,激光位移传感器的检测过程不受影响,能够正常获取准确的测量数据。这是因为在该区域外,障碍物不会阻挡激光束的传播路径,也不会对反射光的接收产生干扰。而当障碍物位于图中的着色区域内时,传感器的检测可能会受到干扰,导致测量结果出现偏差甚至无法进行测量。这是由于障碍物阻挡了激光束的传播,使得反射光无法被传感器准确接收,或者反射光被障碍物反射到其他方向,从而无法进入传感器的接收范围 。

在实际应用中,我们可以根据光轴范围图来合理规划测量路径和安装位置。在对一个具有复杂结构的机械零部件进行测量时,通过参考光轴范围图,我们可以预先确定传感器的最佳安装位置,避免将其安装在障碍物可能干扰测量的区域。在安装过程中,我们可以调整传感器的角度和位置,确保激光束能够避开障碍物,顺利到达被测物体表面并接收反射光。通过这种方式,能够最大限度地减少障碍物对测量的影响,提高测量的准确性和稳定性。

激光位移传感器测量技巧深度解析与应用指南(下)

4.2.2 多传感头或辅助工具使用

当光轴范围图显示障碍物会对测量产生影响时,采用其他类型的传感头是一种有效的解决方案。不同类型的传感头具有不同的光轴特性和测量范围,能够适应各种复杂的测量环境。在一些狭小空间或具有特殊结构的测量场景中,常规的传感头可能无法满足测量需求,此时可以选择具有较小尺寸或特殊形状的传感头,以绕过障碍物实现测量。在测量一个内部结构复杂的管道内部尺寸时,普通的传感头可能无法进入管道内部进行测量,而采用微型传感头则可以轻松地穿过管道的狭窄通道,对管道内部的尺寸进行精确测量 。
辅助工具在解决障碍物问题中也发挥着重要作用。反射镜可以改变激光束的传播方向,使激光绕过障碍物到达被测物体。在一个大型设备的组装过程中,需要测量两个被障碍物隔开的部件之间的距离,此时可以通过合理布置反射镜,将激光束反射到被测部件上,实现间接测量。漫反射板能够增强激光的反射效果,尤其在被测物体表面反射率较低的情况下,使用漫反射板可以提高传感器接收反射光的强度,从而提高测量的准确性。在对一些表面颜色较深、反射率较低的材料进行测量时,漫反射板可以将激光束均匀地反射到传感器上,确保传感器能够接收到足够的反射光信号,从而实现准确测量 。

4.3 测量范围扩展技巧

4.3.1 反射镜或棱镜应用

在实际测量工作中,当我们面临测量范围不足的问题时,反射镜或棱镜的巧妙应用能够成为有效的解决方案。其核心原理在于利用反射镜或棱镜对激光轴的弯曲作用,从而实现测量范围的显著扩展。以常见的LTP450激光位移传感器为例,在常规设置下,它的参考距离和测量范围可能无法满足特定的测量需求 。通过合理地引入反射镜,按照特定的设置方式进行安装,能够使激光轴发生精确的弯曲,进而增加参考距离和测量范围。
具体来说,当使用两个反射镜,并将它们精确地放置在特定位置时,激光束在反射镜之间进行多次反射,从而改变了激光的传播路径,相当于增加了激光的传播距离,也就实现了参考距离的增加。在这一过程中,测量范围也随之增加。实验数据表明,通过这种方式,LTP450的参考距离可以从原本的500mm增加一倍,达到1000mm,而测量范围也从标准的750mm提升至1500mm 。在实际操作中,反射镜之间的距离设置是一个关键因素,它直接影响着参考距离和测量范围的扩展程度。在使用LTP450传感器时,反射镜之间的距离为71mm,通过调整这一距离,可以精确地控制测量范围的扩展效果。若想要进一步增加参考距离X或测量范围Y,可以通过精确计算,适当增加反射镜之间的距离Z。通过这种方式,可以根据实际测量需求,灵活地调整激光位移传感器的测量范围,以满足各种复杂的测量任务。

4.3.2 软件设置扩展

除了借助反射镜或棱镜等硬件手段来扩展测量范围外,通过软件设置同样能够实现这一目标。以基恩士的激光位移传感器LK - G系列为例,其配套的软件具备强大的功能,能够通过对测量参数的精细调整,实现测量范围的有效扩展。在该系列传感器的软件中,有一些特定的参数可供用户进行设置。例如,增益参数的调整能够改变传感器对反射光信号的放大倍数。当测量距离较远时,反射光的强度可能会减弱,此时适当增加增益参数,可以提高传感器对微弱反射光信号的检测能力,从而扩大测量范围 。
偏移量参数的设置也对测量范围有着重要影响。通过合理设置偏移量,可以调整传感器的测量起始点,从而在一定程度上扩展测量范围。在测量一些具有特殊形状或位置的物体时,通过设置合适的偏移量,能够使传感器更好地适应测量需求,实现对物体更全面的测量。在实际应用中,用户可以根据具体的测量场景和需求,通过软件界面方便地调整这些参数。在测量一个大型工件的尺寸时,由于工件的尺寸超出了传感器的常规测量范围,通过软件将增益参数提高10%,并将偏移量设置为合适的值,传感器的测量范围得到了有效扩展,成功实现了对工件尺寸的准确测量 。

