服务热线: 0510-88155119
13301510675@163.com
Language
项目案例 Case
Case 激光位移

基于光谱共焦技术的叶尖间隙测量方法研究

日期: 2022-01-17
浏览次数: 151

[摘要]基于光谱共焦测量技术搭建了叶尖间隙模拟测试平台,将模拟叶盘安装在气浮主轴上,并应用光谱共焦位移传感器实现了叶尖端面的位移变化量的测量,以表征叶尖间隙的变化,分别模拟了叶尖间隙的单次测量和连续测量过程。实验结果表明,应用光谱共焦位移传感器可以完成发动机转子叶尖间隙的测量,而且能够达到很高的测量效率和精度,可以应用于实际的测量现场。


[关键词]叶尖间隙;非接触;光谱共焦;测量


引言

随着科学技术的长足进步,世界航空工业进入了全新的发展时代。在航空领域中,发动机是推进系统的重要组成部分,为飞机提供持续飞行的拉力或推力。作为飞机的核心部件,发动机对于飞行的安全性、可靠性和经济性等都有着重要影响。当前,航空推进系统日益向着高转速、高效率、高推重比、高可靠性和高涡轮前温度的方向发展,这就对发动机的整体性能提出了更高要求,迫切需要压气机、涡轮等关键部件具备更高的工作效率和更宽的稳定工作范围。而要达到这一目标,就需要着力加强在发动机性能测试方面的研究工作。


一般说来,航空发动机是一种高速旋转的热力机械,能够将燃料的化学能转化为飞机的动能,其各级转子主要由叶片、轮盘和转轴等部分组成。在发动机的运行过程中,压气机和涡轮中的转子以很高的转速做定轴回转运动,其中,各级转子叶片的顶端(叶尖)与机匣内壁之间的径向间距被称为叶尖间隙(Tip Clearance)。叶尖间隙是关系到发动机性能的重要参数之一,间隙过大,会使叶尖泄露增大,导致发动机效率下降,甚至造成发动机喘振;而间隙过小,则有可能导致叶片顶端与机匣内壁之间发生碰撞和摩擦,影响发动机的安全运转,甚至造成发动机损坏,给飞行带来巨大的安全隐患。


因此,采取必要的测试手段对发动机的转子叶尖间隙进行实时有效测量,从而掌握叶尖间隙的变化规律,对于监测发动机的工作状态,进而实现发动机整个运行过程的直接监测和故障诊断,都具有着重要而深远的意义。目前,叶尖间隙的测量方法主要有放电探针测量法、电涡流测量法和电容测量法等。放电探针法适用于导电材质的叶片,而且只能测量旋转叶片的最小叶尖间隙;电涡流法要求叶片材质具有导电性,并且叶尖端面要具有一定的厚度;电容法的频率响应性能较差,而且要求叶片材料必须是铁性材料,应用范围受到一定限制。可见,传统的测量方法存在着诸多局限性,不利于叶尖间隙测量任务的完成。


随着光学、电子学和传感技术等学科的发展与进步,许多光电传感器和测量方法被引入到航空领域中,成功地解决了许多传统测量技术难以或者无法解决的问题。其中,光谱共焦位移传感器是近年来新出现的一种非接触式的高精度光电位移传感器,基于光谱色散原理,能够将位移信息编码到波长信息中,再通过光谱分析技术得出被测位移,系统的分辨率可以达到微纳米量级,响应频率能够达到千赫兹量级。与传统的激光三角反射式位移传感器相比,光谱共焦位移传感器对被测表面的要求更低,允许被测表面有较大的倾斜角度。此外,它还具有精度高、绝对式测量、便于小型化以及对杂散光有较强的鲁棒性等特点,应用前景十分广阔。国内的马小军等提出了基于光谱共焦传感器的金属薄膜厚度测量技术,利用相向对顶安装的传感器组、精密位移平台等实现了对厚度为10~100μm的自支撑金属薄膜的厚度及厚度分布的精确测量。朱万彬等研究了将光谱共焦位移传感器用于测量透明材料平板厚度的可行性,并对其产生的误差进行了详细分析,给出了相应的补偿方法。陈挺等在论述光谱共焦技术原理的基础上,列举了光谱共焦传感器在几何量计量测试中的典型应用,探讨了共焦技术在未来精密测量领域中的进一步应用。


