服务热线: 0510-88155119
13301510675@163.com
Language
项目案例 Case
Case 激光位移

基于光谱共焦技术的叶尖间隙测量方法研究

日期: 2022-01-17
浏览次数: 124

[摘要]基于光谱共焦测量技术搭建了叶尖间隙模拟测试平台,将模拟叶盘安装在气浮主轴上,并应用光谱共焦位移传感器实现了叶尖端面的位移变化量的测量,以表征叶尖间隙的变化,分别模拟了叶尖间隙的单次测量和连续测量过程。实验结果表明,应用光谱共焦位移传感器可以完成发动机转子叶尖间隙的测量,而且能够达到很高的测量效率和精度,可以应用于实际的测量现场。


[关键词]叶尖间隙;非接触;光谱共焦;测量


引言

随着科学技术的长足进步,世界航空工业进入了全新的发展时代。在航空领域中,发动机是推进系统的重要组成部分,为飞机提供持续飞行的拉力或推力。作为飞机的核心部件,发动机对于飞行的安全性、可靠性和经济性等都有着重要影响。当前,航空推进系统日益向着高转速、高效率、高推重比、高可靠性和高涡轮前温度的方向发展,这就对发动机的整体性能提出了更高要求,迫切需要压气机、涡轮等关键部件具备更高的工作效率和更宽的稳定工作范围。而要达到这一目标,就需要着力加强在发动机性能测试方面的研究工作。


一般说来,航空发动机是一种高速旋转的热力机械,能够将燃料的化学能转化为飞机的动能,其各级转子主要由叶片、轮盘和转轴等部分组成。在发动机的运行过程中,压气机和涡轮中的转子以很高的转速做定轴回转运动,其中,各级转子叶片的顶端(叶尖)与机匣内壁之间的径向间距被称为叶尖间隙(Tip Clearance)。叶尖间隙是关系到发动机性能的重要参数之一,间隙过大,会使叶尖泄露增大,导致发动机效率下降,甚至造成发动机喘振;而间隙过小,则有可能导致叶片顶端与机匣内壁之间发生碰撞和摩擦,影响发动机的安全运转,甚至造成发动机损坏,给飞行带来巨大的安全隐患。


因此,采取必要的测试手段对发动机的转子叶尖间隙进行实时有效测量,从而掌握叶尖间隙的变化规律,对于监测发动机的工作状态,进而实现发动机整个运行过程的直接监测和故障诊断,都具有着重要而深远的意义。目前,叶尖间隙的测量方法主要有放电探针测量法、电涡流测量法和电容测量法等。放电探针法适用于导电材质的叶片,而且只能测量旋转叶片的最小叶尖间隙;电涡流法要求叶片材质具有导电性,并且叶尖端面要具有一定的厚度;电容法的频率响应性能较差,而且要求叶片材料必须是铁性材料,应用范围受到一定限制。可见,传统的测量方法存在着诸多局限性,不利于叶尖间隙测量任务的完成。


随着光学、电子学和传感技术等学科的发展与进步,许多光电传感器和测量方法被引入到航空领域中,成功地解决了许多传统测量技术难以或者无法解决的问题。其中,光谱共焦位移传感器是近年来新出现的一种非接触式的高精度光电位移传感器,基于光谱色散原理,能够将位移信息编码到波长信息中,再通过光谱分析技术得出被测位移,系统的分辨率可以达到微纳米量级,响应频率能够达到千赫兹量级。与传统的激光三角反射式位移传感器相比,光谱共焦位移传感器对被测表面的要求更低,允许被测表面有较大的倾斜角度。此外,它还具有精度高、绝对式测量、便于小型化以及对杂散光有较强的鲁棒性等特点,应用前景十分广阔。国内的马小军等提出了基于光谱共焦传感器的金属薄膜厚度测量技术,利用相向对顶安装的传感器组、精密位移平台等实现了对厚度为10~100μm的自支撑金属薄膜的厚度及厚度分布的精确测量。朱万彬等研究了将光谱共焦位移传感器用于测量透明材料平板厚度的可行性,并对其产生的误差进行了详细分析,给出了相应的补偿方法。陈挺等在论述光谱共焦技术原理的基础上,列举了光谱共焦传感器在几何量计量测试中的典型应用,探讨了共焦技术在未来精密测量领域中的进一步应用。


