服务热线: 0510-88155119
13301510675@163.com
Language
项目案例 Case
Case 激光位移

基于光谱共焦技术的叶尖间隙测量方法研究

日期: 2022-01-17
浏览次数: 149

[摘要]基于光谱共焦测量技术搭建了叶尖间隙模拟测试平台,将模拟叶盘安装在气浮主轴上,并应用光谱共焦位移传感器实现了叶尖端面的位移变化量的测量,以表征叶尖间隙的变化,分别模拟了叶尖间隙的单次测量和连续测量过程。实验结果表明,应用光谱共焦位移传感器可以完成发动机转子叶尖间隙的测量,而且能够达到很高的测量效率和精度,可以应用于实际的测量现场。


[关键词]叶尖间隙;非接触;光谱共焦;测量


引言

随着科学技术的长足进步,世界航空工业进入了全新的发展时代。在航空领域中,发动机是推进系统的重要组成部分,为飞机提供持续飞行的拉力或推力。作为飞机的核心部件,发动机对于飞行的安全性、可靠性和经济性等都有着重要影响。当前,航空推进系统日益向着高转速、高效率、高推重比、高可靠性和高涡轮前温度的方向发展,这就对发动机的整体性能提出了更高要求,迫切需要压气机、涡轮等关键部件具备更高的工作效率和更宽的稳定工作范围。而要达到这一目标,就需要着力加强在发动机性能测试方面的研究工作。


一般说来,航空发动机是一种高速旋转的热力机械,能够将燃料的化学能转化为飞机的动能,其各级转子主要由叶片、轮盘和转轴等部分组成。在发动机的运行过程中,压气机和涡轮中的转子以很高的转速做定轴回转运动,其中,各级转子叶片的顶端(叶尖)与机匣内壁之间的径向间距被称为叶尖间隙(Tip Clearance)。叶尖间隙是关系到发动机性能的重要参数之一,间隙过大,会使叶尖泄露增大,导致发动机效率下降,甚至造成发动机喘振;而间隙过小,则有可能导致叶片顶端与机匣内壁之间发生碰撞和摩擦,影响发动机的安全运转,甚至造成发动机损坏,给飞行带来巨大的安全隐患。


因此,采取必要的测试手段对发动机的转子叶尖间隙进行实时有效测量,从而掌握叶尖间隙的变化规律,对于监测发动机的工作状态,进而实现发动机整个运行过程的直接监测和故障诊断,都具有着重要而深远的意义。目前,叶尖间隙的测量方法主要有放电探针测量法、电涡流测量法和电容测量法等。放电探针法适用于导电材质的叶片,而且只能测量旋转叶片的最小叶尖间隙;电涡流法要求叶片材质具有导电性,并且叶尖端面要具有一定的厚度;电容法的频率响应性能较差,而且要求叶片材料必须是铁性材料,应用范围受到一定限制。可见,传统的测量方法存在着诸多局限性,不利于叶尖间隙测量任务的完成。


随着光学、电子学和传感技术等学科的发展与进步,许多光电传感器和测量方法被引入到航空领域中,成功地解决了许多传统测量技术难以或者无法解决的问题。其中,光谱共焦位移传感器是近年来新出现的一种非接触式的高精度光电位移传感器,基于光谱色散原理,能够将位移信息编码到波长信息中,再通过光谱分析技术得出被测位移,系统的分辨率可以达到微纳米量级,响应频率能够达到千赫兹量级。与传统的激光三角反射式位移传感器相比,光谱共焦位移传感器对被测表面的要求更低,允许被测表面有较大的倾斜角度。此外,它还具有精度高、绝对式测量、便于小型化以及对杂散光有较强的鲁棒性等特点,应用前景十分广阔。国内的马小军等提出了基于光谱共焦传感器的金属薄膜厚度测量技术,利用相向对顶安装的传感器组、精密位移平台等实现了对厚度为10~100μm的自支撑金属薄膜的厚度及厚度分布的精确测量。朱万彬等研究了将光谱共焦位移传感器用于测量透明材料平板厚度的可行性,并对其产生的误差进行了详细分析,给出了相应的补偿方法。陈挺等在论述光谱共焦技术原理的基础上,列举了光谱共焦传感器在几何量计量测试中的典型应用,探讨了共焦技术在未来精密测量领域中的进一步应用。


