服务热线: 0510-88155119
13301510675@163.com
Language
项目案例 Case
Case 激光位移传感器案例

靶丸内表面轮廓的白光共焦光谱测量技术

日期: 2022-01-17
浏览次数: 49

摘要:靶丸内表面轮廓是激光核聚变靶丸的关键参数,需要精密检测。本文首先分析了基于白光共焦光谱和精密气浮轴系的靶丸内表面轮廓测量基本原理,建立了靶丸内表面轮廓的白光共焦光谱测量方法。此外,搭建了靶丸内表面轮廓测量实验装置,建立了基于靶丸光学图像的辅助调心方法,实现了靶丸内表面轮廓的精密测量,获得了准确的靶丸内表面轮廓曲线;最后,对测量结果的可靠性进行了实验验证和不确定度分析,结果表明,白光共焦光谱能实现靶丸内表面低阶轮廓的精密测量,其测量不确定度优于01μm


关键词:白光共焦光谱;内表面轮廓;靶丸;激光聚变

1     引言

在激光惯性约束聚变(ICF)实验中,靶丸内、外表面轮廓的非理想球形度偏差将会在靶丸内爆过程中造成瑞利-泰勒流体力学不稳定性的快速增长,降低压缩效率,甚至导致球壳破裂。因此,精密测量靶丸内、外表面圆周轮廓特征对理解激光核聚变靶丸内爆物理过程和改进靶丸制备工艺均有着十分重要的意义。为了检测靶丸的表面轮廓信息,国内外ICF研究机构建立了基于精密气浮轴系和原子力显微镜(AFM)的靶丸表面轮廓测量技术,实现了靶丸外表面轮廓的全表面检测,其测量不确定度可达到纳米量级。对于靶丸内表面轮廓的无损检测,目前常用的技术手段是X射线照相法。该方法利用靶丸X射线吸收强度在界面处不连续的特点,通过计算吸收强度曲线的亮度或二阶微分来确定各壳层的轮廓信息,其低阶圆周轮廓测量不确定度为03μm,不能完全满足靶物理实验对靶丸内表面圆周轮廓测量的精度需求。因此,如何实现靶丸内表面轮廓的高精度测量,目前还是一个亟待解决的技术难题。

近年来,共焦测量方法由于具有高精度的三维成像能力,已经广泛用于表面轮廓与三维精细结构的精密测量。本文通过分析白光共焦光谱的基本原理,建立了透明靶丸内表面圆周轮廓测量校准模型;同时,基于白光共焦光谱并结合精密旋转轴系,建立了靶丸内表面圆周轮廓精密测量系统和靶丸圆心精密定位方法,实现了透明靶丸内、外表面圆周轮廓的纳米级精度测量。

2     测量原理

1(a)是白光共焦光谱传感器的工作原理示意图,白光光源通过物镜组形成一系列连续的沿着光轴的单色光点像,分别对应λ1λn,每一种波长对应一个纵向位置。当待测样品置于测量范围内时,某一种特定的波长λM正好聚焦到样品表面的M点并被反射,反射光被分光镜反射后经针孔滤波,滤波后变为以λM为中心的窄带光信号(带宽为Δλ),被光谱仪接收。通过分析样品表面反射光的波长,可高精度地确定样品表面的纵向位置。将靶丸安装在精密气浮主轴前端,使白光共焦光谱传感器聚焦于靶丸赤道位置(白光共焦光谱聚焦光斑在数微米量级,靶丸表面的测量区域可近似为平面),由于靶丸内、外表面的反射,此时,反射光谱中将会出现两个峰值,根据这两个反射光谱的波长,可同时获得透明靶丸的内、外表面相对于传感器零点的高度数据。利用精密气浮轴系带动靶丸平稳旋转,同时采集靶丸各个位置的内、外表面轮廓高度数据,当气浮轴系旋转360°,即可获得靶丸的内、外表面圆周轮廓数据,对应位置内、外表面轮廓数据之差即为靶丸的壳层厚度。

当光线通过靶丸壳层时,由于光线的折射,靶丸内表面轮廓的直接测量数据不能表征其真实轮廓特征,为得到真实的内表面轮廓数据,需要对白光共焦光谱的直接测量数据进行修正。


靶丸内表面轮廓的白光共焦光谱测量技术


靶丸内表面轮廓的白光共焦光谱测量技术

1 (a)白光共焦光谱传感器的工作原理示意图和(b)透明样品下表面轮廓的测量原理

1(b)是透明样品下表面轮廓的白光共焦光谱测量原理示意图,图中,p1p2是样品上表面相对于传感器零点的位置,p3p4是样品下表面相对于传感器零点的位置。

利用白光共焦光谱测量靶丸壳层内表面轮廓数据时,其测量结果与白光共焦光谱传感器光线的入射角、靶丸壳层厚度、壳层材料折射率、靶丸内外表面轮廓的直接测量数据等因素紧密相关。