为了实现航空发动机转子叶尖间隙的实时精确测量,本文提出了一种基于光谱共焦技术的叶尖间隙测量方法。搭建了叶尖间隙模拟测试系统,将模拟叶盘零件安装在气浮主轴上,以模拟发动机转子,并将光谱共焦位移传感器固定在刚性支架上,通过支架的调整使传感器处于正确的工作位置。在实验过程中,首先进行单次测试,完成了单个叶片顶端位移变化量的测量;然后进行连续测试,旋转模拟叶盘,完成了该叶盘周向上36个叶片顶端位移变化量的连续测量,从而模拟了在发动机环境中的实际应用效果。实验结果表明,本文选用的光谱共焦位移传感器具有很高的测量精度和响应频率,并且体积小、便于安装,能够满足发动机叶尖间隙的测量需求。


1光谱共焦位移传感器的基本原理

光谱共焦测量技术最早由Molesini等人提出,并成功应用于表面轮廓仪。随后,许多科研人员都对基于光谱共焦原理的测量技术开展了深入研究,并在宏观和微观测量领域衍生出了许多应用实例。目前,国外的工业级光谱共焦位移传感器的测量精度已达到亚微米级,响应频率已达到几千赫兹。

基于光谱共焦技术的叶尖间隙测量方法研究

1光谱共焦位移传感器的工作原理


光谱共焦位移传感器是在共焦显微镜的基础上发展起来的,其原理类似于共焦显微镜,但又有所不同。如图1所示,传感器主要由探头和光谱分析仪两部分组成,二者可通过光纤连接进行信号传输。其中,探头主要由光源和光学透镜组等构成。光源采用宽光谱的复色点光源(呈白光),其出射光束经过前置透镜组后变为多色平行光;然后通过后面的色散透镜组进行光谱分光,形成一系列波长不同的单色光,并将其进行同轴聚焦。由此产生光谱色散,将不同波长的光的焦点分散在光轴上的不同位置,从而在有效量程范围内形成了一系列焦点,每个焦点处的单色光波长都对应一个轴向位置,由此将位移信息转换为波长信息。最后,聚焦于被测物体表面的单色光被反射回来,通过分光镜进入成像透镜组并最终成像在针孔像面上。在此过程中,对应被测表面位置并满足共焦条件的单色光将进入针孔到达光谱分析仪,以进行后续处理;而离焦反射的其它光谱则被针孔遮挡,不能进入光谱分析仪。


进入针孔的单色光到达光谱分析仪后,可以根据光信号确定出此单色光的波长。由于每个波长都对应着一个距离值,因而根据波长就可以推算出相应的位移量,实现位移的精确分辨。光谱分析仪得到的光谱响应曲线如图2所示,横坐标表示波长λ,纵坐标表示对比度I。对于得到的光谱响应曲线,其峰值波长在555nm处,如果被测物体发生微小位移,那么在光谱分析仪上就可以得到另外一条光谱响应曲线,从而获得另一个峰值,这两个峰值之差所代表的位移可以根据色散和波长的关系得出。

基于光谱共焦技术的叶尖间隙测量方法研究

2光谱响应曲线(长波/nm


正是基于这种独特原理,使得光谱共焦位移传感器在位移测量上能够达到很高的分辨率和精度。对于单层和多层的透明物体,除了能准确测量该物体位移之外,还可以对其厚度进行单方向测量。如在测量薄玻璃片时,其前后表面都会反射特定波长的光,在光谱分析仪上能够获得具有两个峰值的光谱曲线,通过这两个峰值就可以推算出玻璃的厚度,这在检测一些很薄的物体时非常有效,如检测玻璃纸的厚度等。如果将光谱共焦位移传感器配置在二维扫描装置上,还可以用于测量物体的表面形貌,而普通的共焦显微镜则需要三维扫描装置才能够实现物体形貌的测量。


2叶尖间隙模拟测试系统

由于压气机的工作温度不是很高,而且光学环境较好,因此特别适合采用光电传感器对叶尖间隙进行测量。在测量过程中,将传感器固定在静子机匣的内壁上,通过传感器可以获得叶尖与传感器之间径向距离d1,再与传感器到机匣内壁之间的距离d2相加,即可得到待测的叶尖间隙d的值,即d=d1+d2,如图3所示。而在实际使用过程中,由于传感器与静子机匣的相对位置固定,因而d2的数值不会发生变化,因此叶尖间隙的变化量可以通过d1来表征。