五、测量精度提升方法

5.1 测量精度计算

5.1.1 线性度概念

线性度在激光位移传感器的测量精度评估中占据着核心地位,它是衡量传感器测量准确性的关键指标。线性度主要用于描述传感器测量值与理论真实值之间的偏差程度,反映了传感器输出信号与被测物理量之间的线性关系的偏离情况 。理想状态下,当被测物体的位移发生变化时,激光位移传感器的测量值应与之呈现出完美的线性比例关系,即输出值与输入值之间的函数曲线应为一条精确的直线。在实际的测量过程中,由于受到多种因素的综合影响,如传感器内部的光学元件的制造精度、电子元件的性能差异、信号处理算法的局限性以及环境因素的干扰等,测量值与理论真实值之间往往会出现一定程度的偏差,导致输出值与输入值之间的函数曲线并非理想的直线,而是一条与理想直线存在一定偏离的曲线 。
这种偏离程度的大小直接决定了线性度的优劣,线性度越好,意味着传感器的测量值与理论真实值之间的偏差越小,测量结果越接近真实情况,传感器的测量精度也就越高;反之,线性度较差,则表明测量值与真实值之间的偏差较大,测量精度较低 。在对精密机械零件的尺寸进行测量时,若激光位移传感器的线性度不佳,可能会导致测量结果与零件的实际尺寸存在较大偏差,从而影响后续的加工和装配精度,甚至可能导致整个产品的质量问题。线性度的高低不仅影响着单个测量数据的准确性,还会对一系列测量数据的整体准确性和可靠性产生连锁反应,进而影响到基于这些测量数据所做出的决策和判断的正确性。

5.1.2 精度计算步骤

测量精度的计算是评估激光位移传感器性能的关键环节,通过严谨的计算步骤,能够准确量化传感器的测量误差范围。以LTP030产品为例,其测量精度的计算过程清晰地展示了这一关键流程。
首先,明确测量范围(F.S)的概念,它是指激光位移传感器能够测量目标物体位移量的范围,通常以测量中心距离为基准,采用±Xmm的数值形式来表示 。对于LTP030产品,其测量范围被设定为±5mm,这意味着该传感器能够准确测量的目标物体位移量在以测量中心为基准的正负5mm范围内。
其次,线性度是另一个至关重要的参数,它表示在测量本公司标准对象物体时,传感器的位移输出相对于理想直线的误差程度,一般以X%F.S.的形式来表示 。在LTP030产品中,线性度被确定为±0.1%,这表明在测量标准对象物体时,其位移输出与理想直线之间的误差程度为满量程的±0.1%。
在确定了测量范围和线性度这两个关键参数后,便可进行测量精度的计算。测量精度的计算公式为测量精度 = 测量范围×线性度 。将LTP030产品的测量范围±5mm(即F.S = 10mm)和线性度±0.1%代入公式中,可得测量精度 = ±5mm×±0.1% = 0.01mm 。这一计算结果表明,LTP030产品在测量过程中,其测量值与真实值之间的误差范围在±0.01mm以内,反映了该产品具有较高的测量精度水平。
通过对LTP030产品测量精度的计算过程进行详细剖析,我们可以清晰地了解到测量精度计算的具体步骤和方法。这不仅有助于我们准确评估该产品的测量性能,还为我们在实际应用中选择合适的激光位移传感器提供了重要的参考依据。在面对不同的测量任务和精度要求时,我们可以根据测量精度的计算公式,结合各款传感器的测量范围和线性度参数,计算出其测量精度,从而选择出最符合实际需求的传感器,确保测量工作的准确性和可靠性。

5.2 影响精度因素及解决

5.2.1 环境因素

环境因素对激光位移传感器的测量精度有着显著的影响,其中温度、湿度和振动是较为关键的因素。在温度变化较大的环境中,激光位移传感器的内部结构可能会发生热胀冷缩现象。这会导致传感器的光学元件位置发生微小变化,从而影响激光束的发射和接收角度,最终导致测量精度下降。在高温环境下,传感器的电子元件性能也可能会受到影响,导致信号处理出现偏差 。为解决这一问题,可采用温度补偿技术,通过在传感器内部设置温度传感器,实时监测环境温度,并根据温度变化对测量数据进行相应的补偿调整。也可以选择具有良好温度稳定性的传感器,这类传感器通常采用特殊的材料和制造工艺,能够在较大的温度范围内保持稳定的性能 。
湿度对测量精度的影响同样不可忽视。高湿度环境可能会使传感器内部的光学元件表面产生水汽凝结,导致激光束在传播过程中发生散射和折射,从而降低测量精度。湿度还可能会对传感器的电子元件造成腐蚀,影响其正常工作。为应对湿度问题,可将传感器安装在具有良好防潮性能的密封外壳中,并在外壳内放置干燥剂,以吸收内部的水分,保持传感器内部环境的干燥 。
振动环境也是影响测量精度的重要因素。在振动环境中,传感器的安装位置可能会发生微小变化,导致激光束无法准确照射到被测物体表面,或者反射光无法准确被传感器接收。强烈的振动还可能会对传感器内部的精密元件造成损坏。为减少振动的影响,可采用减震安装方式,如使用减震垫、弹簧等减震装置,将传感器与振动源隔离开来。也可以选择具有抗震设计的传感器,这类传感器在结构上进行了特殊优化,能够有效抵抗振动的干扰 。

5.2.2 被测物特性

被测物的材质和表面粗糙度等特性对激光位移传感器的测量精度有着重要的影响。不同材质的被测物对激光的反射特性存在差异。金属材质通常具有较高的反射率,能够反射较强的激光信号,从而使传感器能够接收到清晰的反射光,有利于提高测量精度。而一些吸光性较强的材质,如黑色橡胶、深色布料等,会吸收大量的激光能量,导致反射光信号较弱,从而增加测量的难度和误差 。在面对这类吸光性材质的被测物时,可以通过增加激光发射功率来提高反射光的强度,或者选择具有更高灵敏度的传感器,以确保能够准确接收到反射光信号。

被测物的表面粗糙度也会对测量精度产生影响。表面光滑的物体能够使激光束发生规则的反射,反射光能够集中地被传感器接收,从而获得较为准确的测量结果。而表面粗糙的物体,激光束在其表面会发生漫反射,反射光会向各个方向散射,导致传感器接收到的反射光信号强度不均匀,从而影响测量精度。为解决这一问题,在测量表面粗糙的物体时,可以通过多次测量并取平均值的方法来降低误差。也可以使用漫反射板,将漫反射板放置在被测物体表面,使激光束先照射到漫反射板上,再通过漫反射板的均匀反射,将反射光传递给传感器,从而提高测量的准确性 。