3     测量装置

利用精密气浮旋转轴系及白光共焦光谱传感器,搭建了透明靶丸内表面轮廓测量实验装置,该测量装置示意图如图2所示。该装置主要由精密气浮主轴、辅助轴系、白光共焦光谱仪、数据采集单元以及靶丸调心机构等几部分组成,其中,传感器采用法国STIL公司的白光共焦光谱仪,其测量范围为400μm,光斑尺寸为17μm。测量过程中,将靶丸放置于精密气浮旋转轴系上端的负压吸附吸嘴上,白光共焦光谱传感器垂直聚焦于靶丸表面赤道位置,通过控制软件使轴系旋转与光谱数据采集同步。在旋转轴系开始转动时同步采集靶丸内外表面的轮廓数据,旋转轴系旋转一周就可以得到靶丸赤道位置的圆周轮廓数据;利用辅助轴系可实现靶丸指定角度的翻转,从而实现靶丸不同位置的内表面轮廓测量。


靶丸内表面轮廓的白光共焦光谱测量技术

2 白光共焦光谱轮廓检测系统

放置于旋转轴系吸嘴上的靶丸可能出现偏心,从而导致靶丸在旋转过程中内外表面超出有效量程范围,不能实现靶丸内表面圆周轮廓的测量,因此,在测量靶丸内表面轮廓之前,需要调整靶丸中心和旋转轴系中心的相对位置,使其尽可能重合。本文采用了图像辅助调心方法,其调心原理如图3所示


靶丸内表面轮廓的白光共焦光谱测量技术

3 靶丸旋转调心原理图

通过公式,可求解靶丸旋转到某一位置时靶丸光学图像中心的位置坐标,将靶丸圆心调整到与回转中心重合;再将靶丸旋转到下一位置,调整靶丸光学图像中心与回转中心的相对位置,使二者重合;重复上述过程,若靶丸旋转一周,靶丸光学图像中心与回转中心均重合,则靶丸调心过程完成。该方法的调心精度与视频CCD的放大倍数及测量精度有关,本装置可实现小于10μm的调心精度。

4     测量结果与讨论

41靶丸内表面轮廓测量

利用上述测量方法和实验装置,对单层塑料靶丸的内、外表面轮廓进行了测量。图4是基于白光共焦光谱的靶丸外表面轮廓和校准后的内表面测量曲线,从图中可以看出,靶丸内、外表面低阶轮廓整体形状相似,局部轮廓存在一定的差异。从公式可知,靶丸内表面轮廓的校准与靶丸壳层折射率相关,而折射率可表示为入射光波长的函数,计算过程中,对于靶丸壳层,其折射率在可见光范围内的偏差较小,可取为15。此外,根据白光共焦光谱传感器的数值孔径和工作距离等参数,可计算出入射角约为28°。与外表面轮廓相比较,靶丸内表面轮廓的信噪比较差,分析认为,靶丸内表面的真实轮廓测量值与靶丸内、外表面的白光共焦光谱直接测量数据相关,其测量噪声是二者的综合效应,因此,其测量数据信噪比相对较差,这表明,利用白光共焦光谱方法,可实现靶丸低阶轮廓的测量,其高阶轮廓信息测量置信度相对较低。


靶丸内表面轮廓的白光共焦光谱测量技术

4 靶丸内外表面轮廓的白光共焦光谱测量曲线

42内表面轮廓测量数据的可靠性验证

靶丸内表面轮廓的白光共焦光谱测量技术


靶丸内表面轮廓的白光共焦光谱测量技术

5 靶丸外表面轮廓(a)及其功率谱曲线(b)

