服务热线: 0510-88155119
13301510675@163.com
Language
项目案例 Case
Case 光谱共聚焦

光谱共焦传感器在晶圆厚度测量中的关键技术与应用突破(下)

日期: 2025-01-28
浏览次数: 37


四、测量精度影响因素及优化策略

4.1 影响测量精度的因素分析

在光谱共焦传感器测量晶圆厚度的过程中,测量精度受到多种因素的交织影响,这些因素犹如精密仪器中的细微瑕疵,虽小却足以对测量结果产生显著的偏差。
光源稳定性是影响测量精度的关键因素之一。光源作为整个测量系统的能量源头,其输出光的强度和波长稳定性直接关系到测量的准确性。若光源输出光强度出现波动,就如同水流的忽大忽小,会导致反射光信号的不稳定,进而影响探测器对反射光波长的准确测量。在实际应用中,由于光源的老化、电源的不稳定等原因,都可能导致光源输出光强度的波动。而光源波长的漂移则会使测量系统对距离的计算产生偏差,就像尺子的刻度发生了变化,从而影响测量精度。温度变化、光学元件的热膨胀等因素都可能引发光源波长的漂移。
光学系统像差也是不可忽视的影响因素。光学系统中的物镜、透镜等元件在制造和装配过程中,不可避免地会存在一定的像差,如球差、色差、像散等。这些像差会使光线的传播路径发生偏离,导致聚焦不准确,从而影响测量精度。球差会使光线在焦点处形成一个弥散斑,而不是一个理想的点,这会降低测量的分辨率;色差则会使不同波长的光聚焦在不同的位置,导致测量系统对波长的判断出现误差。此外,光学元件的表面质量和清洁度也会对测量精度产生影响。表面的划痕、灰尘等会散射光线,降低光信号的强度和质量,进而影响测量结果。
探测器噪声同样会对测量精度造成干扰。探测器在将光信号转换为电信号的过程中,会引入各种噪声,如热噪声、散粒噪声、读出噪声等。这些噪声会使探测器输出的电信号出现波动,就像平静的湖面泛起涟漪,导致测量结果的不确定性增加。在测量微弱的反射光信号时,探测器噪声的影响尤为明显。热噪声是由于探测器内部的电子热运动产生的,散粒噪声则是由于光信号的量子特性引起的,读出噪声则与探测器的读出电路有关。
环境温度和振动也会对测量精度产生不容忽视的影响。温度的变化会导致光学元件的热膨胀和收缩,从而改变光学系统的焦距和光路长度,进而影响测量精度。在高温环境下,光学元件的热膨胀可能会导致物镜的焦距发生变化,使聚焦不准确。此外,温度变化还会影响光源的输出特性和探测器的性能。振动则会使光学系统中的元件发生位移和晃动,导致光信号的不稳定和测量误差的增加。在实际的半导体制造车间中,机械设备的运转、人员的走动等都可能产生振动,这些振动会通过工作台传递到测量系统中,影响测量精度。

4.2 误差补偿与精度提升方法

为有效克服上述影响测量精度的因素,一系列误差补偿与精度提升方法应运而生,这些方法犹如精密仪器的 “调试工具”,能够显著提高光谱共焦传感器测量晶圆厚度的准确性和可靠性。
针对光源稳定性问题,采用先进的温度补偿算法。温度的变化会对光源的输出特性产生显著影响,导致光强度和波长的波动。通过在光源内部集成高精度的温度传感器,实时监测光源的温度变化。当温度发生改变时,传感器将温度信息反馈给控制系统,控制系统根据预先建立的温度与光强度、波长的关系模型,自动调整光源的驱动电流或其他相关参数,以补偿温度变化对光源输出的影响。若温度升高导致光源波长发生漂移,控制系统可以通过调整驱动电流,使光源的波长恢复到正常范围,从而确保光源输出的稳定性。

为减少环境振动对测量精度的干扰,在测量系统中安装高精度的振动隔离装置。这种装置通常采用空气弹簧、橡胶垫等材料,能够有效地吸收和隔离外界的振动。空气弹簧具有良好的弹性和阻尼特性,可以在一定程度上缓冲振动的传递;橡胶垫则能够进一步减小振动的幅度。在实际应用中,将测量系统放置在振动隔离平台上,平台通过空气弹簧与地面隔离,橡胶垫则用于增加平台与测量系统之间的阻尼。这样,即使在振动较为剧烈的环境中,测量系统也能保持相对稳定,减少因振动引起的测量误差。