激光位移传感器测量技巧深度解析与应用指南(下)

六、PC数据分析技巧

6.1 数据存储功能

6.1.1 软件设置

基恩士LK - G系列传感器配备了功能强大的辅助软件,为用户提供了便捷的数据存储设置途径。以常见的LK - Navigator软件为例,其设置过程清晰明了。在使用该软件进行数据存储功能设置时,首先需要确保传感器与电脑之间建立了稳定的连接,可通过USB电缆或RS - 232C接口实现连接。连接成功后,打开LK - Navigator软件,在软件主界面中,用户可以轻松找到“数据存储”相关的设置选项 。
点击进入该选项后,会出现一系列可供用户自定义的参数设置界面。在存储模式方面,用户可以根据实际需求选择连续存储或触发存储。连续存储模式适用于需要长时间不间断记录数据的场景,在对生产线上的产品尺寸进行实时监测时,采用连续存储模式能够完整地记录产品在整个生产过程中的尺寸变化情况 。触发存储模式则可根据特定的事件或条件来启动数据存储,当传感器检测到被测物体的位移达到某个预设阈值时,自动触发数据存储,这种模式能够有针对性地记录关键数据,避免存储大量不必要的数据,节省存储空间 。
存储间隔时间的设置也至关重要。用户可根据被测物体的变化速度以及所需数据的详细程度来合理调整存储间隔。在测量高速运动的物体时,为了准确捕捉物体的瞬间状态,需要将存储间隔时间设置得较短,如每秒存储多次数据;而对于变化较为缓慢的物体,可适当增大存储间隔时间,以减少数据存储量,提高数据处理效率 。

6.1.2 数据存储格式与容量

基恩士激光位移传感器的辅助软件支持多种数据存储格式,以满足不同用户的需求。常见的数据存储格式包括CSV、TXT等文本格式,这些格式具有良好的通用性,方便用户使用各种数据分析软件进行后续处理。CSV格式文件可以直接在Excel等电子表格软件中打开,用户能够方便地对数据进行排序、筛选、统计分析等操作 。
该软件的数据存储容量表现出色,最多可存储120万件大容量数据。这一优势使得用户无需频繁清理数据,能够完整地记录长时间、多批次的测量数据。在工业生产中,长时间连续记录生产过程中的数据,有助于分析生产过程中的稳定性和趋势变化,为生产优化提供有力的数据支持。在对某一产品的生产过程进行质量监控时,通过长时间存储的数据,能够分析出不同时间段内产品质量的波动情况,从而找出影响质量的潜在因素,采取相应的改进措施 。如此大容量的数据存储,为用户进行深入的数据挖掘和分析提供了丰富的素材,有助于发现数据背后隐藏的规律和问题,为决策提供更全面、准确的依据 。

6.2 数据分析方法

6.2.1 图表分析

借助基恩士激光位移传感器配套软件,用户能够轻松实现图表的扩大与缩小操作,这为数据的详细观察和整体把握提供了极大的便利。在软件界面中,通常设有专门的图表操作工具栏,其中包含放大和缩小的图标按钮。当用户点击放大按钮时,图表会以指定的比例进行放大,使得图表中的数据点、线条等细节更加清晰可见。在分析产品尺寸的微小变化趋势时,通过放大图表,能够精确观察到数据在短时间内的细微波动,从而及时发现生产过程中可能存在的问题 。

缩小图表功能则有助于用户从宏观角度审视数据的整体趋势。在对长时间跨度的生产数据进行分析时,缩小图表可以将大量的数据点在一个较小的视图范围内展示出来,用户能够直观地看到数据的整体走向,如是否存在周期性变化、长期的上升或下降趋势等。软件还支持通过垂直光标读取数据,当用户将垂直光标移动到图表中的某个数据点上时,软件会自动显示该点对应的具体数据值,包括测量时间、位移量等关键信息,方便用户进行数据的比对和分析 。

激光位移传感器测量技巧深度解析与应用指南(下)

6.2.2 数值分析

利用Excel等工具进行数值分析,为深入挖掘数据价值提供了有力手段。在将传感器测量数据导入Excel后,可运用其丰富的函数和数据分析工具进行处理。通过平均值函数,能够快速计算出一组测量数据的平均值,这在评估产品的平均尺寸或性能指标时非常有用。在对一批电子元件的尺寸进行测量后,计算平均值可以了解该批次元件的整体尺寸水平 。

标准偏差函数则用于衡量数据的离散程度,反映数据的稳定性。在生产过程中,较小的标准偏差意味着产品质量的一致性较高,而较大的标准偏差则可能暗示生产过程存在不稳定因素,需要进一步排查和调整。在汽车零部件的生产中,如果某一关键尺寸的测量数据标准偏差较大,可能表明生产设备的精度出现问题,或者原材料的质量存在波动,需要及时进行检查和改进 。通过这些数值分析方法,能够从数据中提取出有价值的信息,为决策提供科学依据。

激光位移传感器测量技巧深度解析与应用指南(下)

七、实际应用案例分析

7.1 工业制造案例

7.1.1 汽车零部件测量

在汽车零部件的生产过程中,激光位移传感器发挥着至关重要的作用。在汽车发动机缸体的生产中,缸筒内径、活塞销孔的尺寸精度以及各部分之间的位置精度,直接影响着发动机的性能和可靠性。使用激光位移传感器,能够对这些关键尺寸进行高精度测量。通过对缸筒内径的精确测量,确保活塞与缸筒之间的间隙符合设计要求,既能保证发动机的动力输出,又能减少摩擦和磨损,延长发动机的使用寿命。在测量活塞销孔的位置精度时,激光位移传感器能够快速、准确地获取数据,为后续的加工和装配提供可靠的依据,有效提高了生产效率和产品质量 。

在汽车零部件的装配环节,激光位移传感器同样不可或缺。在汽车座椅的装配过程中,需要确保座椅与车身的连接位置准确无误,以保证乘坐的舒适性和安全性。利用激光位移传感器,可以实时监测座椅在装配过程中的位置变化,当发现位置偏差时,能够及时进行调整,避免因装配不当导致的座椅晃动或固定不牢等问题 。