采用对比测试方法,首先对基于白光共焦光谱技术的靶丸外表面轮廓测量精度进行了考核,图5(a)是靶丸外表面轮廓的原子力显微镜轮廓仪和白光共焦光谱轮廓仪的测量曲线。为了便于比较,将原子力显微镜轮廓仪的测量数据进行了偏移。从图中可以看出,二者的低阶轮廓整体相似,局部的轮廓信息存在一定的偏差,原因在于二者在靶丸赤道附近的精确测量圆周轮廓结果不一致;此外,白光共焦光谱的信噪比较原子力低,这表明白光共焦光谱适用于靶丸表面低阶的轮廓误差的测量。图5(b)是靶丸外表面轮廓原子力显微镜轮廓仪测量数据和白光共焦光谱轮廓仪测量数据的功率谱曲线,从图中可以看出,在模数低于100的功率谱范围内,两种方法的测量结果一致性较好,当模数大于100时,白光共焦光谱的测量数据大于原子力显微镜的测量数据,这也反应了白光共焦光谱仪在高频段测量数据信噪比相对较差的特点。由于光谱传感器Z向分辨率比原子力低一个量级,同时,受环境振动、光谱仪采样率及样品表面散射光等因素的影响,共焦光谱检测数据高频随机噪声可达100nm左右。对于ICF靶丸,模数大于100的表面粗糙度信息一般在数纳米至数十纳米量级,靶丸表面真实高频轮廓数据全部淹没在白光共焦光谱系统的随机噪声之中,故白光共焦光谱仪难以获得靶丸表面轮廓的高频信息。

为进一步验证内表面轮廓测量数据的可靠性,对单面具有正弦调制结构的薄膜样品进行了测试,该薄膜样品基底厚度约为10μm,正弦调制振幅约为05μm,波长约为50μm。图6(a)是正弦调制结构向上时利用白光共焦光谱对调制样品上表面轮廓的测量数据和拟合数据,从图中可以看出,测量数据与拟合数据一致性较好,其正弦调制振幅为434nm,波长为482μm;6(b)是正弦调制薄膜(正弦调制结构向上)上表面轮廓曲线和校准前后的下表面轮廓曲线,从图中可以看出,由于受上表面的影响,校准前下表面轮廓曲线呈现周期性的调制特征,其振幅分布与上表面相反,利用公式(3)进行校准后,下表面轮廓曲线可近似为一条直线。图7(a)是正弦调制薄膜(正弦调制结构向下)上表面轮廓曲线和校准前后的下表面轮廓曲线,从图中可以看出,上表面轮廓近似为一条直线,这与图6(b)中调制薄膜校准后的轮廓曲线是一致的,此外,由于受调制薄膜折射率的影响,图7(a)中调制薄膜下表面校准前后轮廓曲线的振幅明显不同;7(b)是调制薄膜下表面轮廓曲线(校准后)的测量数据和拟合数据,相对于图6(a)的测量结果,该测量数据与拟合数据的离散性相对增大,通过正弦拟合方法所获得的正弦调制振幅为439nm,波长为482μm。当调制样品分别向上、向下放置时,白光共焦光谱的测量结果波形整体一致性较好,二者波长一致,拟合振幅偏差为5nm。该测量结果表明,利用白光共焦光谱技术可实现样品内表面低阶轮廓的精确测量。

靶丸内表面轮廓的白光共焦光谱测量技术


靶丸内表面轮廓的白光共焦光谱测量技术

6 正弦调制样品向上时的上表面轮廓测量数据(a)和校准前后的下表面轮廓数据(b)

靶丸内表面轮廓的白光共焦光谱测量技术


靶丸内表面轮廓的白光共焦光谱测量技术

7 正弦调制样品向下时的上表面轮廓测量数据(a)和校准前后的下表面轮廓数据(b)

43测量不确定度分析

利用白光共焦光谱传感器测量靶丸内表面轮廓,其测量不确定度来源主要有靶丸内、外表面的白光共焦光谱仪直接测量误差、轴系的回转误差、装置的重复性测量误差以及校准模型的误差等。上述不确定度分量中,白光共焦光谱传感器的直接测量误差主要来源于光谱传感器的分辨率和线性误差,测量结果表明,本装置所采用的光谱传感器直接测量误差最大为39nm。气浮主轴系回转精度是保证整个系统测量精度的关键因素之一,其回转误差直接叠加到测量结果中。通过测试直径为2mm的标准Cr(BallTech公司,标称球形度偏差为76nm)的圆周轮廓,对模数大于100的圆周轮廓进行滤波并计算其最小二乘圆度,由于最小二乘圆度包括了标准球的圆度误差和轴系的回转误差,可通过和方根公式计算轴系回转精度的大小。实验结果表明,标准球的最小二乘圆度为88nm,由此可得本装置主轴的回转误差约为44nm。对靶丸内表面轮廓进行多次测量,由各测量值最小二乘圆度重复性评价系统的重复测量误差。10次测量结果的最小二乘圆度为:7.1587.1767.2437.1547.0967.1437.1037.1777.1337.155μm,计算可得该测量列的标准偏差,即系统重复性误差为41nm。校准模型的误差主要来源于折射率的近似和光线入射角的近似,数值计算结果表明,折射率近似导致的最大误差约为16nm,光线入射角近似导致的最大误差约为50nm,根据和方根计算公式,可得到校准模型的测量误差为52nm