为了实现航空发动机转子叶尖间隙的实时精确测量,本文提出了一种基于光谱共焦技术的叶尖间隙测量方法。搭建了叶尖间隙模拟测试系统,将模拟叶盘零件安装在气浮主轴上,以模拟发动机转子,并将光谱共焦位移传感器固定在刚性支架上,通过支架的调整使传感器处于正确的工作位置。在实验过程中,首先进行单次测试,完成了单个叶片顶端位移变化量的测量;然后进行连续测试,旋转模拟叶盘,完成了该叶盘周向上36个叶片顶端位移变化量的连续测量,从而模拟了在发动机环境中的实际应用效果。实验结果表明,本文选用的光谱共焦位移传感器具有很高的测量精度和响应频率,并且体积小、便于安装,能够满足发动机叶尖间隙的测量需求。


1光谱共焦位移传感器的基本原理

光谱共焦测量技术最早由Molesini等人提出,并成功应用于表面轮廓仪。随后,许多科研人员都对基于光谱共焦原理的测量技术开展了深入研究,并在宏观和微观测量领域衍生出了许多应用实例。目前,国外的工业级光谱共焦位移传感器的测量精度已达到亚微米级,响应频率已达到几千赫兹。

基于光谱共焦技术的叶尖间隙测量方法研究

1光谱共焦位移传感器的工作原理


光谱共焦位移传感器是在共焦显微镜的基础上发展起来的,其原理类似于共焦显微镜,但又有所不同。如图1所示,传感器主要由探头和光谱分析仪两部分组成,二者可通过光纤连接进行信号传输。其中,探头主要由光源和光学透镜组等构成。光源采用宽光谱的复色点光源(呈白光),其出射光束经过前置透镜组后变为多色平行光;然后通过后面的色散透镜组进行光谱分光,形成一系列波长不同的单色光,并将其进行同轴聚焦。由此产生光谱色散,将不同波长的光的焦点分散在光轴上的不同位置,从而在有效量程范围内形成了一系列焦点,每个焦点处的单色光波长都对应一个轴向位置,由此将位移信息转换为波长信息。最后,聚焦于被测物体表面的单色光被反射回来,通过分光镜进入成像透镜组并最终成像在针孔像面上。在此过程中,对应被测表面位置并满足共焦条件的单色光将进入针孔到达光谱分析仪,以进行后续处理;而离焦反射的其它光谱则被针孔遮挡,不能进入光谱分析仪。


进入针孔的单色光到达光谱分析仪后,可以根据光信号确定出此单色光的波长。由于每个波长都对应着一个距离值,因而根据波长就可以推算出相应的位移量,实现位移的精确分辨。光谱分析仪得到的光谱响应曲线如图2所示,横坐标表示波长λ,纵坐标表示对比度I。对于得到的光谱响应曲线,其峰值波长在555nm处,如果被测物体发生微小位移,那么在光谱分析仪上就可以得到另外一条光谱响应曲线,从而获得另一个峰值,这两个峰值之差所代表的位移可以根据色散和波长的关系得出。

基于光谱共焦技术的叶尖间隙测量方法研究

2光谱响应曲线(长波/nm


正是基于这种独特原理,使得光谱共焦位移传感器在位移测量上能够达到很高的分辨率和精度。对于单层和多层的透明物体,除了能准确测量该物体位移之外,还可以对其厚度进行单方向测量。如在测量薄玻璃片时,其前后表面都会反射特定波长的光,在光谱分析仪上能够获得具有两个峰值的光谱曲线,通过这两个峰值就可以推算出玻璃的厚度,这在检测一些很薄的物体时非常有效,如检测玻璃纸的厚度等。如果将光谱共焦位移传感器配置在二维扫描装置上,还可以用于测量物体的表面形貌,而普通的共焦显微镜则需要三维扫描装置才能够实现物体形貌的测量。


2叶尖间隙模拟测试系统

由于压气机的工作温度不是很高,而且光学环境较好,因此特别适合采用光电传感器对叶尖间隙进行测量。在测量过程中,将传感器固定在静子机匣的内壁上,通过传感器可以获得叶尖与传感器之间径向距离d1,再与传感器到机匣内壁之间的距离d2相加,即可得到待测的叶尖间隙d的值,即d=d1+d2,如图3所示。而在实际使用过程中,由于传感器与静子机匣的相对位置固定,因而d2的数值不会发生变化,因此叶尖间隙的变化量可以通过d1来表征。