激光位移传感器测量技巧深度解析与应用指南(下)


7.1.2 机械加工检测

在机械加工领域,激光位移传感器在加工精度检测方面发挥着关键作用。在数控机床加工过程中,对加工零件的尺寸精度要求极高。通过在机床上安装激光位移传感器,能够实时监测刀具与工件之间的相对位置,从而精确控制加工尺寸。在加工高精度的轴类零件时,激光位移传感器可以实时测量轴的直径、圆柱度等参数,当发现加工尺寸出现偏差时,系统能够及时调整刀具的进给量,保证加工精度,减少废品率 。
在模具制造过程中,模具的型腔和型芯的尺寸精度直接影响到塑料制品或金属制品的质量。激光位移传感器可以对模具的关键尺寸进行精确测量,如型腔的深度、型芯的高度等,确保模具的制造精度符合设计要求。在对模具进行修复和维护时,通过激光位移传感器的测量数据,能够准确判断模具的磨损部位和磨损程度,为修复工作提供有力的支持 。

7.2 科研领域案例

7.2.1 材料性能测试

在材料科学的研究中,激光位移传感器在材料性能测试方面发挥着不可替代的作用。在研究金属材料的热膨胀性能时,温度的变化会导致金属材料发生热胀冷缩现象。通过在金属材料表面安装激光位移传感器,能够实时、精确地测量材料在不同温度下的长度变化。在对铝合金进行热膨胀测试时,将激光位移传感器的测量头对准铝合金试样的一端,随着温度的逐渐升高,传感器能够捕捉到铝合金试样长度的微小变化,并将这些数据实时传输到计算机中进行分析。通过对这些数据的深入研究,可以准确得出铝合金材料的热膨胀系数,为材料在不同温度环境下的应用提供重要的理论依据 。

在研究材料的振动特性时,激光位移传感器同样能够发挥重要作用。以桥梁建设中常用的钢材为例,为了确保桥梁在各种工况下的安全性和稳定性,需要深入了解钢材在不同振动频率下的响应特性。将激光位移传感器安装在钢材试样的表面,通过特定的设备对钢材施加不同频率的振动激励。传感器能够快速、准确地测量出钢材在振动过程中的位移变化情况,绘制出位移随时间变化的曲线。通过对这些曲线的分析,可以获取钢材的固有频率、阻尼比等重要参数,为桥梁的结构设计和振动控制提供关键的数据支持 。

激光位移传感器测量技巧深度解析与应用指南(下)

7.2.2 物理实验测量

在物理实验领域,激光位移传感器为诸多实验提供了高精度的测量手段。在光学实验中,如研究光的干涉和衍射现象时,需要精确测量干涉条纹或衍射图案的间距。利用激光位移传感器,可以对这些微小的间距进行精确测量。在双缝干涉实验中,激光位移传感器能够准确测量相邻干涉条纹之间的距离,通过对测量数据的分析,有助于验证光的波动理论,深入理解光的干涉原理 。
在研究物体的自由落体运动时,激光位移传感器也能发挥重要作用。将激光位移传感器安装在高处,使其垂直向下对准正在做自由落体运动的物体。传感器能够实时测量物体在下落过程中的位置变化,通过对这些数据的处理和分析,可以精确计算出物体的下落速度、加速度等物理量,为验证自由落体运动的相关理论提供可靠的数据支持 。在测量物体的加速度时,根据激光位移传感器测量的物体在不同时刻的位置数据,利用运动学公式进行计算,能够得到物体的加速度,与理论值进行对比,从而验证自由落体运动的加速度是否符合重力加速度的理论值 。

八、结论与展望

8.1 研究总结

本指南全面阐述了激光位移传感器的测量技巧,涵盖从基础原理到实际应用的多个层面。在基础原理方面,深入剖析了激光三角测量法和激光回波分析法,明确了它们在精度、测量范围等方面的特性差异,以及各自适用的场景。在测量前准备工作中,强调了传感器选型要点,包括根据测量需求选择合适的参数,以及充分考虑环境因素对传感器性能的影响。在安装与调试环节,详细介绍了正确的安装方法和调试流程要点,为后续准确测量奠定基础。
在关键测量技巧部分,针对特殊环境如高温、强光反射环境,提出了有效的应对策略。对于高温环境,介绍了将传感头远离热源、采用气洗或外壳隔热等方法;对于强光反射的镜面测量,阐述了通过调整传感头安装角度、使用ND滤波器或正反射专用传感头等方式来确保测量准确性。在障碍物应对策略上,详细讲解了光轴范围图的运用,以及如何通过使用多传感头或辅助工具来解决障碍物对测量的干扰。在测量范围扩展技巧方面,探讨了反射镜或棱镜的应用以及软件设置扩展的方法,为满足不同测量需求提供了途径。
在测量精度提升方法上,深入分析了线性度概念以及精度计算步骤,明确了影响精度的环境因素和被测物特性,并提出了相应的解决措施。在PC数据分析技巧方面,介绍了基恩士激光位移传感器配套软件的数据存储功能和数据分析方法,包括软件设置、数据存储格式与容量,以及图表分析和数值分析等,有助于用户从测量数据中提取有价值的信息。
通过实际应用案例分析,展示了激光位移传感器在工业制造和科研领域的重要作用。在工业制造中,如汽车零部件测量和机械加工检测,激光位移传感器能够有效提高生产效率和产品质量;在科研领域,如材料性能测试和物理实验测量,为科学研究提供了高精度的测量手段,推动了科研工作的进展。