1是基于白光共焦光谱的靶丸内表面轮廓测量不确定度分量表,根据和方根计算公式可得,白光共焦光谱测量靶丸内表面低阶轮廓(模数<100)的不确定度约为89nm

1 测量不确定度分量表

靶丸内表面轮廓的白光共焦光谱测量技术


5     结论

本文通过分析光线经过靶丸壳层后的传播途径,建立了靶丸内表面轮廓的白光共焦光谱测量校准模型;搭建了基于白光共焦光谱和精密气浮轴系的靶丸内表面轮廓测量实验装置,获得了靶丸内、外表面轮廓曲线。与原子力显微镜比对测试结果表明,白光共焦光谱技术可实现靶丸模数小于100的低阶轮廓的准确测量;不确定度分析结果表明,白光共焦光谱测量靶丸内表面轮廓的不确定度约为90nm。白光共焦光谱技术不仅是精密检测靶丸内表面轮廓的可行技术手段,还可广泛应用于各类透明薄膜材料和器件内表面及厚度的精密测量领域。

论文题目:靶丸内表面轮廓的白光共焦光谱测量技术

作者:唐兴,王琦,马小军,高党忠,王宗伟,孟婕(中国工程物理研究院-激光聚变研究中心)


Case / 相关推荐
2024 - 03 - 03
点击次数: 8
激光位移传感器在多种工业和科学应用中发挥着重要作用,其测量精度直接影响到产品的质量和科研数据的可靠性。激光波长作为激光位移传感器的核心参数之一,对测量精度有着显著的影响。以下是从波长与测量分辨率、精度误差、测量范围等多个角度对激光波长如何影响测量精度进行的详细分析,以及相应的解决方案或建议。波长与测量分辨率:激光波长对测量分辨率有直接影响。波长越短,激光光束的聚焦能力越强,理论上能够实现的测量分辨...
2024 - 03 - 03
点击次数: 1
绿色LED在激光位移传感器中的优势与应用随着科技的不断发展,激光位移传感器在工业自动化、质量控制、科研实验等领域的应用越来越广泛。在这些应用中,激光位移传感器需要具有高速度、高精度、长寿命等特点。而绿色LED在激光位移传感器中的使用,正是为了满足这些需求。绿色LED在激光位移传感器中的优势主要体现在以下几个方面:高亮度:绿色LED具有较高的发光效率,能够产生高亮度的绿光。这使得激光位移传感器在测量...
2024 - 01 - 21
点击次数: 13
摘要:随着制造业的发展,对于产品的溯源和质量追溯要求越来越高。本研究提出了一种基于高精度激光位移传感器的压铸件一维码扫描与数据获取方案。采用压铸成形和激光扫描技术相结合的方式,可以快速、准确地读取压铸件上的一维码信息,提高工作效率和溯源可靠性。本文详细介绍了该方案的原理、解决方案和应用案例,以及与传统方法相比的优势。1. 引言随着制造业的快速发展,对于产品的溯源和质量追溯要求越来越高,特别是在汽车...
2024 - 01 - 21
点击次数: 15
在使用激光位移传感器进行测量时,当激光光点横跨目标物的边缘时,可能会对测量精度产生一定影响。下面将详细探讨这种影响以及解决方法。首先,当激光光点移动到目标物的不同反射率区域时,如果目标物的边缘反射率较高,激光光点横跨其边缘时,光量会发生波动。这种光量的变化可能会导致激光位移传感器的读数变化,从而影响测量精度。为了稳定测量,在激光位移传感器中通常会配备光量控制范围调整功能。通过调整光量控制范围,即使...
2024 - 01 - 21
点击次数: 10
激光位移传感器是一种用于测量目标物距离的设备。它通过发射激光束并接收目标物反射的光线来计算距离。然而,目标物的反射率可能会因颜色、反光性能以及表面状况(如粗糙度和倾斜度)等因素而发生变化,从而影响传感器的测量精度。为了应对目标物反射率变化带来的影响,激光位移传感器采取了功率和时间的调整策略。具体而言,传感器根据目标物的反射率调整激光的功率和发射时间,以确保测量的准确性和稳定性。当目标物的反射率较高...
2024 - 01 - 21
点击次数: 12
随着现代工业生产的自动化和智能化程度不断提升,各种传感器的应用也愈发广泛。其中,激光测距传感器上下对射的技术在生产线中的应用尤为显著。本文就将详细介绍一种由两台激光测距传感器组成的系统如何对橡胶带生产线中的接缝位置进行检测和计数。首先,我们需要明白,在橡胶带的生产过程中,接缝是一个非常关键的部分。接缝的存在会使橡胶带的厚度发生变化,导致运输路程和时间有所误差。而接缝的产生,是由两段橡胶带重叠、粘合...