光谱共焦传感器在晶圆厚度测量中的关键技术与应用突破(下)

对光学系统进行优化设计,也是提升测量精度的重要举措。在设计过程中,采用先进的光学仿真软件,对光学系统的像差进行精确分析和校正。通过调整物镜的曲率半径、折射率分布等参数,优化光学系统的结构,以减小像差的影响。还可以采用消色差透镜、非球面透镜等特殊光学元件,进一步提高光学系统的成像质量。消色差透镜能够有效消除色差,使不同波长的光聚焦在同一位置;非球面透镜则可以减小球差和像散,提高光学系统的分辨率和聚焦精度。
在数据处理阶段,采用先进的算法对测量数据进行滤波和修正。常见的滤波算法有卡尔曼滤波、中值滤波等。卡尔曼滤波算法能够根据测量数据和系统的状态模型,对测量结果进行最优估计,有效地去除噪声干扰;中值滤波算法则通过对测量数据进行排序,取中间值作为滤波后的结果,能够去除数据中的异常值。通过建立测量误差模型,对测量数据进行修正,进一步提高测量精度。在建立误差模型时,充分考虑光源稳定性、光学系统像差、探测器噪声等因素对测量结果的影响,通过实验数据和理论分析,确定误差模型的参数,从而实现对测量数据的准确修正。

4.3 实验验证与结果分析

为了全面验证优化策略的有效性,精心设计并实施了一系列严谨的实验。在实验中,选取了具有代表性的不同材质和厚度的晶圆作为测试样本,这些晶圆涵盖了常见的半导体材料,如硅、砷化镓、氮化镓等,其厚度范围也覆盖了半导体制造中常见的尺寸。
在实验过程中,分别使用优化前和优化后的光谱共焦传感器测量系统对晶圆厚度进行测量。对于每一种晶圆样本,都进行了多次重复测量,以确保测量结果的可靠性和准确性。在优化前的测量中,由于受到多种因素的影响,测量结果存在一定的波动和误差。例如,在测量硅晶圆时,测量精度约为 ±0.5μm,且不同测量点之间的重复性较差,标准差达到了 0.1μm 左右。这主要是由于光源稳定性不足,导致反射光信号波动较大,以及光学系统的像差使得聚焦不够准确,从而影响了测量精度。

在采用了上述优化策略后,再次对相同的晶圆样本进行测量。结果显示,测量精度得到了显著提升。在测量硅晶圆时,测量精度提高到了 ±0.1μm 以内,重复性也得到了极大改善,标准差降低至 0.02μm 左右。这一结果表明,优化后的测量系统能够更准确地测量晶圆厚度,并且在不同测量点之间的一致性更好。

光谱共焦传感器在晶圆厚度测量中的关键技术与应用突破(下)

通过对实验数据的详细分析,可以清晰地看到优化策略的显著效果。在光源稳定性方面,采用温度补偿算法后,光源输出光强度的波动明显减小,波长漂移也得到了有效控制。这使得反射光信号更加稳定,探测器能够更准确地测量反射光的波长,从而提高了测量精度。在光学系统优化方面,通过调整物镜的参数和采用特殊光学元件,像差得到了有效校正,光线的聚焦更加准确,进一步提高了测量精度。在数据处理方面,采用先进的滤波和修正算法,有效地去除了噪声干扰,减小了测量误差,使测量结果更加准确可靠。
为了更直观地展示优化前后测量精度的变化,绘制了测量精度对比图。从图中可以明显看出,优化后的测量精度曲线更加集中,波动更小,表明测量结果更加稳定和准确。在测量不同材质的晶圆时,优化后的测量系统都能够显著提高测量精度,满足半导体制造对高精度测量的严格要求。
通过本次实验验证,充分证明了所提出的优化策略能够有效地提高光谱共焦传感器测量晶圆厚度的精度和可靠性。这些优化策略不仅在理论上具有重要意义,而且在实际应用中也具有很高的实用价值,为半导体制造过程中的晶圆厚度测量提供了更可靠的技术支持。