基于光谱共焦技术的叶尖间隙测量方法研究

3叶尖间隙的计算示意图


为模拟实际的测量现场,本文搭建了叶尖间隙模拟测试系统,如图4所示,主要包括光谱共焦位移传感器、刚性支架、模拟叶盘、气浮主轴、减振底座以及工控机等。首先,将刚性支架和气浮主轴固定在减振底座上,并调整它们之间的相互位置。其次,应用工装夹具将光谱共焦传感器安装在刚性支架上,由于该传感器采用侧向出光方式,其位移测量的方向与自身轴线垂直,因此应通过微调机构调整其空间方位,使传感器的轴线与气浮主轴的轴线平行。然后,将模拟叶盘安装在气浮主轴上,由于发动机转子的转速很高,因而整个气浮主轴系统在使用前需要经过动平衡调节,以使其在高速状态下稳定运转,不发生危险。最后,调整光谱共焦传感器的轴向位置,使其测量光束能够照射到模拟叶盘零件的叶尖上,在叶尖端面上形成测量点,并处于量程范围内。另外,在气浮主轴上还安装有转速同步器,以用于监测主轴的转速和转角位置,并将其作为光谱共焦传感器的同步信号。

基于光谱共焦技术的叶尖间隙测量方法研究

4叶尖间隙模拟测试系统的结构简图


在间隙传感器方面,如图5所示,主要由控制器和探头组成,它们由一根光纤连接,控制器通过光纤向探头提供光源,探头再通过光纤将光信号传输到控制器中进行光谱分析。该测量系统可以对漫反射或镜面反射物体进行高精度的位移测量,还可以对透明物体的厚度进行测量。

基于光谱共焦技术的叶尖间隙测量方法研究

5光谱共焦测量系统


控制器具有优异的信噪比,能够满足高精度测量的需求,测量速率可以达到10kHz,并且具有快速表面补光功能,可以通过控制曝光时间来达到较高的信号稳定性。数据输出可以通过EthernetEtherCATRS422或模拟量输出来实现。探头为光谱共焦式复合探头,采用无磨损透镜系统设计,可以进行径向测量,还能用于有防爆要求的工作领域与真空环境。该探头应用梯度指数透镜与光纤的复合技术,具有更大的数值孔径,因此可有效增大安全距离并加大安装倾斜角度。


3     实验验证

本文选取的光谱共焦位移传感器具有较小的尺寸结构和较高的响应频率,非常适合于航空发动机内狭小而恶劣的工作环境,因此在叶尖间隙测量方面具有很大的应用潜力。为了验证该型传感器在发动机叶尖间隙测量中的应用效果,本文在所搭建的叶尖间隙模拟测试系统上进行了单次和连续的测试实验,完成了传感器应用效果的综合验证。


3.1   单次测试

在本文搭建的模拟测试系统中,没有设计发动机机匣的模拟零件,因此间隙传感器通过刚性支架来模拟在机匣内壁上的安装状态。在叶片划过测量区域的过程中,传感器的输出为叶尖端面与传感器之间位移值,即d1。由于叶尖端面的厚度很小,因而叶尖间隙值可通过单个叶片划过时传感器的输出量的平均值来表征,实验现场如图6所示。

基于光谱共焦技术的叶尖间隙测量方法研究

6单次测量实验现场


通过变频器控制气浮主轴的转速,使其以缓慢速度带动模拟叶盘匀速转动。当叶片顶端进入光谱共焦传感器的测量范围内时,触发传感器开始数据采集;当叶片顶端转出传感器的测量范围时,传感器停止数据采集。在叶片顶端划过传感器测量范围的过程中,传感器采集到的测量数据如图7所示。

基于光谱共焦技术的叶尖间隙测量方法研究

7单个叶尖间隙的测量数据


从图7中可以看出,传感器在被测叶片顶端划过的过程中共采集到580个数据点,被测叶片顶端的位移变化量的范围为0.8311~0.8411mm,变化量的均值为0.8374mm,方差为0.0020mm。实验结果表明,应用光谱共焦位移传感器能够满足单个叶片叶尖间隙的测量,可以达到较高的测量精度。


3.2   连续测试

通过控制变频器调节气浮主轴的转速,使其带动模拟叶盘以1000r/min的速度回转。应用光谱共焦位移传感器进行模拟叶盘周向上的36个叶片的叶片顶端位移变化量的数据采集,并以平均值作为每个叶片最终的叶尖间隙值,动态测试的实验现场如图8所示。

基于光谱共焦技术的叶尖间隙测量方法研究

8连续测量实验现场


计算得到的模拟叶盘周向上的36个叶片的叶尖间隙的实验数据如表1所示,同时为了便于观察叶尖间隙的变化趋势,将这些数据显示在同一坐标系中,如图9所示。可以看出,在本文所搭建的叶尖间隙模拟测试系统中,应用光谱共焦位移传感器可以完成对模拟叶盘全部叶片的叶尖间隙的测量。传感器能够达到很高的测量精度和响应频率。从表1和图9中可以看出,该模拟叶盘上36个叶片的叶尖间隙值的变化范围为0.7137~0.8438mm,并且呈现为近似正弦曲线的形状,这主要是由于在将模拟叶盘安装在气浮主轴上时,存在一定的偏心误差造成的。由此可以看出,发动机转子不同轴会对叶尖间隙造成影响,因而在发动机的装配过程中,应控制转子系统的不同轴误差在允许的范围内。