About Us
关于泓川科技
专业从事激光位移传感器,激光焊缝跟踪系统研发及销售的科技公司
中国 · 无锡 · 总部地址:无锡新吴区天山路6号
销售热线:0510-88155119 
图文传真:0510-88152650
Working Time
我们的工作时间
周一至周五:8:00-18:00
周六至周日:9:00-15:00
Shown 企业秀 More
  • 1
    2023 - 02 - 21
    激光位移传感器是一种用于测量距离和轮廓表面的自动光学传感技术。它的工作原理是发射激光束,激光束被目标表面或区域反射,然后光束返回所需的时间被转换为距离测量。它的主要应用是尺寸计量,可以精确测量长度、距离和粗糙度轮廓。激光位移传感器也用于工业自动化、机器人和机器视觉应用。什么是激光位移传感器?       激光位移传感器是一种用于测量距离和轮廓表面的自动光学传感技术。该系统通过从激光源发射激光来工作。然后,该激光束从目标表面或区域反射回来。然后,光束覆盖距离和返回所花费的时间被转换为距离测量或轮廓。激光位移传感器通常由三个主要部分组成:*激光源*光学探测器*处理器      激光源通常是激光二极管,其波长适合于目标区域及其光学特性。激光二极管产生激光束,该激光束被引导到目标表面或区域上。然后光束被反射回检测器。根据应用,可以用一定范围的脉冲频率调制光束。光束由光学检测器检测。检测器将光转换成电信号,然后将其发送到处理器。然后处理器处理信息并将测量数据发送到数字显示器或计算机。然后,数据可用于进一步分析或控制自动化过程。历史:       激光位移传感器最初是在20世纪70年代开发的,是麻省理工学院研究项目的一部分。这项研究由美国陆军研究实验室和美国空军赖特实验室赞助。该技术最...
  • 2
    2023 - 09 - 25
    在高精度的生产工序中,薄膜偏差是一项极为重要的控制指标。由于微观材料结构的敏感性,稍有偏差就可能会导致产品的细微变形,从而引发性能下降、使用寿命缩短等一系列问题。因此,对薄膜偏差的精确检测与实时调控具有至关重要的意义。对于这样的需求,光谱共焦位移传感器便能发挥出它重要的作用。通过实现对薄膜厚度的非接触式实时监视,它可以有效地预防或及时地调整可能发生的偏差,提高生产过程中的精准度和稳定性。原理上,光谱共焦位移传感器利用光源通过物体后的干涉进行测量,借助高精度的光学系统和高灵敏的光电检测设备,最终得出偏差情况。另一方面,光谱共焦位移传感器具有小型化的优势。它采用集成设计,尺寸小巧,可以安装在设备内的有限空间中,且不会影响主机性能。这大大扩展了其使用场景,让即使是较为狭小的环境也能实现精确的监控。总结来说,光谱共焦位移传感器代表着未来高精密度生产领域的主流趋。其不仅具备高精度、快反应、难以受到环境干扰等优点,还由于其小型化、适用于狭窄环境等特性,使其逐渐被更多的高科技领域所接受和采纳。
  • 3
    2024 - 03 - 05
    激光三角测量法:精确测量透明物体的科技新突破在精密测量领域,激光三角测量法已成为一种非常重要的技术手段。这种测量方法尤其适用于透明物体的测量,因为它可以有效地解决透明物体测量中的诸多难题。本文将详细介绍激光三角测量法的原理、步骤,以及折射率校正在此过程中所起到的关键作用。一、激光三角测量法的原理激光三角测量法是一种基于光学三角测量原理的非接触式测量方法。其基本原理是:半导体激光器发出的激光束照射在目标物体上,接收器透镜聚集目标物体反射的光线并聚焦到感光元件上。当目标物体与测量设备之间的距离发生改变时,通过接收器透镜的反射光的位置也会相应改变,光线聚焦在感光元件上的部分也会有所不同。通过精确测量这些变化,就可以得出目标物体的位移、形状等参数。二、激光三角测量法的步骤设定参照距离:首先,需要设定一个参照距离,即在此距离下,激光束与感光元件之间的位置关系已知且稳定。照射激光:然后,通过半导体激光器发出激光束,照射在待测的透明物体上。接收反射光:接收器透镜会聚集从透明物体反射回来的光线,并将其聚焦到感光元件上。分析数据:当透明物体移动或形状发生变化时,反射光在感光元件上的位置也会发生变化。通过精确分析这些变化,就可以得出透明物体的位移、形状等参数。三、折射率校正的作用在测量透明物体时,一个关键的问题是需要考虑光的折射现象。由于透明物体的折射率与空气不同,光线在从空气进入透明物体时会发生折射...