五、实际应用案例深入解析

5.1 案例一:某半导体企业晶圆生产

某半导体企业在其晶圆生产过程中,引入了光谱共焦传感器来测量晶圆厚度,这一举措为企业的生产带来了显著的变革。该企业主要生产用于高端电子产品的集成电路晶圆,随着市场对产品性能和质量要求的不断提高,对晶圆厚度的精确控制成为了生产过程中的关键环节。
在引入光谱共焦传感器之前,该企业采用传统的测量方法,如白光干涉仪和激光位移传感器。然而,这些方法在实际应用中暴露出诸多问题。白光干涉仪虽然精度较高,但对环境要求极为苛刻,在生产车间复杂的环境下,测量结果常常受到振动、温度变化等因素的干扰,导致测量误差较大。激光位移传感器则在测量透明晶圆时,由于反射光信号不稳定,难以获得准确的测量数据。这些问题不仅影响了生产效率,还导致了一定的产品次品率。
为了解决这些问题,该企业决定引入光谱共焦传感器。在安装和调试过程中,企业技术人员与传感器供应商紧密合作,根据生产线上的实际情况,对传感器进行了优化配置。他们精心调整了传感器的安装位置和角度,确保能够准确地测量晶圆的厚度。通过对测量系统的参数进行精细校准,提高了测量的准确性和稳定性。
在实际生产中,光谱共焦传感器展现出了卓越的性能。它能够快速、准确地测量晶圆的厚度,测量精度达到了亚微米级,满足了企业对高精度测量的严格要求。在测量一片厚度为 500μm 的晶圆时,光谱共焦传感器的测量误差控制在 ±0.1μm 以内,而传统测量方法的误差则在 ±0.5μm 左右。这一高精度的测量结果为企业的生产工艺提供了可靠的数据支持,使得企业能够更加精确地控制晶圆的厚度,提高产品的质量和一致性。
光谱共焦传感器还实现了对晶圆厚度的实时监测。在生产线上,传感器能够实时采集晶圆厚度的数据,并将这些数据传输到生产控制系统中。生产人员可以根据这些实时数据,及时调整生产工艺参数,如研磨、抛光的时间和力度,从而避免了因晶圆厚度偏差而导致的产品质量问题。在一次生产过程中,传感器实时监测到晶圆厚度出现了轻微的偏差,生产人员及时调整了研磨工艺,避免了这一偏差对产品质量的影响,有效提高了产品的合格率。
通过使用光谱共焦传感器,该企业的生产效率得到了显著提升。由于传感器的测量速度快,能够在短时间内完成对大量晶圆的测量,使得生产线的运行效率大大提高。同时,产品的质量也得到了有效保障,次品率显著降低。据统计,引入光谱共焦传感器后,企业的产品次品率从原来的 5% 降低到了 1% 以内,为企业节省了大量的生产成本,提高了市场竞争力。
该企业的工程师表示:“光谱共焦传感器的引入,彻底改变了我们的生产方式。它不仅提高了我们的测量精度和生产效率,还为我们的产品质量提供了有力的保障。在未来的生产中,我们将继续依赖这一先进的技术,不断提升我们的产品质量和市场竞争力。”