为了实现航空发动机转子叶尖间隙的实时精确测量,本文提出了一种基于光谱共焦技术的叶尖间隙测量方法。搭建了叶尖间隙模拟测试系统,将模拟叶盘零件安装在气浮主轴上,以模拟发动机转子,并将光谱共焦位移传感器固定在刚性支架上,通过支架的调整使传感器处于正确的工作位置。在实验过程中,首先进行单次测试,完成了单个叶片顶端位移变化量的测量;然后进行连续测试,旋转模拟叶盘,完成了该叶盘周向上36个叶片顶端位移变化量的连续测量,从而模拟了在发动机环境中的实际应用效果。实验结果表明,本文选用的光谱共焦位移传感器具有很高的测量精度和响应频率,并且体积小、便于安装,能够满足发动机叶尖间隙的测量需求。


1光谱共焦位移传感器的基本原理

光谱共焦测量技术最早由Molesini等人提出,并成功应用于表面轮廓仪。随后,许多科研人员都对基于光谱共焦原理的测量技术开展了深入研究,并在宏观和微观测量领域衍生出了许多应用实例。目前,国外的工业级光谱共焦位移传感器的测量精度已达到亚微米级,响应频率已达到几千赫兹。

基于光谱共焦技术的叶尖间隙测量方法研究

1光谱共焦位移传感器的工作原理


光谱共焦位移传感器是在共焦显微镜的基础上发展起来的,其原理类似于共焦显微镜,但又有所不同。如图1所示,传感器主要由探头和光谱分析仪两部分组成,二者可通过光纤连接进行信号传输。其中,探头主要由光源和光学透镜组等构成。光源采用宽光谱的复色点光源(呈白光),其出射光束经过前置透镜组后变为多色平行光;然后通过后面的色散透镜组进行光谱分光,形成一系列波长不同的单色光,并将其进行同轴聚焦。由此产生光谱色散,将不同波长的光的焦点分散在光轴上的不同位置,从而在有效量程范围内形成了一系列焦点,每个焦点处的单色光波长都对应一个轴向位置,由此将位移信息转换为波长信息。最后,聚焦于被测物体表面的单色光被反射回来,通过分光镜进入成像透镜组并最终成像在针孔像面上。在此过程中,对应被测表面位置并满足共焦条件的单色光将进入针孔到达光谱分析仪,以进行后续处理;而离焦反射的其它光谱则被针孔遮挡,不能进入光谱分析仪。


进入针孔的单色光到达光谱分析仪后,可以根据光信号确定出此单色光的波长。由于每个波长都对应着一个距离值,因而根据波长就可以推算出相应的位移量,实现位移的精确分辨。光谱分析仪得到的光谱响应曲线如图2所示,横坐标表示波长λ,纵坐标表示对比度I。对于得到的光谱响应曲线,其峰值波长在555nm处,如果被测物体发生微小位移,那么在光谱分析仪上就可以得到另外一条光谱响应曲线,从而获得另一个峰值,这两个峰值之差所代表的位移可以根据色散和波长的关系得出。

基于光谱共焦技术的叶尖间隙测量方法研究

2光谱响应曲线(长波/nm


正是基于这种独特原理,使得光谱共焦位移传感器在位移测量上能够达到很高的分辨率和精度。对于单层和多层的透明物体,除了能准确测量该物体位移之外,还可以对其厚度进行单方向测量。如在测量薄玻璃片时,其前后表面都会反射特定波长的光,在光谱分析仪上能够获得具有两个峰值的光谱曲线,通过这两个峰值就可以推算出玻璃的厚度,这在检测一些很薄的物体时非常有效,如检测玻璃纸的厚度等。如果将光谱共焦位移传感器配置在二维扫描装置上,还可以用于测量物体的表面形貌,而普通的共焦显微镜则需要三维扫描装置才能够实现物体形貌的测量。


2叶尖间隙模拟测试系统

由于压气机的工作温度不是很高,而且光学环境较好,因此特别适合采用光电传感器对叶尖间隙进行测量。在测量过程中,将传感器固定在静子机匣的内壁上,通过传感器可以获得叶尖与传感器之间径向距离d1,再与传感器到机匣内壁之间的距离d2相加,即可得到待测的叶尖间隙d的值,即d=d1+d2,如图3所示。而在实际使用过程中,由于传感器与静子机匣的相对位置固定,因而d2的数值不会发生变化,因此叶尖间隙的变化量可以通过d1来表征。