  • 4
    2023 - 02 - 26
    今天我为大家展示安全激光扫描仪产品,安全激光扫描仪适用于各种应用技术领域,      在设备开发期间我们给予了特别关注,以确保它能够在广泛应用中发挥最佳功能,尤其重视大型工作区域的防护,例如机床正面区域或机器人工作区域。      其他应用包括移动车辆的防护,例如侧向滑动装置或移动运输设备,无人驾驶运输系统。甚至垂直安装激光扫描仪的出入口保护系统。尽管我们在安全激光扫描与领域,已经有数10年的经验了,但该应用领域仍然面对许多挑战。不过我们的激光安全扫描仪具有独一无二的功能属性,例如具有8.25米检测距离和270度扫描范围。       属于目前市场上的高端设备,非常适合侧向滑动装置正面区域等大型区域或长距离的防护。该设备的另一个亮点就是能够同时监测两个保护功能。这在许多应用领域中,独具优势以前需要使用两个设备,如今只需要使用一台这样的安全激光扫描仪,即可完成两台设备的功能。               实践中遇到的一项挑战是设计一款异常强骨的激光安全扫描仪。能够适应周围环境中可能存在的灰尘和颗粒等恶劣条件,因此我们提供了较分辨率达到0.1度的设备。它在目前市场上具有非常高的价值。   ...
  • 5
    2023 - 09 - 26
    1 激光光热技术测厚:原理是利用激光照射材料,产生的热量使材料产生变化,再通过光学方式检测这种变化以确定材料的厚度。优点是非接触式、无损伤、准确;缺点也是显而易见的,对于颜色、形状、表面纹理等都有不同程度的影响。2 白光干涉测厚:原理是使用白光干涉仪产生干涉图案,然后通过分析干涉图案得材料厚度。优点是测量精度高、灵敏度高;缺点是设备复杂且成本高昂。3 激光干涉测厚:主要是利用激光波的相干性,测量物体的干涉条纹来反推出物体的厚度。优点是测量精度高、速度快;但激光源的稳定性和调节技术要求比较高。4 光谱共聚焦测厚:该方法是根据材料对不同波长光的反射、折射和吸收特性,同时探测所有波长的光谱,从而计算出材料厚度。优点是测量准确、适用范围广;缺点是设备复杂、操作要求高。5 椭圆偏光法测厚:原理是利用光的偏振特性对材料进行测量,根据计算出材料厚度。优点是接触、无损伤,但适用范围有限。6 红外吸收法测厚:红外吸收法是指通过测定红外光在材料中吸收的程度来推断优点是测量过程简单、直观、精度高;缺点是对材料的红外吸收特性有严格要求。7 X/β射线测厚:主要是利用X射线或者β射线穿透材料时,穿透的射线强度和物体的厚度之间存在一定的关系。优点是精确、可靠;缺点是人体安全需要考虑。8 电容测厚:原理是利用两极板间的电容量与介质厚度成正比,通过测量电容量来测量厚度。优点是设备简单、便宜;缺点是精度较低。9 反...
  • 6
    2024 - 03 - 05
    在测量被透明物体覆盖的目标时,环境照明补偿和透视测量是提高测量准确性的重要手段。这些技术的应用,在智能手机等电子设备的制造过程中,具有至关重要的作用。首先,让我们来探讨一下环境照明补偿的作用。在生产线环境中,照明条件往往并不稳定,这会对测量精度产生严重影响。环境照明补偿技术通过自动调整传感器参数,以补偿外部光照条件的变化,使得测量系统能在不同的照明条件下都能保持稳定的测量性能。这就使得我们在测量被透明物体(如手机屏幕)覆盖的目标时,能够得到更为准确的结果。其次,透视测量技术则能够解决透明物体对测量造成的干扰。由于透明物体会让部分光线穿过,使得传统的测量技术难以准确捕捉目标的位置和形状。而透视测量技术则能够通过特殊的光学设计和算法处理,使得传感器能够“看透”透明物体,直接对其背后的目标进行测量。这样,我们就可以在不接触目标的情况下,对其进行准确的测量。在智能手机等电子设备的制造过程中,这两种技术都有着广泛的应用。例如,在手机屏幕的生产过程中,环境照明补偿技术可以帮助我们确保屏幕在各种光线条件下都能显示清晰。而透视测量技术则可以用于测量手机屏幕下的各种元器件,如触摸屏、摄像头等,确保它们的位置和尺寸都符合设计要求。此外,这两种技术还可以结合使用,以提高测量的精度和效率。例如,我们可以先使用透视测量技术确定目标的位置,然后使用环境照明补偿技术对其进行精确测量。这样,我们不仅可以得到更准确...