基于光谱共焦技术的叶尖间隙测量方法研究

3叶尖间隙的计算示意图


为模拟实际的测量现场,本文搭建了叶尖间隙模拟测试系统,如图4所示,主要包括光谱共焦位移传感器、刚性支架、模拟叶盘、气浮主轴、减振底座以及工控机等。首先,将刚性支架和气浮主轴固定在减振底座上,并调整它们之间的相互位置。其次,应用工装夹具将光谱共焦传感器安装在刚性支架上,由于该传感器采用侧向出光方式,其位移测量的方向与自身轴线垂直,因此应通过微调机构调整其空间方位,使传感器的轴线与气浮主轴的轴线平行。然后,将模拟叶盘安装在气浮主轴上,由于发动机转子的转速很高,因而整个气浮主轴系统在使用前需要经过动平衡调节,以使其在高速状态下稳定运转,不发生危险。最后,调整光谱共焦传感器的轴向位置,使其测量光束能够照射到模拟叶盘零件的叶尖上,在叶尖端面上形成测量点,并处于量程范围内。另外,在气浮主轴上还安装有转速同步器,以用于监测主轴的转速和转角位置,并将其作为光谱共焦传感器的同步信号。

基于光谱共焦技术的叶尖间隙测量方法研究

4叶尖间隙模拟测试系统的结构简图


在间隙传感器方面,如图5所示,主要由控制器和探头组成,它们由一根光纤连接,控制器通过光纤向探头提供光源,探头再通过光纤将光信号传输到控制器中进行光谱分析。该测量系统可以对漫反射或镜面反射物体进行高精度的位移测量,还可以对透明物体的厚度进行测量。

基于光谱共焦技术的叶尖间隙测量方法研究

5光谱共焦测量系统


控制器具有优异的信噪比,能够满足高精度测量的需求,测量速率可以达到10kHz,并且具有快速表面补光功能,可以通过控制曝光时间来达到较高的信号稳定性。数据输出可以通过EthernetEtherCATRS422或模拟量输出来实现。探头为光谱共焦式复合探头,采用无磨损透镜系统设计,可以进行径向测量,还能用于有防爆要求的工作领域与真空环境。该探头应用梯度指数透镜与光纤的复合技术,具有更大的数值孔径,因此可有效增大安全距离并加大安装倾斜角度。


3     实验验证

本文选取的光谱共焦位移传感器具有较小的尺寸结构和较高的响应频率,非常适合于航空发动机内狭小而恶劣的工作环境,因此在叶尖间隙测量方面具有很大的应用潜力。为了验证该型传感器在发动机叶尖间隙测量中的应用效果,本文在所搭建的叶尖间隙模拟测试系统上进行了单次和连续的测试实验,完成了传感器应用效果的综合验证。


3.1   单次测试

在本文搭建的模拟测试系统中,没有设计发动机机匣的模拟零件,因此间隙传感器通过刚性支架来模拟在机匣内壁上的安装状态。在叶片划过测量区域的过程中,传感器的输出为叶尖端面与传感器之间位移值,即d1。由于叶尖端面的厚度很小,因而叶尖间隙值可通过单个叶片划过时传感器的输出量的平均值来表征,实验现场如图6所示。

基于光谱共焦技术的叶尖间隙测量方法研究

6单次测量实验现场


通过变频器控制气浮主轴的转速,使其以缓慢速度带动模拟叶盘匀速转动。当叶片顶端进入光谱共焦传感器的测量范围内时,触发传感器开始数据采集;当叶片顶端转出传感器的测量范围时,传感器停止数据采集。在叶片顶端划过传感器测量范围的过程中,传感器采集到的测量数据如图7所示。

基于光谱共焦技术的叶尖间隙测量方法研究

7单个叶尖间隙的测量数据


从图7中可以看出,传感器在被测叶片顶端划过的过程中共采集到580个数据点,被测叶片顶端的位移变化量的范围为0.8311~0.8411mm,变化量的均值为0.8374mm,方差为0.0020mm。实验结果表明,应用光谱共焦位移传感器能够满足单个叶片叶尖间隙的测量,可以达到较高的测量精度。


3.2   连续测试

通过控制变频器调节气浮主轴的转速,使其带动模拟叶盘以1000r/min的速度回转。应用光谱共焦位移传感器进行模拟叶盘周向上的36个叶片的叶片顶端位移变化量的数据采集,并以平均值作为每个叶片最终的叶尖间隙值,动态测试的实验现场如图8所示。

基于光谱共焦技术的叶尖间隙测量方法研究

8连续测量实验现场


计算得到的模拟叶盘周向上的36个叶片的叶尖间隙的实验数据如表1所示,同时为了便于观察叶尖间隙的变化趋势,将这些数据显示在同一坐标系中,如图9所示。可以看出,在本文所搭建的叶尖间隙模拟测试系统中,应用光谱共焦位移传感器可以完成对模拟叶盘全部叶片的叶尖间隙的测量。传感器能够达到很高的测量精度和响应频率。从表1和图9中可以看出,该模拟叶盘上36个叶片的叶尖间隙值的变化范围为0.7137~0.8438mm,并且呈现为近似正弦曲线的形状,这主要是由于在将模拟叶盘安装在气浮主轴上时,存在一定的偏心误差造成的。由此可以看出,发动机转子不同轴会对叶尖间隙造成影响,因而在发动机的装配过程中,应控制转子系统的不同轴误差在允许的范围内。