基于光谱共焦技术的叶尖间隙测量方法研究

3叶尖间隙的计算示意图


为模拟实际的测量现场,本文搭建了叶尖间隙模拟测试系统,如图4所示,主要包括光谱共焦位移传感器、刚性支架、模拟叶盘、气浮主轴、减振底座以及工控机等。首先,将刚性支架和气浮主轴固定在减振底座上,并调整它们之间的相互位置。其次,应用工装夹具将光谱共焦传感器安装在刚性支架上,由于该传感器采用侧向出光方式,其位移测量的方向与自身轴线垂直,因此应通过微调机构调整其空间方位,使传感器的轴线与气浮主轴的轴线平行。然后,将模拟叶盘安装在气浮主轴上,由于发动机转子的转速很高,因而整个气浮主轴系统在使用前需要经过动平衡调节,以使其在高速状态下稳定运转,不发生危险。最后,调整光谱共焦传感器的轴向位置,使其测量光束能够照射到模拟叶盘零件的叶尖上,在叶尖端面上形成测量点,并处于量程范围内。另外,在气浮主轴上还安装有转速同步器,以用于监测主轴的转速和转角位置,并将其作为光谱共焦传感器的同步信号。

基于光谱共焦技术的叶尖间隙测量方法研究

4叶尖间隙模拟测试系统的结构简图


在间隙传感器方面,如图5所示,主要由控制器和探头组成,它们由一根光纤连接,控制器通过光纤向探头提供光源,探头再通过光纤将光信号传输到控制器中进行光谱分析。该测量系统可以对漫反射或镜面反射物体进行高精度的位移测量,还可以对透明物体的厚度进行测量。

基于光谱共焦技术的叶尖间隙测量方法研究

5光谱共焦测量系统


控制器具有优异的信噪比,能够满足高精度测量的需求,测量速率可以达到10kHz,并且具有快速表面补光功能,可以通过控制曝光时间来达到较高的信号稳定性。数据输出可以通过EthernetEtherCATRS422或模拟量输出来实现。探头为光谱共焦式复合探头,采用无磨损透镜系统设计,可以进行径向测量,还能用于有防爆要求的工作领域与真空环境。该探头应用梯度指数透镜与光纤的复合技术,具有更大的数值孔径,因此可有效增大安全距离并加大安装倾斜角度。


3     实验验证

本文选取的光谱共焦位移传感器具有较小的尺寸结构和较高的响应频率,非常适合于航空发动机内狭小而恶劣的工作环境,因此在叶尖间隙测量方面具有很大的应用潜力。为了验证该型传感器在发动机叶尖间隙测量中的应用效果,本文在所搭建的叶尖间隙模拟测试系统上进行了单次和连续的测试实验,完成了传感器应用效果的综合验证。


3.1   单次测试

在本文搭建的模拟测试系统中,没有设计发动机机匣的模拟零件,因此间隙传感器通过刚性支架来模拟在机匣内壁上的安装状态。在叶片划过测量区域的过程中,传感器的输出为叶尖端面与传感器之间位移值,即d1。由于叶尖端面的厚度很小,因而叶尖间隙值可通过单个叶片划过时传感器的输出量的平均值来表征,实验现场如图6所示。

基于光谱共焦技术的叶尖间隙测量方法研究

6单次测量实验现场


通过变频器控制气浮主轴的转速,使其以缓慢速度带动模拟叶盘匀速转动。当叶片顶端进入光谱共焦传感器的测量范围内时,触发传感器开始数据采集;当叶片顶端转出传感器的测量范围时,传感器停止数据采集。在叶片顶端划过传感器测量范围的过程中,传感器采集到的测量数据如图7所示。

基于光谱共焦技术的叶尖间隙测量方法研究

7单个叶尖间隙的测量数据


从图7中可以看出,传感器在被测叶片顶端划过的过程中共采集到580个数据点,被测叶片顶端的位移变化量的范围为0.8311~0.8411mm,变化量的均值为0.8374mm,方差为0.0020mm。实验结果表明,应用光谱共焦位移传感器能够满足单个叶片叶尖间隙的测量,可以达到较高的测量精度。


3.2   连续测试

通过控制变频器调节气浮主轴的转速,使其带动模拟叶盘以1000r/min的速度回转。应用光谱共焦位移传感器进行模拟叶盘周向上的36个叶片的叶片顶端位移变化量的数据采集,并以平均值作为每个叶片最终的叶尖间隙值,动态测试的实验现场如图8所示。

基于光谱共焦技术的叶尖间隙测量方法研究

8连续测量实验现场


计算得到的模拟叶盘周向上的36个叶片的叶尖间隙的实验数据如表1所示,同时为了便于观察叶尖间隙的变化趋势,将这些数据显示在同一坐标系中,如图9所示。可以看出,在本文所搭建的叶尖间隙模拟测试系统中,应用光谱共焦位移传感器可以完成对模拟叶盘全部叶片的叶尖间隙的测量。传感器能够达到很高的测量精度和响应频率。从表1和图9中可以看出,该模拟叶盘上36个叶片的叶尖间隙值的变化范围为0.7137~0.8438mm,并且呈现为近似正弦曲线的形状,这主要是由于在将模拟叶盘安装在气浮主轴上时,存在一定的偏心误差造成的。由此可以看出,发动机转子不同轴会对叶尖间隙造成影响,因而在发动机的装配过程中,应控制转子系统的不同轴误差在允许的范围内。