  • 7
    2023 - 03 - 07
    本次应用报告旨在介绍超声波测距传感器在锂电池生产过程中测量卷绕直径的应用情况。首先,本文将介绍超声波测距传感器的基本工作原理和特点,然后详细介绍其在锂电池生产中的应用情况,并对其应用效果进行评估和总结。一、超声波测距传感器的基本工作原理和特点超声波测距传感器是一种通过超声波测量距离的传感器,其测量原理非常简单,就是利用超声波在空气中的传播速度快,而且与环境中的温度、湿度等因素无关的特点。具体来说,超声波测距传感器通过发射超声波信号,当这些信号遇到物体时就会反射回来,传感器通过感受这些反射信号的到达时间,从而计算出物体与传感器之间的距离。超声波测距传感器具有响应速度快、距离测量范围广、测量精度高和使用方便等特点。因此,在工业自动化、机器人、汽车和航空等领域已经广泛应用。二、超声波测距传感器在锂电池生产中的应用锂电池的核心部件是电芯,而电芯的生产过程中就需要进行锂电池卷绕。卷绕的直径大小对于电芯的性能有很大的影响。因此,测量卷绕直径是电芯生产过程中非常重要的环节。传统的测量方法是利用拉尺、卡尺等工具进行物理测量,但是由于电芯内部结构复杂、精度要求高、测量效率低等因素,往往会出现误差较大的情况。超声波测距传感器可以很好地解决这个问题。具体来说,在电芯卷绕时,只需要将超声波测距传感器置于卷绕机上方,然后通过发射超声波信号测量卷绕轴的直径大小即可。由于超声波的反射信号可以穿透物体,因此不会对...
  • 8
    2023 - 09 - 30
    一、介绍在许多须要进行精确检查的工业生产领域,视觉系统的高度定位已成为一项关键技术。尤其在物料变化情况复杂或需要精确测量的应用场景中,如何通过视觉系统稳定地执行Z轴方向定位是个重要议题。而在这方面,高精度激光测距传感器无疑可以提供解决方法。二、解决方案1、测量初始化首先提供一个安全并且可控的环境以保证传感器的测量工作。将目标工件放在固定的位置上,并确保其稳固不动来为测量过程提供准确的基础。2、高精度激光测距传感器启动测量启动高精度激光测距传感器对目标进行测量。传感器会发出一束红外激光,该激光会瞄准工件并反射回传感器,创建出一个明确的测量路径。传感器具有强大的抗干扰能力,即使目标工件材质变化,也能够维持稳定的测量结果。3、数据处理与分析接下来进入数据处理阶段。传感器会捕捉反射回来的激光,然后利用内部的光学组件和测量算法进行数据分析,计算出其对应的Z轴坐标值。4、结果反馈与定位最后,我们将测量结果(即Z轴的坐标值)传递给工业相机,一旦接收到数据,相机就能在Z轴上进行精确的位置定位。在这个过程中,即使工件移动或者改变位置,我们的系统也能实时根据新的测量结果进行调整,保证视觉系统始终在正确的位置对工件进行检测。5、持续追踪与更新系统会持续监测工件的位置,并根据需要实时更新Z轴的高度信息。这样,在整个生产过程中,无论工件如何变化或移动,我们的视觉系统都能进行稳定、准确的检测。三、行业应用1....
Message 最新动态
在测量被透明物体覆盖的目标时,环境照明补偿和透视测量是如何帮助提高测量准确性的? 2024 - 03 - 05 在测量被透明物体覆盖的目标时,环境照明补偿和透视测量是提高测量准确性的重要手段。这些技术的应用,在智能手机等电子设备的制造过程中,具有至关重要的作用。首先,让我们来探讨一下环境照明补偿的作用。在生产线环境中,照明条件往往并不稳定,这会对测量精度产生严重影响。环境照明补偿技术通过自动调整传感器参数,以补偿外部光照条件的变化,使得测量系统能在不同的照明条件下都能保持稳定的测量性能。这就使得我们在测量被透明物体(如手机屏幕)覆盖的目标时,能够得到更为准确的结果。其次,透视测量技术则能够解决透明物体对测量造成的干扰。由于透明物体会让部分光线穿过,使得传统的测量技术难以准确捕捉目标的位置和形状。