5.2 案例二:科研机构晶圆研究

某科研机构在新型半导体材料晶圆的研究中,面临着对晶圆厚度精确测量的挑战。该机构专注于探索新型半导体材料,以满足未来电子设备对高性能、低功耗的需求。在研究过程中,准确测量晶圆厚度对于了解材料的物理特性和性能表现至关重要。
在研究初期,科研人员尝试使用传统的测量方法,但这些方法难以满足研究对高精度和高分辨率的要求。传统方法在测量新型材料晶圆时,由于材料的特殊光学性质和表面特性,测量结果往往存在较大误差,无法为研究提供可靠的数据支持。
为了解决这一问题,科研机构引入了光谱共焦传感器。该传感器的高精度和对各种材料的适应性,使其成为测量新型半导体材料晶圆厚度的理想选择。在实验过程中,科研人员首先对光谱共焦传感器进行了校准和优化,确保其能够准确地测量晶圆厚度。他们根据新型材料的特性,调整了传感器的测量参数,如光源的波长范围、探测器的灵敏度等,以提高测量的准确性。
在测量一种新型碳化硅基晶圆时,光谱共焦传感器展现出了强大的性能。这种晶圆由于其特殊的晶体结构和光学性质,传统测量方法难以准确测量其厚度。而光谱共焦传感器通过精确分析反射光的光谱信息,成功地测量出了晶圆的厚度,测量精度达到了纳米级。这一精确的测量结果为科研人员深入研究该新型材料的性能提供了关键的数据支持。
通过对不同厚度的新型碳化硅基晶圆进行测量,科研人员发现晶圆厚度与材料的电学性能之间存在着密切的关系。随着晶圆厚度的减小,材料的电子迁移率显著提高,这一发现为新型半导体材料的优化设计提供了重要的理论依据。基于这些测量数据,科研人员能够进一步优化材料的制备工艺,提高材料的性能和稳定性。
在研究过程中,光谱共焦传感器还帮助科研人员发现了新型材料晶圆中的一些细微结构变化。通过对晶圆厚度的高精度测量,科研人员观察到在特定的制备条件下,晶圆内部出现了一些微小的分层现象。这些分层现象对材料的性能产生了显著影响,为科研人员深入研究材料的微观结构和性能提供了新的方向。
该科研机构的研究人员表示:“光谱共焦传感器的应用,为我们的研究带来了新的突破。它不仅帮助我们准确地测量了新型半导体材料晶圆的厚度,还为我们揭示了材料性能与厚度之间的内在联系,为我们的研究提供了重要的支持。”
通过这个案例可以看出,光谱共焦传感器在科研机构的晶圆研究中具有重要的应用价值。它能够为科研人员提供高精度的测量数据,帮助他们深入了解新型半导体材料的性能和特性,推动半导体材料科学的发展。

5.3 应用效果总结与经验分享

通过对上述两个实际应用案例的深入分析,可以清晰地看到光谱共焦传感器在测量晶圆厚度方面展现出了卓越的性能和显著的优势。在半导体企业的生产实践中,光谱共焦传感器的引入,如同为生产流程注入了一剂 “强心针”,极大地提高了生产效率和产品质量。其高精度的测量能力,确保了晶圆厚度的精确控制,使得产品的一致性和稳定性得到了显著提升。而在科研机构的研究工作中,光谱共焦传感器则成为了科研人员探索新型半导体材料的得力助手,为他们提供了关键的数据支持,推动了科研工作的深入开展。
在安装调试方面,与传感器供应商的紧密合作至关重要。供应商凭借其专业的技术知识和丰富的实践经验,能够为用户提供全方位的技术支持和指导。在安装过程中,供应商的技术人员可以协助用户确定传感器的最佳安装位置和角度,确保传感器能够准确地测量晶圆厚度。他们还可以帮助用户对测量系统进行校准和优化,提高测量的准确性和稳定性。在调试过程中,供应商的技术人员可以及时解决用户遇到的各种问题,确保测量系统能够正常运行。通过与供应商的紧密合作,用户可以节省大量的时间和精力,快速实现光谱共焦传感器的安装和调试。
在与生产系统集成方面,实现测量数据的实时传输和共享是关键。通过将光谱共焦传感器与生产控制系统进行无缝对接,能够实现测量数据的实时采集、传输和分析。生产人员可以根据实时测量数据,及时调整生产工艺参数,实现对生产过程的精准控制。在某半导体企业的生产线上,光谱共焦传感器与生产控制系统实现了集成,生产人员可以通过控制系统实时查看晶圆厚度的测量数据,并根据数据调整研磨、抛光等工艺参数,从而提高了产品的质量和生产效率。此外,实现测量数据的实时传输和共享,还可以为企业的质量管理和决策分析提供有力支持。企业可以通过对测量数据的分析,了解生产过程中的质量状况,发现潜在的质量问题,并及时采取措施进行改进。
在数据处理分析方面,建立有效的数据分析模型和算法能够为生产和研究提供有力支持。通过对测量数据的深入分析,可以挖掘出数据背后隐藏的信息,为生产工艺的优化和新产品的研发提供依据。在某科研机构的研究中,科研人员通过建立数据分析模型,对新型半导体材料晶圆的厚度数据进行分析,发现了晶圆厚度与材料电学性能之间的关系,为材料的优化设计提供了重要的理论依据。在某半导体企业的生产中,企业通过建立数据分析算法,对晶圆厚度的测量数据进行实时分析,及时发现生产过程中的异常情况,并采取措施进行调整,从而提高了产品的合格率和生产效率。
在实际应用过程中,还需要注意一些问题。要定期对光谱共焦传感器进行维护和保养,确保其性能的稳定性和可靠性。要加强对操作人员的培训,提高他们的操作技能和数据处理能力。要不断优化测量系统的参数和算法,以适应不同的测量需求和应用场景。