8.2 未来发展趋势

展望未来,激光位移传感器在精度、功能和应用领域等方面将迎来显著的发展。在精度提升方面,随着光学技术、电子技术以及信号处理算法的不断创新,激光位移传感器有望实现更高的测量精度。新型的光学元件和先进的制造工艺将进一步减少测量误差,使其精度能够达到亚纳米级别,满足如量子计算芯片制造、纳米材料研究等对精度要求极高的前沿领域的需求 。
在功能拓展上,激光位移传感器将朝着智能化、多功能化方向发展。通过集成人工智能算法,传感器将具备自我诊断、自适应调整等智能功能,能够根据不同的测量环境和对象自动优化测量参数,提高测量的准确性和可靠性。传感器可能会集成多种测量功能,如同时测量位移、温度、压力等多个物理量,为用户提供更全面的数据信息,满足复杂工业场景和科研实验的多样化需求 。
在应用领域的拓展方面,激光位移传感器将在更多新兴领域得到广泛应用。在新能源汽车领域,随着自动驾驶技术的发展,激光位移传感器将用于车辆的环境感知和障碍物检测,为自动驾驶系统提供高精度的距离和位置信息,保障行车安全。在生物医学领域,它可用于细胞位移监测、生物组织微小变形测量等,为生命科学研究和医疗诊断提供新的技术手段 。在智能家居领域,激光位移传感器可用于智能家电的位置检测和运动控制,提升家居的智能化和自动化水平。