基于光谱共焦技术的叶尖间隙测量方法研究

9连线测量的实验数据(叶片序号)


136个叶片的叶尖间隙的实验数据

基于光谱共焦技术的叶尖间隙测量方法研究


4     结论

针对航空发动机转子叶尖间隙的测量问题,本文探索了光谱共焦位移传感器在此方面的应用效果。光谱共焦位移传感器基于光谱色散原理,探头体积小、安装方便,并且能够达到很高的测量精度和响应频率,能够满足叶尖间隙的测量需求。本文搭建了叶尖间隙模拟测试系统,应用光谱共焦位移传感器对安装在气浮主轴上的模拟叶盘进行测量,采集叶片顶端位移变化量的数据。在实验验证过程中,本文既通过单次测量完成了单个叶片逐个检测,又通过连续测量完成了旋转状态下的每个叶片叶尖间隙的数据采集,系统具有良好的应用性能。实验结果表明,光谱共焦位移传感器可以用于发动机转子叶尖间隙的测量,从而为我国航空发动机技术的进步提供了一项测试技术支持。



Case / 相关推荐
2025 - 06 - 23
点击次数: 20
LTP450W 激光位移传感器在自动打磨设备中的应用方案一、方案背景与需求痛点在铸造工件的自动化打磨场景中,粗糙的表面形貌(如毛边、凹凸不平的铸造纹理)对检测传感器提出了特殊要求:传统点光斑传感器易受表面缺陷干扰导致测量偏差,而大距离检测需求又需兼顾精度与实时性。LTP450W 激光位移传感器凭借宽光斑设计、大测量范围及高精度特性,成为适配自动打磨设备的核心检测元件,可实现从表面位置检测到打磨程度...
2025 - 05 - 28
点击次数: 37
一、行业背景:智能手机摄影技术升级催生精密检测需求随着智能手机摄影技术向高像素、超广角、长焦等多元化方向发展,摄像头模组的微型化与精密化程度显著提升。作为摄像头光学元件的核心承载结构,摄像头支架的平面度精度直接影响镜头光轴对准、感光元件贴合等关键工艺,进而决定成像质量的稳定性。传统人工目视检测或接触式测量方法因主观性强、效率低、易损伤工件等缺陷,已难以满足微米级精度检测需求。如何实现非接触式、高精...
2025 - 05 - 14
点击次数: 19
一、引言在锂电池生产中,电极厚度是影响电池性能的关键参数。基片涂覆活性物质后形成的粗糙表面,使用传统点光斑传感器测量时易受表面微观形貌影响,导致数据波动大、测量精度不足。本文针对这一问题,提出采用两台 LTP030U 宽光斑激光位移传感器对射测量方案,结合其独特的光学设计与高精度特性,实现锂电池电极厚度的稳定精确测量。二、应用挑战与传感器选型依据(一)测量难点分析锂电池电极基片涂粉后,表面粗糙度可...
2025 - 05 - 06
点击次数: 28
一、PCB 生产痛点:超薄板叠片检测难在电子制造中,PCB 板厚度仅 0.1-1.6mm,高速传输时极易出现多层重叠,传统检测手段却力不从心:接触式测量:机械探针易压弯薄板,且每秒仅测百次,跟不上产线速度;视觉检测:依赖稳定光源,机台振动(±50μm 级)让图像模糊,漏检率高达 5%。这些问题导致 3%-5% 的废料率,更可能让不良品流入下工序,引发焊接短路等连锁故障,成为产线效率和质量...
2025 - 03 - 22
点击次数: 37
一、传感器选型与技术优势对比颠覆性成本结构传统激光多普勒测振仪价格区间:¥150,000~¥500,000LTP080系列成本:¥11,000~¥15,000(视配置),降低设备投入90%以上维护成本对比:无光学镜片损耗,寿命>50,000小时,年维护费用低于¥500性能参数解析指标LTP080参数传统测振仪典型值采样频率50kHz(全量程)/160kHz(20%量程)1MHz~10MHz线性度&...
2025 - 03 - 19
点击次数: 38
一、项目背景与需求随着智慧交通和道路养护数字化的发展,对路面病害(如裂缝、车辙、坑槽)的高效检测需求日益迫切。传统人工巡检效率低、主观性强,而车载激光雷达方案成本高昂(单套设备超百万元)。因此,某省级公路养护中心采用泓川科技LTP系列传感器,构建低成本、高精度的路面扫描系统,目标如下:全幅覆盖:单次扫描覆盖3.5m标准车道,横向分辨率≤5mm,纵向分辨率≤2mm(车速60km/h时)。抗干扰能力:...
About Us
关于泓川科技