基于光谱共焦技术的叶尖间隙测量方法研究

9连线测量的实验数据(叶片序号)


136个叶片的叶尖间隙的实验数据

基于光谱共焦技术的叶尖间隙测量方法研究


4     结论

针对航空发动机转子叶尖间隙的测量问题,本文探索了光谱共焦位移传感器在此方面的应用效果。光谱共焦位移传感器基于光谱色散原理,探头体积小、安装方便,并且能够达到很高的测量精度和响应频率,能够满足叶尖间隙的测量需求。本文搭建了叶尖间隙模拟测试系统,应用光谱共焦位移传感器对安装在气浮主轴上的模拟叶盘进行测量,采集叶片顶端位移变化量的数据。在实验验证过程中,本文既通过单次测量完成了单个叶片逐个检测,又通过连续测量完成了旋转状态下的每个叶片叶尖间隙的数据采集,系统具有良好的应用性能。实验结果表明,光谱共焦位移传感器可以用于发动机转子叶尖间隙的测量,从而为我国航空发动机技术的进步提供了一项测试技术支持。



Case / 相关推荐
2025 - 12 - 23
点击次数: 21
摘要激光三角法测量技术凭借非接触、高精度、高效率的优势,已成为现代制造业中复杂曲面检测的核心手段。本文以LTP系列高速高精度激光三角位移传感器为研究对象,系统梳理激光三角法测量原理,深入分析复杂曲面几何特性(倾角、转角)对测量精度的影响机制,依托马晓帆硕士论文《复杂曲面激光三角法测量的精度提高技术研究》中的实验数据与误差修正模型,结合工业部署案例,论证LTP系列传感器在摆线齿轮等典型复杂曲面测量中...
2025 - 12 - 23
点击次数: 10
基于激光位移测量的动静压主轴回转精度测试技术研究——兼论泓川科技 LTP 激光位移传感器在高端装备中的工程应用价值一、引言:高端制造对主轴回转精度测试提出的新要求在高端数控机床、精密磨床以及超精密加工装备中,主轴回转精度被公认为影响零件加工质量的核心指标之一。主轴的回转精度不仅直接决定了工件的圆度、表面粗糙度和形位公差,还与加工系统的动态稳定性、加工一致性和设备可靠性密切相关。随着制造业向高精度、...
2025 - 12 - 19
点击次数: 13
核心摘要:在一段时期内,日本基恩士(KEYENCE)的LK系列特别是LK-G5000系列定义了高速激光位移传感器的行业基准。然而,随着本土传感器技术从模仿走向创新,中国厂商泓川科技(Chuantec)凭借LTP系列高速高精度激光三角位移传感器,以“技术指标在工业甜蜜区看齐”和“1/2价格的绝对优势”,正在锂电、3C、半导体及重工行业迅速确立“头部平替”的地位。本文将从光路架构、运算控制模式、详细核...
2025 - 12 - 19
点击次数: 8
——深度解构FMCW干涉式激光测距仪在长超程精密测量中的算法与数据逻辑Meta Description: 探索如何在不牺牲精度的情况下摆脱长度限制。本文深度技术解析干涉式激光测距仪利用FMCW光子集成技术,打破百米量程与1nm分辨率的物理矛盾。适用于高端半导体、精密机床与大型自动化领域。如果将工业级位置反馈传感器市场画在一张图表上,我们会看到绝大多数产品都挤在两条轴线上:一条是“短量程极高精度”(...
2025 - 12 - 17
点击次数: 8
摘要动力电池极片辊压后的厚度均匀性直接决定电池能量密度、功率密度及安全性能,微米级的厚度偏差可能导致内阻不一致、热失控风险升高。本文基于无锡泓川科技 LTP 系列激光三角位移传感器,设计一套辊压极片在线厚度实时监测系统,通过双探头对射式安装、160kHz 高速采样与温漂补偿算法,实现极片厚度 0.03μm 级重复精度测量。结合动力电池极片制造工艺需求,详细阐述系统测量原理、结构设计、实施步骤,通过...
2025 - 10 - 21
点击次数: 27
序号应用场景(多维度细化)核心需求维度项目难点推荐型号传感器优势(文档依据)选型依据(文档来源)1半导体 - 8 英寸晶圆键合线高度检测(键合线直径 20μm,金属反光)精度 0.05μm;表面金属反光;光斑≤20μm;检测距 8mm键合线微小(20μm),金属反光易导致测量偏移LTPD081. 投受光分离设计,可贴近键合区域无干扰;2. Φ20μm 小光斑精准定位线体;3. 正反射模式抑...
About Us
关于泓川科技
专业从事激光位移传感器,激光焊缝跟踪系统研发及销售的科技公司