News / 推荐阅读 +More
2025 - 06 - 09
点击次数: 18
在工业精密测量领域,无锡泓川科技的HC26系列激光位移传感器凭借出色的性能参数与显著的成本优势,成为替代奥泰斯CD33系列的高竞争力选择。以下从核心性能、特殊应用适配性及成本三方面进行对比分析:一、核心性能参数对标(HC26 vs CD33)参数泓川HC26系列奥泰斯CD33 (行业标准)HC26优势重复精度2μm (30mm款) → 50μm (195mm款)通常1~3μm (高端款)接近主流精度线性度±0.1%F.S.±0.05%~0.1%F.S.达到同级水平响应时间最快333μs (多档可调)通常500μs~1ms速度更快输出接口RS485(Modbus RTU)+模拟量(4-20mA/0-10V)类似接口组合同等兼容性防护等级IP67 (防尘防水)IP67/IP65同等工业防护温度特性0.05%F.S/℃0.03~0.05%F.S/℃稳定性接...
2025 - 06 - 09
点击次数: 9
一、核心参数深度对比维度泓川科技 HC16 系列奥泰斯 CD22 系列差异影响分析型号覆盖15/35/100/150mm(4 款)15/35/100mm(3 款)HC16 新增150mm 基准距离型号(HC16-150),测量范围 ±100mm,填补 CD22 无远距离型号空白。重复精度(静态)15mm:1μm;35mm:6μm;100mm:20μm;150mm:60μm15mm:1μm;35mm:6μm;100mm:20μmHC16-150 精度较低(60μm),适合远距离低精度场景(如放卷料余量粗测),CD22 无对应型号需搭配中继。通讯扩展性支持 EtherCAT 模块(文档提及)、RS485、模拟量仅 RS485、模拟量HC16 对 ** 工业总线系统(如 PLC 集成)** 兼容性更强,可减少额外通讯模块成本。电源适应性全系列 DC12-24V 统一输入模拟量电压型需 ...
2025 - 05 - 26
点击次数: 26
一、引言在工业自动化领域,激光位移传感器作为精密测量的核心部件,其性能与成本直接影响设备的竞争力。本文聚焦泓川科技 LTM3 系列与米铱 ILD1750 系列,从技术参数、应用场景及成本等维度展开深度对比,揭示 LTM3 系列如何以卓越性能和显著成本优势成为更具性价比的选择。二、核心参数对比指标泓川科技 LTM3 系列米铱 ILD1750 系列测量频率最高 10kHz,适用于高速动态测量场景最高 7.5kHz,满足常规工业速度需求重复性精度0.25μm 起(如 LTM3 - 030),达到亚微米级精度0.1μm 起,精度表现优异线性误差低至 0.06% FSO 起,基于百分比的误差控制防护等级IP67,可抵御粉尘、液体喷射及短时浸水IP65,防护性能良好但略逊于 LTM3外形尺寸605020.4mm,体积小巧,适配狭窄空间未明确标注,但工业通用设计体积较大重量约 150g,轻便易安装未明确...
2025 - 05 - 13
点击次数: 47
一、破局万元壁垒:3000-4000 元网口传感器开启普惠智能时代在工业传感器领域,具备以太网(网口)输出功能的激光位移传感器长期被海外品牌以万元价格垄断,成为自动化升级的 “卡脖子” 环节。无锡泓川科技携LTM3(10kHz 采样)与 LTM5(31.25kHz 超高速采样)系列强势破局,以3000-4000 元核心定价,将高精度网口测量设备从 “奢侈品” 变为 “工业标配”,让中小企业也能畅享高速通讯与智能测控的双重红利。二、网口通讯革命:重新定义工业数据交互的 “速度与智慧”1. 百兆级极速传输:毫秒级捕捉动态世界LTM3/LTM5 搭载的以太网接口支持 TCP/IP 协议,数据传输速率达 100Mbps,较传统 485 串口(115.2kbps)快 800 倍,比模拟信号(易受干扰、刷新率低)更实现质的飞跃: 高频动态测量:LTM5-050 在锂电池极片涂布生产...
2025 - 04 - 14
点击次数: 83
在工业自动化领域,激光位移传感器凭借高精度、非接触测量的优势,广泛应用于精密定位、尺寸检测等场景。本文针对泓川科技 HC26 系列与奥泰斯 OPTEX CD33-30 系列(含模拟量通讯版本)进行多维度技术对比,从安装尺寸、通讯格式、模拟量信号、精度、成本等关键指标分析两者的可替代性,为用户选型提供参考。 一、结构设计与安装兼容性:尺寸与适配性对比泓川 HC26 系列外形尺寸为 60×50×22mm,重量约 120g(含线缆),采用紧凑式设计,支持螺丝安装,适配通用工业设备安装孔位(如文档 3 中提到的 2×4.4mm 贯穿孔)。防护等级为 IP67,可在粉尘、潮湿环境中稳定工作,环境温度范围 -10~50℃,适应性更强。奥泰斯 CD33-30 系列文档未明确标注具体尺寸,但从重量推测(约 65g,不含电缆),体积略小于 HC2...
About Us
关于泓川科技
专业从事激光位移传感器,激光焊缝跟踪系统研发及销售的科技公司
中国 · 无锡 · 总部地址:无锡新吴区天山路6号
销售热线:0510-88155119 
图文传真:0510-88152650
Working Time
我们的工作时间
周一至周五:8:00-18:00
周六至周日:9:00-15:00
Shown 企业秀 More
  • 1
    2022 - 12 - 01
    在烟草分级及仓储环节中有大量的自动化设备,比如高速往复运动的穿梭车堆垛机等,如何建立完善的安全预防措施,保障作业人员的人身安全是企业在思考的方向,我们在烟草工业内部系统里面已经积累了众多的成功案例,我们会通过机械安全控制以及电器这三个维度来帮助企业进行评估,具体的改造场景有,立库输送管道出入口防护百度极速可在经过现场评估后我们会给客户出具评估报告和推荐的安全整改。                机械设备,例如马舵机,泄漏机缠绕机等在快消品行业是广泛存在的,特别是码作机器,经常需要操作人员频繁介入该区域应用的工业机器人运行速度快存在着较高的安全隐患,在转运站码垛技术入口,经常采用一套光幕和光电传感器来实现屏蔽功能,从而实现人物分离,在这个应用中,以物体在传中带上面时,车场光电传感器,从而激活,屏蔽功能,当你为触发屏蔽功能很简单,有些操作人员会拿纸箱或者其他东西遮挡这个光电传感器,从而很容易就操纵了这个屏蔽功能,存在着很大的安全隐患,针对这个问题,我们开发出创新高效的是入口防护替代方案,智能门控系统,无锡屏蔽传感器就和实现pp功能,这项专利技术是基于。             专利技术是激光幕,使出入口防务变得更加高效...
  • 2
    2023 - 09 - 11