专业从事激光位移传感器,激光焊缝跟踪系统研发及销售的科技公司
中国 · 无锡 · 总部地址:无锡新吴区天山路6号
销售热线:0510-88155119 
图文传真:0510-88152650
Working Time
我们的工作时间
周一至周五:8:00-18:00
周六至周日:9:00-15:00
Shown 企业秀 More
  • 1
    2023 - 03 - 09
    激光位移传感器被广泛应用于各种领域中。其中一个很有用的应用是测量薄膜厚度。这种传感器可以在离表面很近的距离下进行高精度测量,因此非常适合这种应用。本文将介绍激光位移传感器如何用于测量薄膜厚度,包括测量方法、测量原理和市场应用。一、测量方法测量薄膜厚度的基本思路是利用激光位移传感器测量薄膜前后表面的距离差,然后通过几何公式计算出薄膜厚度。在实际操作中,测量方法大致可分为以下几种:1. 手持式测量手持式测量通常用于快速的现场检测。用户只需要将激光位移传感器靠近待测表面,然后通过读取显示屏上的数值判断薄膜厚度是否符合要求。这种方法不需要复杂的设备和步骤,非常易于使用。但是由于人手的震动和误差等因素,手持式测量的精度相对较低,只适用于需求不是特别高的场合。2. 自动化在线测量自动化在线测量一般用于工业生产线上的质量控制。这种方法需要将激光位移传感器与自动化设备相连接,将测量数据传递给计算机进行分析。在这种情况下,测量过程可以完全自动化,精度也可以得到保证。但是相对于手持式测量来说,这种方法需要的设备和技术要求更高,成本也更高。3. 显微镜下测量显微镜下测量常用于对细小薄膜厚度的测量。在这种情况下,用户需要将激光位移传感器与显微镜相结合进行测量。由于显微镜的存在,可以大大增强测量精度。但是相对于其他两种方法,这种方法需要的设备更多,并且技巧要求也更高。二、测量原理激光位移传感器利用的是激光三...
  • 2
    2025 - 01 - 14
    四、光学传感器应用对薄膜涂布生产的影响4.1 提升生产效率4.1.1 实时监测与反馈在薄膜涂布生产的复杂乐章中,光学传感器实时监测与反馈机制宛如精准的指挥棒,引领着生产的节奏。凭借其卓越的高速数据采集能力,光学传感器能够如同闪电般迅速捕捉涂布过程中的关键参数变化。在高速涂布生产线以每分钟数百米的速度运行时,传感器能够在瞬间采集到薄膜厚度、涂布速度、位置偏差等数据,为生产过程的实时监控提供了坚实的数据基础。这些采集到的数据如同及时的情报,被迅速传输至控制系统。控制系统则如同智慧的大脑,对这些数据进行深入分析。一旦发现参数偏离预设的理想范围,控制系统会立即发出指令,如同指挥官下达作战命令,对涂布设备的相关参数进行精准调整。当检测到薄膜厚度略微超出标准时,控制系统会迅速调整涂布头的压力,使涂布量精确减少,确保薄膜厚度回归正常范围。这种实时监测与反馈机制的存在,使得生产过程能够始终保持在最佳状态。它避免了因参数失控而导致的生产中断和产品质量问题,如同为生产线安装了一个智能的 “稳定器”。与传统的生产方式相比,生产调整的时间大幅缩短,从过去的数小时甚至数天,缩短至现在的几分钟甚至几秒钟,极大地提高了生产效率。4.1.2 减少停机时间在薄膜涂布生产的漫长旅程中,设备故障和产品质量问题如同隐藏在道路上的绊脚石,可能导致停机时间的增加,严重影响生产效率。而光学传感器的实时监测功能,就像一位警惕的卫...
  • 3
    2023 - 08 - 21
    摘要:基膜厚度是许多工业领域中重要的参数,特别是在薄膜涂覆和半导体制造等领域。本报告提出了一种基于高精度光谱感测的基膜厚度测量方案,该方案采用非接触测量技术,具有高重复性精度要求和不损伤产品表面的优势。通过详细的方案设计、设备选择和实验验证,展示了如何实现基膜厚度的准确测量,并最终提高生产效率。引言基膜厚度的精确测量对于许多行业来说至关重要。传统测量方法中的接触式测量存在损伤产品表面和对射测量不准确的问题。相比之下,高精度光谱感测技术具有非接触、高重复性和高精度的优势,因此成为了基膜厚度测量的理想方案。方案设计基于高精度光谱感测的基膜厚度测量方案设计如下:2.1 设备选择选择一台高精度光谱感测仪器,具备以下特点:微米级或亚微米级分辨率:满足对基膜厚度的高精度要求。宽波长范围:覆盖整个感兴趣的波长范围。快速采集速度:能够快速获取数据,提高生产效率。稳定性和重复性好:确保测量结果的准确性和可靠性。2.2 光谱感测技术采用反射式光谱感测技术,原理如下:在感测仪器中,发射一个宽光谱的光源,照射到待测样品表面。根据不同厚度的基膜对光的反射率不同,形成一个光谱反射率图像。通过对反射率图像的分析和处理,可以确定基膜的厚度。2.3 实验设计设计实验验证基膜厚度测量方案的准确性和重复性。选择一系列已知厚度的基膜作为标准样品。使用高精度光谱感测仪器对标准样品进行测量,并记录测量结果。重复多次测量,并计...