基于光谱共焦技术的叶尖间隙测量方法研究

9连线测量的实验数据(叶片序号)


136个叶片的叶尖间隙的实验数据

基于光谱共焦技术的叶尖间隙测量方法研究


4     结论

针对航空发动机转子叶尖间隙的测量问题,本文探索了光谱共焦位移传感器在此方面的应用效果。光谱共焦位移传感器基于光谱色散原理,探头体积小、安装方便,并且能够达到很高的测量精度和响应频率,能够满足叶尖间隙的测量需求。本文搭建了叶尖间隙模拟测试系统,应用光谱共焦位移传感器对安装在气浮主轴上的模拟叶盘进行测量,采集叶片顶端位移变化量的数据。在实验验证过程中,本文既通过单次测量完成了单个叶片逐个检测,又通过连续测量完成了旋转状态下的每个叶片叶尖间隙的数据采集,系统具有良好的应用性能。实验结果表明,光谱共焦位移传感器可以用于发动机转子叶尖间隙的测量,从而为我国航空发动机技术的进步提供了一项测试技术支持。



Case / 相关推荐
2026 - 01 - 23
点击次数: 3
0. 概述 (Abstract)随着高端制造业中3C玻璃面板、晶圆表面涂胶、透明薄膜以及光学透镜的广泛应用,透明材质的非接触式在线测量成为了视觉检测领域的“深水区”。传统的激光检测往往因透明物体的透射特性(光线穿透)和内部多重反射(“鬼影”杂波),导致测量数值漂移、精度下降。针对透明物体平面度及倾斜度的高精度量测,** 本方案采用“收光模组改良+半透明算法消除机制”的双重技术架构**,依托 高速高...
2025 - 12 - 23
点击次数: 23
摘要激光三角法测量技术凭借非接触、高精度、高效率的优势,已成为现代制造业中复杂曲面检测的核心手段。本文以LTP系列高速高精度激光三角位移传感器为研究对象,系统梳理激光三角法测量原理,深入分析复杂曲面几何特性(倾角、转角)对测量精度的影响机制,依托马晓帆硕士论文《复杂曲面激光三角法测量的精度提高技术研究》中的实验数据与误差修正模型,结合工业部署案例,论证LTP系列传感器在摆线齿轮等典型复杂曲面测量中...
2025 - 12 - 23
点击次数: 15
基于激光位移测量的动静压主轴回转精度测试技术研究——兼论泓川科技 LTP 激光位移传感器在高端装备中的工程应用价值一、引言:高端制造对主轴回转精度测试提出的新要求在高端数控机床、精密磨床以及超精密加工装备中,主轴回转精度被公认为影响零件加工质量的核心指标之一。主轴的回转精度不仅直接决定了工件的圆度、表面粗糙度和形位公差,还与加工系统的动态稳定性、加工一致性和设备可靠性密切相关。随着制造业向高精度、...
2025 - 12 - 19
点击次数: 17
核心摘要:在一段时期内,日本基恩士(KEYENCE)的LK系列特别是LK-G5000系列定义了高速激光位移传感器的行业基准。然而,随着本土传感器技术从模仿走向创新,中国厂商泓川科技(Chuantec)凭借LTP系列高速高精度激光三角位移传感器,以“技术指标在工业甜蜜区看齐”和“1/2价格的绝对优势”,正在锂电、3C、半导体及重工行业迅速确立“头部平替”的地位。本文将从光路架构、运算控制模式、详细核...
2025 - 12 - 19
点击次数: 13
——深度解构FMCW干涉式激光测距仪在长超程精密测量中的算法与数据逻辑Meta Description: 探索如何在不牺牲精度的情况下摆脱长度限制。本文深度技术解析干涉式激光测距仪利用FMCW光子集成技术,打破百米量程与1nm分辨率的物理矛盾。适用于高端半导体、精密机床与大型自动化领域。如果将工业级位置反馈传感器市场画在一张图表上,我们会看到绝大多数产品都挤在两条轴线上:一条是“短量程极高精度”(...
2025 - 12 - 17
点击次数: 11
摘要动力电池极片辊压后的厚度均匀性直接决定电池能量密度、功率密度及安全性能,微米级的厚度偏差可能导致内阻不一致、热失控风险升高。本文基于无锡泓川科技 LTP 系列激光三角位移传感器,设计一套辊压极片在线厚度实时监测系统,通过双探头对射式安装、160kHz 高速采样与温漂补偿算法,实现极片厚度 0.03μm 级重复精度测量。结合动力电池极片制造工艺需求,详细阐述系统测量原理、结构设计、实施步骤,通过...
About Us
关于泓川科技