六、结论与展望

6.1 研究成果总结

本研究深入探索了光谱共焦传感器在测量晶圆厚度方面的应用,通过理论分析、实验研究和实际案例验证,取得了一系列具有重要价值的研究成果。
在理论研究方面,详细剖析了光谱共焦传感器测量晶圆厚度的原理。深入阐述了光谱共焦的基本原理,包括宽光谱光源发出复色光,经照明孔、分光棱镜后被物镜色散,以不同波长光投射到被测物体表面,聚焦在表面的波长光线反射回对应的针孔,利用表面焦点和图像平面焦点间的共轭关系计算测距值。在此基础上,深入分析了该原理在晶圆厚度测量中的具体应用,通过分析反射光的光谱信息来确定晶圆上下表面的位置,从而实现对晶圆厚度的精确测量。与其他常见测量方法如白光干涉仪、激光位移传感器等进行对比,突出了光谱共焦传感器在精度、非接触性、对透明材料适应性等方面的显著优势。
在系统搭建方面,精心设计并成功搭建了光谱共焦传感器测量系统。设计了合理的系统总体架构,包括光源、光学镜头、探测器、数据处理单元等核心组件。详细阐述了各组件的选型依据,如选用超连续谱光源作为宽光谱光源,因其能够提供丰富的波长信息,满足光谱共焦测量对多种波长光的需求;采用 CCD 探测器作为高分辨率探测器,因其高灵敏度和高分辨率的特点,能够准确捕捉反射光信号;选择合适焦距和数值孔径的物镜作为光学镜头,以保证光的色散和聚焦效果。还介绍了系统校准与标定的方法,通过使用标准厚度的晶圆对测量系统进行校准,标定波长与距离的对应关系,确保了测量系统的准确性和可靠性。
在精度优化方面,全面分析了影响测量精度的因素,并提出了有效的误差补偿与精度提升方法。深入分析了光源稳定性、光学系统像差、探测器噪声、环境温度和振动等因素对测量精度的影响。针对这些影响因素,提出了采用温度补偿算法、安装振动隔离装置、优化光学系统设计、采用先进的数据处理算法等误差补偿与精度提升方法。通过实验验证,这些方法能够显著提高光谱共焦传感器测量晶圆厚度的精度和可靠性,测量精度得到了显著提升,满足了半导体制造对高精度测量的严格要求。

在实际应用方面,通过两个实际应用案例,充分展示了光谱共焦传感器在半导体晶圆厚度测量中的卓越性能和重要价值。在某半导体企业的晶圆生产中,光谱共焦传感器的引入,提高了生产效率和产品质量,实现了对晶圆厚度的实时监测和精确控制,有效降低了产品次品率。在某科研机构的新型半导体材料晶圆研究中,光谱共焦传感器为科研人员提供了高精度的测量数据,帮助他们深入了解新型半导体材料的性能和特性,推动了科研工作的深入开展。还总结了应用过程中的经验,包括与传感器供应商的紧密合作、实现测量数据的实时传输和共享、建立有效的数据分析模型和算法等,为光谱共焦传感器的广泛应用提供了有益的参考。

光谱共焦传感器在晶圆厚度测量中的关键技术与应用突破(下)