  • 4
    2023 - 12 - 23
    摘要:圆筒内壁的检测在工业生产中具有重要意义,传统方法存在诸多问题。本文介绍了一种新型的检测系统,该系统结合了改进的激光三角测距法和机器视觉技术,旨在解决传统方法的不足。新方法可以在高温环境下工作,对小径圆筒进行测量,且测量精度高、速度快。通过实验验证,该系统能够实现圆筒内壁的高质量、高速度的在线检测,为现代工业生产提供了有力支持。关键词:圆筒内壁检测;机器视觉;激光三角测距法;在线检测引言圆筒内壁检测是工业生产中的重要环节,其质量直接关系到产品的性能和使用寿命。传统的检测方法存在诸多问题,如检测精度不高、速度慢、无法在线检测等。为了解决这些问题,本文提出了一种新型的检测系统,该系统结合了改进的激光三角测距法和机器视觉技术,旨在实现圆筒内壁的高质量、高速度的在线检测。工作原理本系统采用激光三角测距法作为主要测量手段。激光三角测距法是一种非接触式测量方法,通过激光投射到被测物体表面并反射回来,再通过传感器接收,经过处理后可以得到被测物体的距离和尺寸信息。本系统对传统的激光三角测距法进行了改进,使其能够在高温环境下工作,并对小径圆筒进行测量。同时,本系统还采用了机器视觉技术进行辅助测量和判断。机器视觉技术是通过计算机模拟人类的视觉功能,实现对图像的采集、处理和分析。本系统利用机器视觉技术对圆筒内壁表面进行图像采集和处理,通过算法识别和判断内壁表面的缺陷和尺寸信息。通过将激光三角测距法和...
  • 5
    2025 - 03 - 05
    在工业自动化领域,激光位移传感器是精密测量的核心器件。本文以国产泓川科技的LTP150与基恩士的LK-G150为对比对象,从核心技术参数、功能设计及性价比等维度,解析国产传感器的创新突破与本土化优势。一、核心参数对比:性能旗鼓相当,国产线性度更优精度与稳定性LTP150的线性度为±0.02%F.S.,优于LK-G150的±0.05%F.S.,表明其全量程范围内的测量一致性更佳。重复精度方面,LK-G150(0.5μm)略高于LTP150(1.2μm),但需注意LK-G150数据基于4096次平均化处理,而LTP150在无平均条件下的65536次采样仍保持1.2μm偏差,实际动态场景下稳定性更可靠。采样频率与响应速度LTP150支持50kHz全量程采样,并可扩展至160kHz(量程缩小至20%),远超LK-G150的1kHz上限。高频采样能力使其在高速生产线(如电池极片、半导体晶圆检测)中可捕捉更多细节,避免数据遗漏。环境适应性两者均具备IP67防护与抗振设计,但LTP150可选**-40°C至70°C宽温版本**,覆盖极寒或高温车间环境,而LK-G150仅支持050°C,适用场景受限。以下是 LTP150(泓川科技) 与 LK-G150(基恩士) 激光位移传感器的核心参数对比表格,重点突出国产...
  • 6
    2025 - 01 - 14
    一、引言1.1 研究背景与意义在工业制造、科研等众多领域,精密测量技术如同基石,支撑着产品质量的提升与科学研究的深入。光谱共焦传感器作为精密测量领域的关键技术,正以其独特的优势,在诸多行业中发挥着无可替代的作用。它能精确测量物体的位移、厚度、表面轮廓等参数,为生产过程的精确控制与产品质量的严格把控提供了关键数据支持。基恩士作为传感器领域的佼佼者,其推出的光谱共焦传感器在市场上备受瞩目。基恩士光谱共焦传感器凭借卓越的性能,如高精度、高稳定性、快速响应等,在精密测量领域中脱颖而出。在半导体制造过程中,芯片的生产对精度要求极高,基恩士光谱共焦传感器可精准测量芯片的厚度、线宽等关键参数,保障芯片的性能与质量。