专业从事激光位移传感器,激光焊缝跟踪系统研发及销售的科技公司
中国 · 无锡 · 总部地址:无锡新吴区天山路6号
销售热线:0510-88155119 
图文传真:0510-88152650
Working Time
我们的工作时间
周一至周五:8:00-18:00
周六至周日:9:00-15:00
Shown 企业秀 More
  • 1
    2023 - 02 - 21
    激光位移传感器是一种用于测量距离和轮廓表面的自动光学传感技术。它的工作原理是发射激光束,激光束被目标表面或区域反射,然后光束返回所需的时间被转换为距离测量。它的主要应用是尺寸计量,可以精确测量长度、距离和粗糙度轮廓。激光位移传感器也用于工业自动化、机器人和机器视觉应用。什么是激光位移传感器?       激光位移传感器是一种用于测量距离和轮廓表面的自动光学传感技术。该系统通过从激光源发射激光来工作。然后,该激光束从目标表面或区域反射回来。然后,光束覆盖距离和返回所花费的时间被转换为距离测量或轮廓。激光位移传感器通常由三个主要部分组成:*激光源*光学探测器*处理器      激光源通常是激光二极管,其波长适合于目标区域及其光学特性。激光二极管产生激光束,该激光束被引导到目标表面或区域上。然后光束被反射回检测器。根据应用,可以用一定范围的脉冲频率调制光束。光束由光学检测器检测。检测器将光转换成电信号,然后将其发送到处理器。然后处理器处理信息并将测量数据发送到数字显示器或计算机。然后,数据可用于进一步分析或控制自动化过程。历史:       激光位移传感器最初是在20世纪70年代开发的,是麻省理工学院研究项目的一部分。这项研究由美国陆军研究实验室和美国空军赖特实验室赞助。该技术最...
  • 2
    2025 - 01 - 09
    一、光谱共焦传感技术解密光谱共焦技术的起源,要追溯到科学家们对传统成像精度局限的深刻洞察。在 20 世纪 70 年代,传统成像在精密测量领域遭遇瓶颈,为突破这一困境,基于干涉原理的光谱共焦方法应运而生,开启了高精度测量的新篇章。进入 80 年代,科研人员不断改进仪器设计,引入特殊的分光元件,如同给传感器装上了 “精密滤网”,精准分辨不同波长光信号;搭配高灵敏度探测器,将光信号转化为精确数字信息。同时,计算机技术强势助力,实现数据快速处理、动态输出测量结果,让光谱共焦技术稳步走向成熟。90 年代,纳米技术、微电子学蓬勃发展,对测量精度要求愈发苛刻。科研团队迎难而上,开发新算法、模型优化测量,减少误差;增设温度控制、机械振动抑制功能,宛如为传感器打造 “稳定护盾”,确保在复杂实验环境下结果稳定可靠,至此,光谱共焦技术成为精密测量领域的关键力量。添加图片注释,不超过 140 字(可选)二、HCY 光谱共焦传感器工作原理(一)核心原理阐释HCY 光谱共焦传感器的核心在于巧妙运用光学色散现象。当内部的白光点光源发出光线后,光线会迅速射向精密的透镜组。在这里,白光如同被解开了神秘面纱,依据不同波长被精准地色散开来,形成一道绚丽的 “彩虹光带”。这些不同波长的光,各自沿着独特的路径前行,最终聚焦在不同的高度之上,构建起一个精密的测量范围 “标尺”。当光线抵达物体表面,会发生反射,其中特定波长的光...
  • 3
    2025 - 09 - 02
    泓川科技激光位移传感器产品技术报告尊敬的客户: 感谢您对泓川科技激光位移传感器产品的关注与信任。为帮助您全面了解我司产品,现将激光位移传感器相关技术信息从参数指标、设计原理、结构设计等八大核心维度进行详细说明,为您的选型、使用及维护提供专业参考。一、参数指标我司激光位移传感器涵盖 LTP400 系列与 LTP450 系列,各型号核心参数经纳米级高精度激光干涉仪标定验证,确保数据精准可靠,具体参数如下表所示:表 1:LTP400EA参数表参数类别具体参数LTP400EA备注基础测量参数测量中心距离400mm以量程中心位置计算(*1)量程200mm-重复精度(静态)3μm测量标准白色陶瓷样件,50kHz 无平均,取 65536 组数据均方根偏差(*2)线性度±0.03%F.S.(F.S.=200mm)采用纳米级激光干涉仪标定(*3)光源与光斑光源类型-激光功率可定制,部分型号提供 405nm 蓝光版本(*4)光束直径聚焦点光斑 Φ300μm中心位置直径,两端相对变大(*5)电气参数电源电压DC9-36V-功耗约 2.5W-短路保护反向连接保护、过电流保护-输出与通信模拟量输出(选配)电压:0-5V/010V/-1010V;电流:420mA探头可独立提供电压、电流与 RS485 输出(*6)通讯接口RS485 串口、TCP/IP 网口可选配模拟电压 / 电流输出模块(*7)响应...