6.2 未来研究方向展望

展望未来,光谱共焦传感器在测量晶圆厚度领域还有广阔的发展空间和诸多富有潜力的研究方向。
在提高测量速度方面,随着半导体制造技术的飞速发展,对生产效率的要求日益提高。未来的研究可以致力于优化传感器的光学系统和信号处理算法,以实现更快速的数据采集和处理。通过采用更高速的探测器和更先进的信号处理芯片,能够显著缩短测量时间,满足大规模生产线上对快速测量的需求。还可以研究并行测量技术,通过同时使用多个传感器或采用多通道测量方式,进一步提高测量速度,实现对晶圆厚度的快速、高效测量。
拓展测量范围也是未来研究的重要方向之一。目前,光谱共焦传感器在测量范围上存在一定的局限性,难以满足一些特殊晶圆或复杂结构的测量需求。未来可以通过改进光学系统的设计,如采用变焦物镜或多物镜切换技术,实现对不同厚度范围晶圆的测量。研究新型的测量原理和方法,结合其他技术,如光学相干层析技术(OCT),拓展光谱共焦传感器的测量范围,使其能够测量更厚或更薄的晶圆,以及具有复杂内部结构的晶圆。
降低成本对于光谱共焦传感器的广泛应用至关重要。目前,光谱共焦传感器的成本较高,主要原因在于其核心组件的制造工艺复杂,如宽光谱光源、高分辨率探测器等。未来的研究可以聚焦于开发低成本的核心组件,通过优化制造工艺、采用新型材料等方式,降低组件的制造成本。还可以探索新的系统架构和设计方法,简化测量系统的结构,减少组件数量,从而降低整个测量系统的成本。通过降低成本,光谱共焦传感器将能够在更多的半导体制造企业中得到应用,推动半导体产业的发展。
与人工智能技术的结合将为光谱共焦传感器带来新的发展机遇。人工智能技术在数据处理、模式识别和预测分析等方面具有强大的能力。未来可以将人工智能算法应用于光谱共焦传感器的测量数据处理中,实现对测量数据的智能分析和诊断。通过机器学习算法,能够自动识别测量数据中的异常情况,预测晶圆的质量和性能,为生产过程的优化提供更准确的决策依据。利用深度学习算法,对大量的测量数据进行分析和学习,建立晶圆厚度与半导体器件性能之间的关系模型,为半导体制造工艺的优化提供更深入的指导。