在光学元件制造领域,其能够精确测量透镜的曲率、厚度等参数,助力生产出高质量的光学元件。研究基恩士光谱共焦传感器,对于推动精密测量技术的发展具有重要意义。通过深入剖析其原理、结构、性能以及应用案例,能够为相关领域的技术创新提供参考,促进测量技术的不断进步。在实际应用中,有助于用户更合理地选择和使用该传感器,提高生产效率,降低生产成本。在汽车制造中,利用基恩士光谱共焦传感器对零部件进行精密测量,可优化生产流程,减少废品率。 1.2 研究现状在国外,光谱共焦传感器的研究起步较早,技术也相对成熟。法国的STIL公司作为光谱共焦传感器的发明者,一直处于该领域的技术前沿。其研发的光谱共焦...
  • 7
    2025 - 02 - 19
    一、测量原理与技术框架高精度激光位移传感器实现1μm以下精度的核心在于三角测量法的深度优化。如图1所示,当激光束投射到被测表面时,散射光斑经接收透镜在CMOS/CCD阵列上形成位移图像。根据几何关系:\Delta x = \frac{L \cdot \sinθ}{M \cdot \cos(α±θ)}Δx=M⋅cos(α±θ)L⋅sinθ其中L为基距,θ为接收角,M为放大倍数。要实现亚微米分辨率需突破传统三角法的三个技术瓶颈:光斑质量退化、环境噪声干扰、信号处理延迟。二、关键算法突破1. 光斑中心定位算法采用改进型高斯混合模型(GMM)结合小波变换降噪,可有效抑制散斑噪声。研究显示[1],基于Marr小波的边缘检测算法可使定位精度提升至0.12像素(对应0.05μm)。2. 动态补偿算法LTP系列采用专利技术(CN202310456789.1)中的自适应卡尔曼滤波:PYTHONclass AdaptiveKalman:    def update(self, z):        # 实时调整过程噪声协方差Q        se...
  • 8
    2023 - 03 - 20
    介绍工业光电传感器是现代制造业中最常用的检测设备之一,广泛应用于自动化生产线、机械加工、装配、物流搬运等行业。随着国民经济的不断发展,中国的工业光电传感器制造业也不断发展壮大,成为制造业的一支重要力量。本文旨在对中国产的工业光电传感器现状进行描述。发展历史20世纪80年代初期,我国的工业自动化程度比较低,大部分生产线仍采用人力操作,制造业存在高人力成本、低效率、品质难以保证等问题。为了提高制造业的效率和品质,中国开始引入外国的工业自动化设备,其中就包括工业光电传感器。80年代中后期,国内开始试水制造工业光电传感器,并逐步发展壮大。90年代初期,随着国民经济的增长和工业自动化的加速推进,中国的工业光电传感器制造业进入快速发展期。如今,中国的工业光电传感器制造业已经处于全球领先地位,成为世界闻名的光电传感器生产基地之一。产业链分析商业模式中国的工业光电传感器制造业商业模式主要是以生产销售为主,较少采用研发生产销售一体化模式。生产企业主要供应给自动化设备制造商,然后这些自动化设备制造商销售给最终用户,最终用户则使用这些设备来自动化生产线。除此之外,还有一些企业将工业光电传感器产品应用到自己的设备制造中,以提高自己产品的品质和效率,然后再将自己的产品销售给最终用户。在商业模式上,中国的工业光电传感器制造业与欧美等发达国家还存在一定的差距。技术研发中国的工业光电传感器制造业在技术研发方面逐渐...
Message 最新动态
泓川科技国产系列光谱共焦/激光位移传感器/白光干涉测厚产品性能一览 2025 - 09 - 05 高精度测量传感器全系列:赋能精密制造,适配多元检测需求聚焦半导体、光学膜、机械加工等领域的精密检测核心痛点,我们推出全系列高性能测量传感器,覆盖 “测厚、对焦、位移” 三大核心应用场景,以 “高精准、高速度、高适配” 为设计核心,为您的工艺控制与质量检测提供可靠技术支撑。以下为各产品系列的详细介绍:1.LTS-IR 红外干涉测厚传感器:半导体材料测厚专属核心用途:专为硅、碳化硅、砷化镓等半导体材料设计,精准实现晶圆等器件的厚度测量。性能优点:精度卓越:±0.1μm 线性精度 + 2nm 重复精度,确保测量数据稳定可靠;量程适配:覆盖 10μm2mm 测厚范围,满足多数半导体材料检测需求;高效高速:40kHz 采样速度,快速捕捉厚度数据,适配在线检测节奏;灵活适配:宽范围工作距离设计,可灵活匹配不同规格的检测设备与场景。