  • 4
    2023 - 10 - 20
    面对反射率不同的目标物时,激光位移传感器需要调整以下方面以确保测量的稳定性:根据目标物的反射率变化,调整接收光量。反射率较高的目标物可能导致光量饱和,而反射率较低的目标物可能无法获得足够的接收光量。因此,需要根据目标物的反射特性,适时调整激光位移传感器的接收光量,以使其处于最佳工作状态。使用光量控制范围调整功能。这种功能可以预先决定接收光量的上限和下限,缩短获取最佳光量的时间,从而可以更快地调整光量。针对反射率较高的目标物,需要减小激光功率和缩短发射时间,以避免光量饱和。而对于反射率较低的目标物,则应增大激光功率和延长发射时间,以确保获得足够的接收光量。在调整过程中,需要注意测量反射率急剧变化位置的稳定程度,以及使用光量调整功能以外功能时的稳定程度。如果无法稳定测量反射率不同的目标物,可能是由于目标物的反射光因颜色、反光、表面状况(粗度、倾斜度)等因素而发生变化,导致感光元件(接收光波形)上形成的光点状态也会随之变化。这种情况下,需要通过反复试验和调整,找到最佳的激光位移传感器工作参数。总结来说,激光位移传感器需要根据目标物的反射率变化,调整接收光量、激光发射时间、激光功率和增益等参数,以确保测量的稳定性和准确性。同时,需要注意目标物的反射特性及其变化情况,以便及时调整激光位移传感器的参数。
  • 5
    2025 - 01 - 19
    一、引言1.1 研究背景与意义在科技飞速发展的当下,半导体和电子部件制造行业正经历着深刻的变革。随着电子产品的功能不断增强,尺寸却日益缩小,对半导体和电子部件的性能、精度以及可靠性提出了极为严苛的要求。从智能手机、平板电脑到高性能计算机、物联网设备,无一不依赖于先进的半导体和电子部件技术。而这些部件的质量与性能,在很大程度上取决于制造过程中的测量、检测和品质管理环节。光学测量技术作为一种先进的测量手段,凭借其高精度、非接触、快速测量等诸多优势,在半导体和电子部件制造领域中发挥着愈发关键的作用。它能够精确测量微小尺寸、复杂形状以及表面形貌等参数,为制造过程提供了不可或缺的数据支持。举例来说,在半导体芯片制造中,芯片的线宽、间距等关键尺寸的精度要求已经达到了纳米级别,光学测量技术能够准确测量这些尺寸,确保芯片的性能符合设计标准。再如,在电子部件的封装过程中,光学测量可以检测焊点的形状、尺寸以及位置,保障封装的可靠性。光学测量技术的应用,不仅能够有效提高产品的质量和性能,还能显著降低生产成本,增强企业在市场中的竞争力。通过实时监测和精确控制制造过程,能够及时发现并纠正生产中的偏差,减少废品率和返工率,提高生产效率。因此,深入研究光学测量在半导体和电子部件制造中的典型应用,对于推动行业的发展具有重要的现实意义。1.2 研究目的与方法本报告旨在深入剖析光学测量在半导体和电子部件制造测量、检测...
  • 6
    2025 - 01 - 14
    一、引言1.1 激光位移传感器概述激光位移传感器,作为工业测量领域的关键设备,凭借其卓越的非接触测量特性,正日益成为众多行业实现高精度测量与自动化控制的核心技术。它主要利用激光的反射特性,通过精确测量反射光的相关参数,实现对目标物体的位移、距离、厚度等几何量的精准测定。这一技术的诞生,为现代制造业、科研实验以及诸多工业生产过程,提供了高效、可靠且精准的测量手段。其工作原理基于激光三角测量法和激光回波分析法。激光三角测量法常用于高精度、短距离测量场景。在该方法中,激光位移传感器发射出一束激光,射向被测物体表面,物体表面反射的激光经由特定的光学系统,被传感器内部的探测器接收。根据激光发射点、反射点以及探测器接收点之间所构成的三角几何关系,通过精密的计算,能够精确得出物体与传感器之间的距离 。激光回波分析法更适用于远距离测量,传感器以每秒发射大量激光脉冲的方式,向被测物体发送信号,随后依据激光脉冲从发射到被接收的时间差,精确计算出物体与传感器之间的距离。在工业测量领域,激光位移传感器的重要地位不容小觑。在汽车制造行业,它被广泛应用于车身零部件的尺寸检测、装配精度控制等环节。通过对汽车零部件的精确测量,能够确保各个部件的尺寸符合设计要求,从而提升整车的装配质量和性能。在电子制造领域,激光位移传感器可用于检测芯片的尺寸、平整度以及电子元件的贴装精度等。在芯片制造过程中,其微小的尺寸和极高的精...