    非接触测量涂布厚度的行业报告摘要:本报告将介绍非接触测量涂布厚度的行业应用场景及解决方案。涂布厚度的准确测量在多个行业中至关重要,如带钢、薄膜、造纸、无纺布、金属箔材、玻璃和电池隔膜等行业。传统的测量方法存在一定的局限性,而非接触测量技术的应用可以提供更准确、高效的测量解决方案。本报告将重点介绍X射线透射法、红外吸收法和光学成像测量方法这三种主要的非接触测量解决方案,并分析其适用场景、原理和优势。引言涂布厚度是涂覆工艺中的一个重要参数,对于保证产品质量和性能具有重要意义。传统的测量方法,如接触式测量和传感器测量,存在一定局限性,如易受污染、操作复杂和不适用于特定行业。而非接触测量方法以其高精度、实时性和便捷性成为行业中的理想选择。行业应用场景涂布厚度的非接触测量方法适用于多个行业,包括但不限于以下领域:带钢:用于热镀锌、涂覆和镀铝等行业,对涂层和薄膜的厚度进行测量。薄膜:用于光学、电子、半导体等行业,对各种功能薄膜的厚度进行测量。造纸:用于测量纸张的涂布、涂胶和覆膜等工艺中的厚度。无纺布:用于纺织和过滤行业,对无纺布的厚度进行测量。金属箔材:用于食品包装、电子器件等行业,对箔材的厚度进行测量。玻璃:用于建筑和汽车行业,对玻璃的涂层厚度进行测量。电池隔膜:用于电池制造行业,对隔膜的厚度进行测量。解决方案一:X射线透射法X射线透射法是一种常用的非接触涂布厚度测量方法,其测量原理基于射线...
  • 3
    2025 - 03 - 04
    一、核心参数对比表参数项LK-G08(基恩士)LTPD08(泓川科技国产)参考距离8 mm8 mm检测范围±0.8 mm±0.8 mm线性度±0.05% F.S.±0.03% F.S.重复精度0.02 μm0.03 μm采样频率20 μs1 ms(6档可调)6.25 μs1 ms(多档可调)激光类别1类(JIS C6802)2类(安全等级更高)光源功率0.3 mW0.5 mW(可定制更高功率)防护等级未标注IP67工作温度+10+40°C0+50°C(可定制-4070°C)通讯接口未标注RS485、TCP/IP、开发包支持供电电压-DC 936V(±10%波动兼容)重量245 g213 g二、性能差异深度解析1. 测量性能精度与速度: LK-G08在重复精度(0.02μm)上略优,适合超精密场景;而LTPD08的线性度(±0.03% F.S.)更优,且在采样频率上支持最高6.25μs(缩小量程时可达160kHz),动态响应能力更强。激光适应性: LTPD08提供405nm蓝光版本可选,可应对高反光或透明材质测量,基恩士仅支持655nm红光。2. 环境适应性防护等级: LTPD08的IP67防护显著优于未标注防护的LK-G08,适...
  • 4
    2023 - 09 - 30
    1. 引言:随着科技的迅猛发展和市场需求的不断提升,对建材板的厚度与宽度尺寸精确测量变得越来越关键。因此,选用高精度激光位移传感器来实现,既可以提高产量,又能保证质量。2. 技术原理:激光位移传用光干涉测量技术,发出红外激光束并接收反射回仪器的光阴影,通过光敏元件将其转换成电信号,经过放大处理后输出相应的标准信号来实现位移的测量。其中,红外激光束可以达到丝级别的精度,准确度极高。3. 技术方案:- 挤出流程结束后,立即利用激光位移传感器进行厚度和宽度的测量,效率高;厚度调整功能的使用,可以显著缩短安装和产品更换所需的工时。- 高精度激光位移传感器设置于生产线上,根据实际产品的厚度和宽度需要,选定合适的光束焦距和安装位置。传感器投射出激光束,反射回传感器的发射率会随着测量对象的位移变化而变动。- 传感器内部的电路系统将接收到的电信号进行处理,根据预设的参数,输出标准信号。- 通过对数据的实时监测和分析,可以找出生产中存在的问题并及时进行调整,以确保建材板的质量。4. 应用行业:因为对射的高精度激光位移传感器具有精度和效率高、可靠性强等优点,被广泛用于建材、塑料制品、金属材料、石材加工、生物医疗、微电子等范围。特别是在板材生产等领域,可以有效提高产品质量与生产效率,满足市场对精密制造的需求。结论:利用激光位移传感器在建材板的厚度和宽度测量中,可以实现精准测量,促进生产效率,同时保证产品...
  • 5
    2024 - 12 - 11
    摘要光谱共焦位移传感器是一种高精度、非接触式的光电位移传感器,广泛应用于光学镜片检测、半导体制造、医疗器械生产等多个领域。本文详细阐述了光谱共焦位移传感器的制造技术,包括生产技术细节、工艺流程以及需要注意的具体事项,为相关领域的研发和生产提供参考。引言随着精密仪器制造业的发展,对于工业生产测量的要求越来越高。光谱共焦位移传感器以其高精度、非接触式、实时无损检测等特性,成为解决这一问题的有效手段。本文旨在详细介绍光谱共焦位移传感器的制造技术,包括关键零部件的选择、生产工艺流程以及制造过程中需要注意的事项。一、光谱共焦位移传感器的基本原理光谱共焦位移传感器由光源、分光镜、光学色散镜头组、小孔以及光谱仪等部分组成。传感器通过色散镜头将位移信息转换成波长信息,再利用光谱仪进行光谱分解,反解得出被测位移。其中,色散镜头作为光学部分完成了波长和位移的一一映射,是传感器的核心部件。二、关键零部件的选择1. 光源选择白光LED作为光源,其光谱分布范围广泛,能够满足不同测量需求。同时,白光LED具有寿命长、稳定性好等优点,适合用于工业生产环境。2. 色散镜头色散镜头是光谱共焦位移传感器的关键部件,其性能直接影响传感器的测量精度和分辨率。在选择色散镜头时,需要考虑其轴向色散与波长之间的线性度、色散范围以及镜头材料等因素。3. 光谱仪光谱仪用于接收通过小孔的光信号,并确定其波长,从而实现位移分辨。在选择...
  • 6
    2025 - 04 - 13
    在工业自动化领域,精密测量是保障产品质量与生产效率的核心环节。泓川科技 HC8-050 与松下 HG-C1050 作为两款主流的中短距离激光位移传感器,在电子制造、精密加工、自动化检测等领域应用广泛。本文将从技术参数、核心性能、应用场景等维度展开深度对比,揭示 HC8-050 在特定场景下的显著优势及高性价比。一、基础技术参数:精准定位性能差异参数HC8-050HG-C1050差异分析测量范围50±15mm(35-65mm)50±15mm(35-65mm)两者一致,覆盖中短距离精密测量场景。重复精度15μm30μmHC8-050 的重复精度比 HG-C1050 提升 50%,适用于对微小位移敏感的精密检测(如芯片封装、精密轴承测量)。光点直径70μm约 70μm光斑尺寸相同,但 HC8-050 通过光学优化,在低反射率表面的光斑识别能力更强。线性度±0.1%F.S.±0.1%F.S.线性度一致,满足工业级测量精度要求。温度特性±0.05%F.S/℃±0.03%F.S/℃HG-C1050 理论温漂略优,但 HC8-050 通过硬件散热与软件温补算法,实际在高温环境(如 80℃)下稳定性更优。工作温度-10~50℃(支持 80℃长期使用)-10~45℃HC8-050 突破行业常规,通过特殊设计可在 80℃高温环境稳定运行,而 ...
  • 7
    2025 - 01 - 20