中国 · 无锡 · 总部地址:无锡新吴区天山路6号
销售热线:0510-88155119 
图文传真:0510-88152650
Working Time
我们的工作时间
周一至周五:8:00-18:00
周六至周日:9:00-15:00
Shown 企业秀 More
  • 1
    2022 - 12 - 03
    无论是半导体加工过程中还是锂电池制造过程中总是伴随着腐蚀,高温振动等恶劣环境,为了保证生产的高效稳定,无锡泓川科技推出了多种具有不同钢铁不锈钢金属外壳的激光位移传感器,具有高防护性,可以从容的面对各种复杂的环境。在生产过程中总是在恶劣的环境中进行。在当今的环境中,自动化解决方案有时会暴露在非常困难的生产条件下。而且还必须具有可靠的功能,这对传感器技术来说是一个挑战。无锡泓川科技有限公司广泛的测试程序,确保了我们的激光位移传感器能够承受恶劣的环境要求。例如在电子行业中电子产品在我们日常生活中扮演着重要的角色。无论是在电动巴士和汽车的电池中,还是在太阳能发电模块中。自动化生产在电子工业的许多领域都是非常复杂的。真空和高温环境是随处可见的。使用的化学物质具有腐蚀性。这不仅影响生产条件和机器在许多应用领域,传感器解决方案也面临着新的挑战。那么能满足这些挑战的出色的激光位移传感器是什么样的呢?在某些情况他必须能抗抵抗至少70度到100度的高温。或者他必须能承受真空环境并且具有腐蚀性,化学物质的过程中也能抗拒。他应该有特别耐用的材料制成如不锈钢甚至特氟龙材料。无锡泓川科技有限公司提供范围广泛的激光位移传感器和激光位移传感器技术,尤其适用于恶劣环境。
  • 2
    2024 - 01 - 21
    摘要:本文将详细阐述高精度激光测距传感器在锂电池极片厚度测量中的应用情况。我们使用的激光测距传感器能够准确测量涂层厚度在1-10μm之间的极片,而且其精度能达到0.15μm。并且,通过特殊的同步计算过程和测厚技术,我们成功解决了由于极片在制造过程中的起伏变动带来的测量误差。我们的传感器还具有定制化的宽光斑特性,能够应对涂层厚度不均匀的情况,从而得到极片全表面的平均值。1. 导言锂电池在移动设备、电动汽车等领域的应用日益广泛,其中极片的涂层厚度对电池性能影响显著。传统的接触式和机械式测量方法经常无法满足需求,而我们的高精度激光测距传感器正好拥有非接触测量和高精度测量的优势。2. 测量系统与技术我们使用的是一种高精度激光测距传感器,它可以准确测量出微米级别的厚度,并且精度能够达到0.15μm。我们通过使用专业的同步运算程序和射测厚技术,成功地解决了由于极片在制造过程中的起伏变动带来的测量误差问题。此外,该传感器还具有定制化的宽光斑特性,能够应对涂层厚度不均匀的情况,从而得到极片全表面的平均值。3. 实验结果与效果分析多次实验结果证明,我们使用的激光测距传感器在锂电池极片厚度测量中展现出了可靠性和准确性。实验结果显示,该传感器能够稳定地测量出微米级别的涂层厚度。通过专业的同步运算程序和射测厚技术,我们成功地解决了测量误差问题。定制化的宽光斑特性使得传感器可以应对涂层厚度不均匀的情况,从而...
  • 3
    2025 - 04 - 07
    在大型工件检测、锂电池极片测厚、航空航天等高精度长距测量场景中,传感器需兼具大范围扫描能力与微米级精度,同时解决多设备空间协同难题。无锡泓川科技LTPD50激光位移传感器创新采用中空分体式结构设计,以50mm超长参考距离、0.05μm重复精度及进口半价成本,突破进口设备在长距高精度领域的垄断,为工业用户提供“远距精准测量+多设备同轴集成”的国产化标杆方案。核心优势:中空架构+超长量程,重构工业检测边界中空同轴设计,赋能多设备协同φ25mm贯通孔:传感器主体中空,支持工业相机、激光打标头等外设直接穿过,实现测量点与操作中心零偏差同轴,解决传统长距传感器体积大、遮挡视野的痛点。超薄机身:紧凑型设计(74205110mm),适配机器人导轨、自动化产线等空间受限场景,安装灵活性提升60%。长距高精度,性能对标进口50mm参考距离±0.8mm量程:覆盖锂电池极片、金属板材等大尺寸工件的高精度厚度检测需求,减少传感器移动频次。0.05μm重复精度:媲美基恩士LK-G系列,线性误差**成本颠覆:售价仅为进口同类产品的40%~50%,且无需外置控制器,综合成本降低70%。硬核参数:长距测量的性能标杆参数LTPD50(无锡泓川)进口竞品(如基恩士LK-G500)参考距离50mm50mm测量范围±0.8mm±0.5mm重复精度0.05μm(无平均)0.1μm采样频率160...