  • 7
    2025 - 01 - 29
    五、光谱共焦传感器测量厚度的局限性及解决措施5.1 局限性分析5.1.1 测量范围限制光谱共焦传感器的测量范围相对有限,一般在几毫米到几十毫米之间。这是由于其测量原理基于色散物镜对不同波长光的聚焦特性,测量范围主要取决于色散物镜的轴向色差范围以及光谱仪的工作波段。在实际应用中,对于一些大尺寸物体的厚度测量,如厚壁管材、大型板材等,可能需要多次测量拼接数据,增加了测量的复杂性和误差来源。例如,在测量厚度超过传感器量程的大型金属板材时,需要移动传感器进行多次测量,然后将测量数据进行拼接处理,但在拼接过程中可能会因测量位置的定位误差、测量角度的变化等因素导致测量结果的不准确。5.1.2 对被测物体表面状态的要求虽然光谱共焦传感器对多种材料具有良好的适用性,但被测物体表面的粗糙度、平整度等因素仍会对测量精度产生一定影响。当被测物体表面粗糙度较大时,表面的微观起伏会导致反射光的散射和漫反射增强,使得反射光的强度分布不均匀,从而影响光谱仪对反射光波长的准确检测,导致测量误差增大。对于表面平整度较差的物体,如存在明显翘曲或弯曲的板材,会使传感器与物体表面的距离在不同位置发生变化,超出传感器的测量精度范围,进而影响厚度测量的准确性。例如,在测量表面粗糙的橡胶板材时,由于橡胶表面的微观纹理和不规则性,测量精度会明显下降,难以达到对光滑表面测量时的高精度水平。5.1.3 成本相对较高光谱共焦传感器作为...
  • 8
    2023 - 02 - 26
    今天我为大家展示安全激光扫描仪产品,安全激光扫描仪适用于各种应用技术领域,      在设备开发期间我们给予了特别关注,以确保它能够在广泛应用中发挥最佳功能,尤其重视大型工作区域的防护,例如机床正面区域或机器人工作区域。      其他应用包括移动车辆的防护,例如侧向滑动装置或移动运输设备,无人驾驶运输系统。甚至垂直安装激光扫描仪的出入口保护系统。尽管我们在安全激光扫描与领域,已经有数10年的经验了,但该应用领域仍然面对许多挑战。不过我们的激光安全扫描仪具有独一无二的功能属性,例如具有8.25米检测距离和270度扫描范围。       属于目前市场上的高端设备,非常适合侧向滑动装置正面区域等大型区域或长距离的防护。该设备的另一个亮点就是能够同时监测两个保护功能。这在许多应用领域中,独具优势以前需要使用两个设备,如今只需要使用一台这样的安全激光扫描仪,即可完成两台设备的功能。               实践中遇到的一项挑战是设计一款异常强骨的激光安全扫描仪。能够适应周围环境中可能存在的灰尘和颗粒等恶劣条件,因此我们提供了较分辨率达到0.1度的设备。它在目前市场上具有非常高的价值。   ...
Message 最新动态
蓝光光源激光位移传感器:优势、原理与特殊场景解决方案 —— 泓川科技 LTP 系列 405nm 定制... 2025 - 10 - 21 在工业精密测量中,传统红光激光位移传感器常受高反射、半透明、高温红热等特殊场景限制,而蓝光光源(405nm 波长)凭借独特物理特性实现突破。以下通过 “一问一答” 形式,详解蓝光传感器的优势、原理构造,并结合泓川科技 LTP 系列定制方案,看其如何解决特殊环境测量难题。1. 蓝光光源激光位移传感器相比传统红光,核心优势是什么?蓝光传感器的核心优势源于 405nm 波长的物理特性,相比传统 655nm 左右的红光,主要体现在三方面:更高横向分辨率:根据瑞利判据,光学分辨率与波长成反比。