而透视测量技术则能够通过特殊的光学设计和算法处理,使得传感器能够“看透”透明物体,直接对其背后的目标进行测量。这样,我们就可以在不接触目标的情况下,对其进行准确的测量。在智能手机等电子设备的制造过程中,这两种技术都有着广泛的应用。例如,在手机屏幕的生产过程中,环境照明补偿技术可以帮助我们确保屏幕在各种光线条件下都能显示清晰。而透视测量技术则可以用于测量手机屏幕下的各种元器件,如触摸屏、摄像头等,确保它们的位置和尺寸都符合设计要求。此外,这两种技术还可以结合使用,以提高测量的精度和效率。例如,我们可以先使用透视测量技术确定目标的位置,然后使用环境照明补偿技术对其进行精确测量。这样,我们不仅可以得到更准确...
激光三角测量法是如何实现对透明物体测量的?折射率校正在这个过程中起到了什么作用? 2024 - 03 - 05 激光三角测量法:精确测量透明物体的科技新突破在精密测量领域,激光三角测量法已成为一种非常重要的技术手段。这种测量方法尤其适用于透明物体的测量,因为它可以有效地解决透明物体测量中的诸多难题。本文将详细介绍激光三角测量法的原理、步骤,以及折射率校正在此过程中所起到的关键作用。一、激光三角测量法的原理激光三角测量法是一种基于光学三角测量原理的非接触式测量方法。其基本原理是:半导体激光器发出的激光束照射在目标物体上,接收器透镜聚集目标物体反射的光线并聚焦到感光元件上。当目标物体与测量设备之间的距离发生改变时,通过接收器透镜的反射光的位置也会相应改变,光线聚焦在感光元件上的部分也会有所不同。通过精确测量这些变化,就可以得出目标物体的位移、形状等参数。二、激光三角测量法的步骤设定参照距离:首先,需要设定一个参照距离,即在此距离下,激光束与感光元件之间的位置关系已知且稳定。照射激光:然后,通过半导体激光器发出激光束,照射在待测的透明物体上。接收反射光:接收器透镜会聚集从透明物体反射回来的光线,并将其聚焦到感光元件上。分析数据:当透明物体移动或形状发生变化时,反射光在感光元件上的位置也会发生变化。通过精确分析这些变化,就可以得出透明物体的位移、形状等参数。三、折射率校正的作用在测量透明物体时,一个关键的问题是需要考虑光的折射现象。由于透明物体的折射率与空气不同,光线在从空气进入透明物体时会发生折射...
非接触式激光传感器在生产线上的应用有哪些优势? 2024 - 03 - 05 非接触式激光位移传感器在生产线上的应用具有多方面的优势,下面将从精度、速度、可靠性、灵活性和安全性等方面进行逐一分析,并通过具体的应用场景来说明其应用价值。同时,还会与传统的接触式传感器进行比较,以突显非接触式激光位移传感器的独特优势。精度:非接触式激光位移传感器采用激光三角测量法,具有极高的测量精度。例如,在半导体制造过程中,需要精确控制薄膜的厚度,非接触式激光位移传感器可以实现微米级的测量精度,从而确保产品质量。相比之下,传统接触式传感器可能会因为接触力度的不同而影响测量精度。速度:非接触式激光位移传感器具有快速响应的特点,可以在生产线上实现高速测量。例如,在包装机械中,需要实时监测包装材料的位置和速度,非接触式激光位移传感器可以迅速捕捉到这些变化,从而确保包装过程的顺利进行。而传统接触式传感器可能会因为接触摩擦等因素而影响测量速度。可靠性:非接触式激光位移传感器无需与目标物体直接接触,因此可以避免因摩擦、磨损等因素导致的传感器损坏。此外,非接触式传感器还具有较好的抗干扰能力,可以在恶劣的生产环境中稳定工作。相比之下,传统接触式传感器更容易受到环境因素的影响而出现故障。灵活性:非接触式激光位移传感器可以适应不同的测量需求,通过调整激光发射角度、接收透镜焦距等参数,可以实现不同距离、不同角度的测量。此外,非接触式传感器还可以与计算机、PLC等设备进行连接,实现自动化控制和数据处理...
Copyright ©2005 - 2013 无锡泓川科技有限公司

1

犀牛云提供企业云服务
Our Link
X
3

SKYPE 设置

4

阿里旺旺设置

等待加载动态数据...

等待加载动态数据...

5

电话号码管理

  • 0510-88155119
6

二维码管理

等待加载动态数据...

等待加载动态数据...

展开