  • 4
    2023 - 09 - 26
    1 激光光热技术测厚:原理是利用激光照射材料,产生的热量使材料产生变化,再通过光学方式检测这种变化以确定材料的厚度。优点是非接触式、无损伤、准确;缺点也是显而易见的,对于颜色、形状、表面纹理等都有不同程度的影响。2 白光干涉测厚:原理是使用白光干涉仪产生干涉图案,然后通过分析干涉图案得材料厚度。优点是测量精度高、灵敏度高;缺点是设备复杂且成本高昂。3 激光干涉测厚:主要是利用激光波的相干性,测量物体的干涉条纹来反推出物体的厚度。优点是测量精度高、速度快;但激光源的稳定性和调节技术要求比较高。4 光谱共聚焦测厚:该方法是根据材料对不同波长光的反射、折射和吸收特性,同时探测所有波长的光谱,从而计算出材料厚度。优点是测量准确、适用范围广;缺点是设备复杂、操作要求高。5 椭圆偏光法测厚:原理是利用光的偏振特性对材料进行测量,根据计算出材料厚度。优点是接触、无损伤,但适用范围有限。6 红外吸收法测厚:红外吸收法是指通过测定红外光在材料中吸收的程度来推断优点是测量过程简单、直观、精度高;缺点是对材料的红外吸收特性有严格要求。7 X/β射线测厚:主要是利用X射线或者β射线穿透材料时,穿透的射线强度和物体的厚度之间存在一定的关系。优点是精确、可靠;缺点是人体安全需要考虑。8 电容测厚:原理是利用两极板间的电容量与介质厚度成正比,通过测量电容量来测量厚度。优点是设备简单、便宜;缺点是精度较低。9 反...
  • 5
    2024 - 03 - 05
    在测量被透明物体覆盖的目标时,环境照明补偿和透视测量是提高测量准确性的重要手段。这些技术的应用,在智能手机等电子设备的制造过程中,具有至关重要的作用。首先,让我们来探讨一下环境照明补偿的作用。在生产线环境中,照明条件往往并不稳定,这会对测量精度产生严重影响。环境照明补偿技术通过自动调整传感器参数,以补偿外部光照条件的变化,使得测量系统能在不同的照明条件下都能保持稳定的测量性能。这就使得我们在测量被透明物体(如手机屏幕)覆盖的目标时,能够得到更为准确的结果。其次,透视测量技术则能够解决透明物体对测量造成的干扰。由于透明物体会让部分光线穿过,使得传统的测量技术难以准确捕捉目标的位置和形状。而透视测量技术则能够通过特殊的光学设计和算法处理,使得传感器能够“看透”透明物体,直接对其背后的目标进行测量。这样,我们就可以在不接触目标的情况下,对其进行准确的测量。在智能手机等电子设备的制造过程中,这两种技术都有着广泛的应用。例如,在手机屏幕的生产过程中,环境照明补偿技术可以帮助我们确保屏幕在各种光线条件下都能显示清晰。而透视测量技术则可以用于测量手机屏幕下的各种元器件,如触摸屏、摄像头等,确保它们的位置和尺寸都符合设计要求。此外,这两种技术还可以结合使用,以提高测量的精度和效率。例如,我们可以先使用透视测量技术确定目标的位置,然后使用环境照明补偿技术对其进行精确测量。这样,我们不仅可以得到更准确...
  • 6
    2025 - 04 - 12
    在工业自动化领域,激光位移传感器作为精密测量的核心部件,其性能直接影响生产精度与效率。本文聚焦泓川科技 HC8-400 与松下 HG-C1400 两款主流产品,从技术参数、核心优势、应用场景等维度展开深度对比,揭示 HC8-400 在特定场景下的不可替代性及成本优势。一、技术参数对比:细节见真章1. 基础性能指标参数HC8-400HG-C1400差异分析测量范围400±200mm(200-600mm)400±200mm(200-600mm)两者一致,覆盖中长距离测量场景。重复精度200-400mm:150μm 400-600mm:400μm200-400mm:300μm 400-600mm:800μmHC8-400 在全量程精度表现更优,尤其在 400-600mm 远距段,重复精度提升 50%,适合对稳定性要求高的精密测量。线性度200-400mm:±0.2%F.S. 400-600mm:±0.3%F.S.200-400mm:±0.2%F.S. 400-600mm:±0.3%F.S.线性度一致,满足工业级测量标准。温度特性±0.05%F.S/℃±0.03%F.S/℃HG-C1400 理论温漂略优,但 HC8-400 通过独特热稳设计,实际在高温环境(如 80℃)下表现更可靠,弥补参数...