蓝光波长仅为红光的 62%(405nm/655nm≈0.62),相同光学系统下横向分辨率可提升约 38%,能形成更小光斑(如泓川 LTP025 蓝光版光斑最小达 Φ18μm),适配芯片针脚、晶圆等微米级结构测量。更强信号稳定性:蓝光单光子能量达 3.06eV,远高于红光的 2.05eV。在低反射率材料(如橡胶、有机涂层)表面,能激发出更强散射信号;同时穿透性更低,仅在材料表层作用,避免内部折射干扰,适合表面精准测量。更优抗干扰能力:蓝光波段与红热辐射(500nm 以上)、户外强光(可见光为主)重叠度低,搭配专用滤光片后,可有效隔绝高温物体自发光、阳光直射等干扰,这是红光难以实现的。2. 蓝光激光位移传感器的原理构造是怎样的?为何能实现高精度测量?蓝光传感器的高精度的核心是 “光学设计 + 信号处理 + ...
泓川科技国产系列光谱共焦/激光位移传感器/白光干涉测厚产品性能一览 2025 - 09 - 05 高精度测量传感器全系列:赋能精密制造,适配多元检测需求聚焦半导体、光学膜、机械加工等领域的精密检测核心痛点,我们推出全系列高性能测量传感器,覆盖 “测厚、对焦、位移” 三大核心应用场景,以 “高精准、高速度、高适配” 为设计核心,为您的工艺控制与质量检测提供可靠技术支撑。以下为各产品系列的详细介绍:1.LTS-IR 红外干涉测厚传感器:半导体材料测厚专属核心用途:专为硅、碳化硅、砷化镓等半导体材料设计,精准实现晶圆等器件的厚度测量。性能优点:精度卓越:±0.1μm 线性精度 + 2nm 重复精度,确保测量数据稳定可靠;量程适配:覆盖 10μm2mm 测厚范围,满足多数半导体材料检测需求;高效高速:40kHz 采样速度,快速捕捉厚度数据,适配在线检测节奏;灵活适配:宽范围工作距离设计,可灵活匹配不同规格的检测设备与场景。2. 分体式对焦传感器:半导体 / 面板缺陷检测的 “高速对焦助手”核心用途:针对半导体、面板领域的高精度缺陷检测场景,提供高速实时对焦支持,尤其适配显微对焦类检测设备。性能优点:对焦速度快:50kHz 高速对焦,同步匹配缺陷检测的实时性需求;对焦精度高:0.5μm 对焦精度,保障缺陷成像清晰、检测无偏差;设计灵活:分体式结构,可根据检测设备的安装空间与布局灵活调整,降低适配难度。3. LT-R 反射膜厚仪:极薄膜厚检测的 “精密管家”核心用途:专注于极薄膜...
多方面研究泓川科技LTP系列大量程全国产激光位移传感器 2025 - 09 - 02 泓川科技激光位移传感器产品技术报告尊敬的客户: 感谢您对泓川科技激光位移传感器产品的关注与信任。为帮助您全面了解我司产品,现将激光位移传感器相关技术信息从参数指标、设计原理、结构设计等八大核心维度进行详细说明,为您的选型、使用及维护提供专业参考。一、参数指标我司激光位移传感器涵盖 LTP400 系列与 LTP450 系列,各型号核心参数经纳米级高精度激光干涉仪标定验证,确保数据精准可靠,具体参数如下表所示:表 1:LTP400EA参数表参数类别具体参数LTP400EA备注基础测量参数测量中心距离400mm以量程中心位置计算(*1)量程200mm-重复精度(静态)3μm测量标准白色陶瓷样件,50kHz 无平均,取 65536 组数据均方根偏差(*2)线性度±0.03%F.S.(F.S.=200mm)采用纳米级激光干涉仪标定(*3)光源与光斑光源类型-激光功率可定制,部分型号提供 405nm 蓝光版本(*4)光束直径聚焦点光斑 Φ300μm中心位置直径,两端相对变大(*5)电气参数电源电压DC9-36V-功耗约 2.5W-短路保护反向连接保护、过电流保护-输出与通信模拟量输出(选配)电压:0-5V/010V/-1010V;电流:420mA探头可独立提供电压、电流与 RS485 输出(*6)通讯接口RS485 串口、TCP/IP 网口可选配模拟电压 / 电流输出模块(*7)响应...
Copyright ©2005 - 2013 无锡泓川科技有限公司

1

犀牛云提供企业云服务
Our Link
X
3

SKYPE 设置

4

阿里旺旺设置

等待加载动态数据...

等待加载动态数据...

5

电话号码管理

  • 0510-88155119
6

二维码管理

等待加载动态数据...

等待加载动态数据...

展开