    五、应用优势深度解析5.1 提升测量精度与效率光谱共焦传感器在 IC 芯片测量中,能够实现快速、高精度的测量,这一特性极大地提升了生产效率。其工作原理基于独特的光学共焦成像和光谱解析技术,使其能够精准地捕捉到芯片表面的细微特征和尺寸变化。在测量芯片关键尺寸时,如线宽和间距,光谱共焦传感器可以达到亚微米级甚至更高的精度,能够精确测量出极其微小的尺寸偏差,为芯片制造工艺的精细控制提供了有力保障。同时,该传感器具备快速的数据采集和处理能力。在实际生产线上,它可以在短时间内对大量芯片进行测量,大大减少了检测时间。与传统测量方法相比,光谱共焦传感器能够实现自动化、连续测量,无需人工频繁干预,有效提高了生产效率,满足了大规模生产对测量速度和精度的双重要求。 5.2 降低成本与风险采用光谱共焦传感器进行 IC 芯片测量,有助于显著降低生产成本与风险。一方面,高精度的测量能够有效减少因尺寸偏差或其他质量问题导致的废品率。在芯片制造过程中,废品的产生不仅意味着原材料的浪费,还会增加后续的返工成本和时间成本。光谱共焦传感器通过精确检测,能够及时发现芯片制造过程中的问题,帮助制造商在早期阶段采取纠正措施,避免生产出大量不合格产品,从而降低了废品率,节约了生产成本。另一方面,通过对芯片制造过程的实时监测和反馈,光谱共焦传感器能够帮助制造商优化生产工艺,提高生产效率,减少不必要的资源浪费。例如,在...
  • 8
    2023 - 09 - 20
    首先,让我们对TOF进行一次短暂的“速读”——它全称叫'time-of-flight',中文怎么说呢?风格洒脱地称之为“飞行时间”。你没听错,就是“飞行时间”。所有的颠覆与创新始于赤裸裸的想象,对吧?再来回过头,看看我们的主角TOF激光测距传感器。激光这东西,我想你肯定不陌生。科幻大片,医美广告里都被频繁提及。对这位明星,我们暂时按下暂停键, 我们聊一聊测距传感器——那可是能把复杂的三维世界,硬是证明成一串串精准数据的硬核工具。当然,他俩的组合,并不是偶然撞壁造成的火花。在“鹰眼”TOF的身上,激光变得更加酷炫,传感器技术也变得更为深邃。他们共舞的主线,就是光的飞行时间。想象一下,要在现实世界计算出光从物体发射出来,然后反射回传感器的时间。你愣了一秒,觉得好像进入了'黑洞'的领域。实则不然,TOF激光测距传感器就是这样“耳提面命”。它以光速旅行者的姿态,穿越空间,告诉我们物体与之间的距离。亲,你有听说过光速吗?大约每秒走30万公里哦,这个速度足够你在一秒钟内去绕地球七点五圈了!TOF激光测距传感器就是他们利用这么一个迅疾的光速,再加上高精度的时钟,来高效精确地计算出飞行时间并转化为距离数据。小编想说,TOF不仅玩科技,他更玩智谋,战胜了同类的超声波、红外线等测距设备。毕竟,被物的颜色、亮度、表面材质,或者环境的温湿度对他来说都不构成锁链。准确到“下毛...
Message 最新动态
泓川科技HC26激光位移传感器:高性价国产比替代奥泰斯CD33的优选方案 2025 - 06 - 09 在工业精密测量领域,无锡泓川科技的HC26系列激光位移传感器凭借出色的性能参数与显著的成本优势,成为替代奥泰斯CD33系列的高竞争力选择。以下从核心性能、特殊应用适配性及成本三方面进行对比分析:一、核心性能参数对标(HC26 vs CD33)参数泓川HC26系列奥泰斯CD33 (行业标准)HC26优势重复精度2μm (30mm款) → 50μm (195mm款)通常1~3μm (高端款)接近主流精度线性度±0.1%F.S.±0.05%~0.1%F.S.达到同级水平响应时间最快333μs (多档可调)通常500μs~1ms速度更快输出接口RS485(Modbus RTU)+模拟量(4-20mA/0-10V)类似接口组合同等兼容性防护等级IP67 (防尘防水)IP67/IP65同等工业防护温度特性0.05%F.S/℃0.03~0.05%F.S/℃稳定性接近注:HC26提供4种基准距离型号(30/50/85/195mm),覆盖小量程高精度(±4mm@30mm)至大量程(±99.98mm@195mm)场景,满足CD33主流应用范围。二、核心替代优势:全系支持正反射安装HC26系列所有型号均内置正反射光路设计,解决CD33在特殊材质检测中的痛点:镜面材料:通过正反射接收强光信号,避免漫反射信号微弱导致的测量失效。透明材质(如玻璃、薄...
泓川科技激光位移传感器HC16系列全方位国产替代OPTEX的CD22系列 2025 - 06 - 09 一、核心参数深度对比维度泓川科技 HC16 系列奥泰斯 CD22 系列差异影响分析型号覆盖15/35/100/150mm(4 款)15/35/100mm(3 款)HC16 新增150mm 基准距离型号(HC16-150),测量范围 ±100mm,填补 CD22 无远距离型号空白。重复精度(静态)15mm:1μm;35mm:6μm;100mm:20μm;150mm:60μm15mm:1μm;35mm:6μm;100mm:20μmHC16-150 精度较低(60μm),适合远距离低精度场景(如放卷料余量粗测),CD22 无对应型号需搭配中继。通讯扩展性支持 EtherCAT 模块(文档提及)、RS485、模拟量仅 RS485、模拟量HC16 对 ** 工业总线系统(如 PLC 集成)** 兼容性更强,可减少额外通讯模块成本。电源适应性全系列 DC12-24V 统一输入模拟量电压型需 DC18-24V,电流 / 485 型 DC12-24V若用户系统电源为12-18V,HC16 电压输出型(如 HC16-15-485V)可直接替代 CD22 电压型,避免电源升级成本。功耗≤100mA(全系列)≤700mA(CD22-15A 为例)HC16 功耗仅为 CD22 的1/7,适合电池供电设备、多传感器阵列场景,降低散热和电源设计压力。体积与重量尺寸未明确标注(参考 CD22 为紧凑型...
泓川科技 LTM3 系列与米铱 ILD1750 系列激光位移传感器深度对比:高性价比之选 2025 - 05 - 26 一、引言在工业自动化领域,激光位移传感器作为精密测量的核心部件,其性能与成本直接影响设备的竞争力。本文聚焦泓川科技 LTM3 系列与米铱 ILD1750 系列,从技术参数、应用场景及成本等维度展开深度对比,揭示 LTM3 系列如何以卓越性能和显著成本优势成为更具性价比的选择。二、核心参数对比指标泓川科技 LTM3 系列米铱 ILD1750 系列测量频率最高 10kHz,适用于高速动态测量场景最高 7.5kHz,满足常规工业速度需求重复性精度0.25μm 起(如 LTM3 - 030),达到亚微米级精度0.1μm 起,精度表现优异线性误差低至 0.06% FSO 起,基于百分比的误差控制防护等级IP67,可抵御粉尘、液体喷射及短时浸水IP65,防护性能良好但略逊于 LTM3外形尺寸605020.4mm,体积小巧,适配狭窄空间未明确标注,但工业通用设计体积较大重量约 150g,轻便易安装未明确标注,推测重于 LTM3 系列输出接口以太网、485 串口、模拟信号(±10V/4 - 20mA),支持工业网络集成模拟量(U/I)、数字量(RS422),传统工业接口配置光源655nm/660nm 红光激光,稳定可靠670nm 红光激光,测量光斑控制优秀工作温度0 - 50°C,适应多数工业环境0 - 50°C,环境适应性相当三、LTM3 系列核心优势解析(一)性能...
Copyright ©2005 - 2013 无锡泓川科技有限公司

1

犀牛云提供企业云服务
Our Link
X
3

SKYPE 设置

4

阿里旺旺设置

等待加载动态数据...

等待加载动态数据...

5

电话号码管理

  • 0510-88155119
6

二维码管理

等待加载动态数据...

等待加载动态数据...

展开