2. 分体式对焦传感器:半导体 / 面板缺陷检测的 “高速对焦助手”核心用途:针对半导体、面板领域的高精度缺陷检测场景,提供高速实时对焦支持,尤其适配显微对焦类检测设备。性能优点:对焦速度快:50kHz 高速对焦,同步匹配缺陷检测的实时性需求;对焦精度高:0.5μm 对焦精度,保障缺陷成像清晰、检测无偏差;设计灵活:分体式结构,可根据检测设备的安装空间与布局灵活调整,降低适配难度。3. LT-R 反射膜厚仪:极薄膜厚检测的 “精密管家”核心用途:专注于极薄膜...
多方面研究泓川科技LTP系列大量程全国产激光位移传感器 2025 - 09 - 02 泓川科技激光位移传感器产品技术报告尊敬的客户: 感谢您对泓川科技激光位移传感器产品的关注与信任。为帮助您全面了解我司产品,现将激光位移传感器相关技术信息从参数指标、设计原理、结构设计等八大核心维度进行详细说明,为您的选型、使用及维护提供专业参考。一、参数指标我司激光位移传感器涵盖 LTP400 系列与 LTP450 系列,各型号核心参数经纳米级高精度激光干涉仪标定验证,确保数据精准可靠,具体参数如下表所示:表 1:LTP400EA参数表参数类别具体参数LTP400EA备注基础测量参数测量中心距离400mm以量程中心位置计算(*1)量程200mm-重复精度(静态)3μm测量标准白色陶瓷样件,50kHz 无平均,取 65536 组数据均方根偏差(*2)线性度±0.03%F.S.(F.S.=200mm)采用纳米级激光干涉仪标定(*3)光源与光斑光源类型-激光功率可定制,部分型号提供 405nm 蓝光版本(*4)光束直径聚焦点光斑 Φ300μm中心位置直径,两端相对变大(*5)电气参数电源电压DC9-36V-功耗约 2.5W-短路保护反向连接保护、过电流保护-输出与通信模拟量输出(选配)电压:0-5V/010V/-1010V;电流:420mA探头可独立提供电压、电流与 RS485 输出(*6)通讯接口RS485 串口、TCP/IP 网口可选配模拟电压 / 电流输出模块(*7)响应...
泓川科技发布 LT-CP 系列 ETHERCAT 总线高光谱共焦控制器,32KHz 高速采样引领工业... 2025 - 08 - 30 泓川科技发布 LT-CP 系列 ETHERCAT 总线高光谱共焦控制器,32KHz 高速采样引领工业高精度测量革新近日,工业高精度测量领域迎来技术突破 —— 泓川科技正式推出LT-CP 系列 ETHERCAT 总线高光谱共焦传感器控制器(含单通道 LT-CPS、双通道 LT-CPD、四通道 LT-CPF 三款型号,含普通光源与高亮激光光源版本)。该系列产品以 “32KHz 高速采样” 与 “ETHERCAT 工业总线” 为核心亮点,填补了行业内 “高频响应 + 实时协同” 兼具的技术空白,为新能源、半导体、汽车制造等高端领域的动态高精度测量需求提供了全新解决方案。一、核心突破:32KHz 高速采样,破解 “多通道降速” 行业痛点光谱共焦技术的核心竞争力在于 “高精度” 与 “响应速度” 的平衡,而 LT-CP 系列在速度维度实现了关键突破 ——单通道模式下最高采样频率达 32KHz,意味着每秒可完成 32000 次精准距离 / 厚度测量,相当于对动态移动的被测物体(如高速传输的电池极片、晶圆)实现 “无遗漏” 的高频捕捉,测量分辨率与动态响应能力远超行业常规 10-20KHz 级别控制器。更具稀缺性的是,该系列打破了 “多通道即降速” 的传统局限:即使在双通道模式(最高 16KHz)、四通道模式(最高 8KHz)下,仍保持高频响应的稳定性。以四通道 LT-CPF 为例,其每通道 8...
Copyright ©2005 - 2013 无锡泓川科技有限公司

1

犀牛云提供企业云服务
Our Link
X
3

SKYPE 设置

4

阿里旺旺设置

等待加载动态数据...

等待加载动态数据...

5

电话号码管理

  • 0510-88155119
6

二维码管理

等待加载动态数据...

等待加载动态数据...

展开