  • 7
    2025 - 01 - 16
    七、声纳传感器应用案例深析7.1 外壳相关检测7.1.1 外壳的外观检测在声纳传感器的实际应用中,对外壳的外观检测是确保产品质量的关键步骤。在进行外壳外观检测时,声纳传感器并非仅依赖传统的图像明暗判断方式,而是借助先进的技术,利用 3D 形状的图像来实现精准的形状变化识别。其工作过程如下:传感器发射特定频率和模式的声波,这些声波以特定的角度和范围向外传播,当遇到外壳表面时,会根据外壳表面的形状、材质以及纹理等特征产生不同的反射模式。反射回来的声波被传感器的接收装置高效捕捉,然后转化为电信号。系统对这些电信号进行复杂的处理和分析,通过独特的算法将其转换为详细的 3D 形状数据。在这个过程中,系统会对 3D 形状数据进行精确的分析和比对,与预先设定的标准外壳模型进行细致的匹配。一旦发现外壳的形状与标准模型存在差异,系统会立即识别出这些变化,从而确定外壳是否存在缺陷或不符合规格的情况。这种利用 3D 形状图像进行外观检测的方式具有诸多显著优势。它极大地提高了检测的准确性和可靠性。传统的基于图像明暗判断的方法,容易受到环境光、外壳表面光泽度以及颜色等多种因素的干扰,导致检测结果出现偏差。而 3D 形状图像检测技术能够直接获取外壳的真实形状信息,不受这些外部因素的影响,从而能够更准确地发现外壳表面的细微瑕疵,如划痕、凹陷、凸起等,以及形状上的偏差。该技术具有较强的稳定性。无论环境光如何变化,...
  • 8
    2025 - 05 - 26
    一、引言在工业自动化领域,激光位移传感器作为精密测量的核心部件,其性能与成本直接影响设备的竞争力。本文聚焦泓川科技 LTM3 系列与米铱 ILD1750 系列,从技术参数、应用场景及成本等维度展开深度对比,揭示 LTM3 系列如何以卓越性能和显著成本优势成为更具性价比的选择。二、核心参数对比指标泓川科技 LTM3 系列米铱 ILD1750 系列测量频率最高 10kHz,适用于高速动态测量场景最高 7.5kHz,满足常规工业速度需求重复性精度0.25μm 起(如 LTM3 - 030),达到亚微米级精度0.1μm 起,精度表现优异线性误差低至 0.06% FSO 起,基于百分比的误差控制防护等级IP67,可抵御粉尘、液体喷射及短时浸水IP65,防护性能良好但略逊于 LTM3外形尺寸605020.4mm,体积小巧,适配狭窄空间未明确标注,但工业通用设计体积较大重量约 150g,轻便易安装未明确标注,推测重于 LTM3 系列输出接口以太网、485 串口、模拟信号(±10V/4 - 20mA),支持工业网络集成模拟量(U/I)、数字量(RS422),传统工业接口配置光源655nm/660nm 红光激光,稳定可靠670nm 红光激光,测量光斑控制优秀工作温度0 - 50°C,适应多数工业环境0 - 50°C,环境适应性相当三、LTM3 系列核心优势解析(一)性能...
Message 最新动态
蓝光光源激光位移传感器:优势、原理与特殊场景解决方案 —— 泓川科技 LTP 系列 405nm 定制... 2025 - 10 - 21 在工业精密测量中,传统红光激光位移传感器常受高反射、半透明、高温红热等特殊场景限制,而蓝光光源(405nm 波长)凭借独特物理特性实现突破。以下通过 “一问一答” 形式,详解蓝光传感器的优势、原理构造,并结合泓川科技 LTP 系列定制方案,看其如何解决特殊环境测量难题。1. 蓝光光源激光位移传感器相比传统红光,核心优势是什么?蓝光传感器的核心优势源于 405nm 波长的物理特性,相比传统 655nm 左右的红光,主要体现在三方面:更高横向分辨率:根据瑞利判据,光学分辨率与波长成反比。蓝光波长仅为红光的 62%(405nm/655nm≈0.62),相同光学系统下横向分辨率可提升约 38%,能形成更小光斑(如泓川 LTP025 蓝光版光斑最小达 Φ18μm),适配芯片针脚、晶圆等微米级结构测量。更强信号稳定性:蓝光单光子能量达 3.06eV,远高于红光的 2.05eV。在低反射率材料(如橡胶、有机涂层)表面,能激发出更强散射信号;同时穿透性更低,仅在材料表层作用,避免内部折射干扰,适合表面精准测量。更优抗干扰能力:蓝光波段与红热辐射(500nm 以上)、户外强光(可见光为主)重叠度低,搭配专用滤光片后,可有效隔绝高温物体自发光、阳光直射等干扰,这是红光难以实现的。2. 蓝光激光位移传感器的原理构造是怎样的?为何能实现高精度测量?蓝光传感器的高精度的核心是 “光学设计 + 信号处理 + ...
泓川科技国产系列光谱共焦/激光位移传感器/白光干涉测厚产品性能一览 2025 - 09 - 05 高精度测量传感器全系列:赋能精密制造,适配多元检测需求聚焦半导体、光学膜、机械加工等领域的精密检测核心痛点,我们推出全系列高性能测量传感器,覆盖 “测厚、对焦、位移” 三大核心应用场景,以 “高精准、高速度、高适配” 为设计核心,为您的工艺控制与质量检测提供可靠技术支撑。以下为各产品系列的详细介绍:1.LTS-IR 红外干涉测厚传感器:半导体材料测厚专属核心用途:专为硅、碳化硅、砷化镓等半导体材料设计,精准实现晶圆等器件的厚度测量。性能优点:精度卓越:±0.1μm 线性精度 + 2nm 重复精度,确保测量数据稳定可靠;量程适配:覆盖 10μm2mm 测厚范围,满足多数半导体材料检测需求;高效高速:40kHz 采样速度,快速捕捉厚度数据,适配在线检测节奏;灵活适配:宽范围工作距离设计,可灵活匹配不同规格的检测设备与场景。2. 分体式对焦传感器:半导体 / 面板缺陷检测的 “高速对焦助手”核心用途:针对半导体、面板领域的高精度缺陷检测场景,提供高速实时对焦支持,尤其适配显微对焦类检测设备。性能优点:对焦速度快:50kHz 高速对焦,同步匹配缺陷检测的实时性需求;对焦精度高:0.5μm 对焦精度,保障缺陷成像清晰、检测无偏差;设计灵活:分体式结构,可根据检测设备的安装空间与布局灵活调整,降低适配难度。3. LT-R 反射膜厚仪:极薄膜厚检测的 “精密管家”核心用途:专注于极薄膜...
多方面研究泓川科技LTP系列大量程全国产激光位移传感器 2025 - 09 - 02 泓川科技激光位移传感器产品技术报告尊敬的客户: 感谢您对泓川科技激光位移传感器产品的关注与信任。为帮助您全面了解我司产品,现将激光位移传感器相关技术信息从参数指标、设计原理、结构设计等八大核心维度进行详细说明,为您的选型、使用及维护提供专业参考。一、参数指标我司激光位移传感器涵盖 LTP400 系列与 LTP450 系列,各型号核心参数经纳米级高精度激光干涉仪标定验证,确保数据精准可靠,具体参数如下表所示:表 1:LTP400EA参数表参数类别具体参数LTP400EA备注基础测量参数测量中心距离400mm以量程中心位置计算(*1)量程200mm-重复精度(静态)3μm测量标准白色陶瓷样件,50kHz 无平均,取 65536 组数据均方根偏差(*2)线性度±0.03%F.S.(F.S.=200mm)采用纳米级激光干涉仪标定(*3)光源与光斑光源类型-激光功率可定制,部分型号提供 405nm 蓝光版本(*4)光束直径聚焦点光斑 Φ300μm中心位置直径,两端相对变大(*5)电气参数电源电压DC9-36V-功耗约 2.5W-短路保护反向连接保护、过电流保护-输出与通信模拟量输出(选配)电压:0-5V/010V/-1010V;电流:420mA探头可独立提供电压、电流与 RS485 输出(*6)通讯接口RS485 串口、TCP/IP 网口可选配模拟电压 / 电流输出模块(*7)响应...
Copyright ©2005 - 2013 无锡泓川科技有限公司

1

犀牛云提供企业云服务
Our Link
X
3

SKYPE 设置

4

阿里旺旺设置

等待加载动态数据...

等待加载动态数据...

5

电话号码管理

  • 0510-88155119
6

二维码管理

等待加载动态数据...

等待加载动态数据...

展开