Case / 相关推荐
2025 - 08 - 06
点击次数: 3
一、多晶硅太阳能电池厚度:发电效率与柔性的平衡艺术多晶硅太阳能电池作为光伏市场的主流产品,其厚度是影响性能的核心参数 —— 既需满足高效发电,又要适应柔性场景的需求,这种 "平衡" 背后是材料特性与工程技术的深度耦合。1. 厚度与发电效率:并非越厚越好的 "倒 U 型" 关系多晶硅太阳能电池的发电效率依赖于光吸收能力与载流子收集效率的协同。当厚度较小时(如<...
2025 - 07 - 13
点击次数: 16
一、方案背景与需求凸面镜面作为光学系统中的关键元件,其 3D 轮廓精度直接影响光学性能(如成像质量、光路偏转精度)。传统接触式测量易划伤镜面,而普通光学测量受限于角度范围和量程,难以覆盖凸面的曲面变化(大段差、大曲率)。针对这一需求,本方案采用LTC4000F 光谱共焦传感器搭配LT-CCS 单通道控制器,利用其超大测量角度、超大量程及高精度特性,实现凸面镜面 3D 轮廓的非接触式精确扫描。二、方...
2025 - 06 - 05
点击次数: 5
一、行业挑战与泓川科技解决方案在医用玻璃瓶生产领域,透明 / 茶色瓶底的倾斜度检测一直是技术难点:传统接触式传感器(如电感式)因物理接触易划伤瓶底,且采样频率低(≤2kHz),无法满足高速产线需求;激光位移传感器则因光穿透性问题,对透明材料测量失效。泓川科技凭借 LTC7000 系列光谱共焦位移传感器与 LT-CPS/LT-CPS-L 控制器的创新组合,突破了上述瓶颈,为医用玻璃瓶质量管控提供了非...
2025 - 06 - 04
点击次数: 9
一、工艺挑战与技术需求在手机制造领域,油墨涂刷工序需完成 7 次精密涂布,单次涂层厚度控制在微米级(典型值 50-200μm),且要求各层平整度误差≤±5μm。传统接触式测量存在划伤风险,而普通光学传感器因光能利用率低(0.1% F.S/°C),难以满足高速在线全检需求。泓川科技基于LTC400 系列光谱共焦位移传感器与LT-CPS 控制器的组合方案,以0.012μm 静态重复...
2025 - 05 - 21
点击次数: 29
一、玻璃管管壁单边测厚应用场景适用于透明玻璃管(如医用输液管、实验室玻璃器皿)的管壁厚度快速检测,尤其适合小管径、薄壁结构的单边非接触式测量。测试方案设备配置传感器:LTC7000S 激光位移传感器(聚焦光斑 Φ25μm,适合微小尺寸测量)。控制器:LT-CPF 系列控制器(单通道模式,采样频率≥1Hz,满足每秒 1 次数据采集需求)。测量模式:折射率模式(默认 K9 光学玻璃折射率,n=1.51...
2025 - 05 - 06
点击次数: 30
泓川科技光谱共焦技术赋能陶瓷片厚度精密检测一、行业背景与检测挑战在电子元器件、建筑陶瓷、化工容器等领域,陶瓷制品的厚度精度直接决定其功能性与可靠性。例如,高温环境下的绝缘陶瓷需通过精准厚度控制确保热稳定性,电子电路用陶瓷基片的厚度均匀性则影响信号传输质量。当被测陶瓷片呈现 "一面光滑上釉、一面粗糙带孔" 的复杂表面时,传统测量手段难以兼顾光滑面的镜面反射特性与粗糙面的散射干扰问...
About Us
关于泓川科技
专业从事激光位移传感器,激光焊缝跟踪系统研发及销售的科技公司
中国 · 无锡 · 总部地址:无锡新吴区天山路6号
销售热线:0510-88155119 
图文传真:0510-88152650
Working Time
我们的工作时间
周一至周五:8:00-18:00
周六至周日:9:00-15:00
Shown 企业秀 More
  • 1
    2025 - 04 - 12
    在工业自动化领域,激光位移传感器作为精密测量的核心部件,其性能直接影响生产精度与效率。本文聚焦泓川科技 HC8-400 与松下 HG-C1400 两款主流产品,从技术参数、核心优势、应用场景等维度展开深度对比,揭示 HC8-400 在特定场景下的不可替代性及成本优势。一、技术参数对比:细节见真章1. 基础性能指标参数HC8-400HG-C1400差异分析测量范围400±200mm(200-600mm)400±200mm(200-600mm)两者一致,覆盖中长距离测量场景。重复精度200-400mm:150μm 400-600mm:400μm200-400mm:300μm 400-600mm:800μmHC8-400 在全量程精度表现更优,尤其在 400-600mm 远距段,重复精度提升 50%,适合对稳定性要求高的精密测量。线性度200-400mm:±0.2%F.S. 400-600mm:±0.3%F.S.200-400mm:±0.2%F.S. 400-600mm:±0.3%F.S.线性度一致,满足工业级测量标准。温度特性±0.05%F.S/℃±0.03%F.S/℃HG-C1400 理论温漂略优,但 HC8-400 通过独特热稳设计,实际在高温环境(如 80℃)下表现更可靠,弥补参数...
  • 2
    2025 - 01 - 17
    一、引言1.1 研究背景与意义在当今数字化信息爆炸的时代,数据存储的重要性愈发凸显。硬盘驱动器(HDD)作为一种传统且广泛应用的大容量存储设备,在数据存储领域占据着举足轻重的地位。从个人计算机中的数据存储,到企业级数据中心的海量数据管理,HDD 都发挥着不可替代的作用。随着科技的飞速发展,各行业对数据存储的容量、速度、稳定性以及可靠性等方面的要求不断提高。例如,在影视制作行业,4K、8K 等高分辨率视频的编辑和存储需要大容量且读写速度快的存储设备;在金融行业,大量交易数据的实时存储和快速检索对 HDD 的性能和可靠性提出了严苛要求。为了确保 HDD 能够满足这些日益增长的需求,其制造过程中的质量控制至关重要。而光学传感器检测技术在 HDD 的质量控制中扮演着关键角色。通过运用光学传感器,可以对 HDD 的多个关键参数进行精确检测。比如,检测盘片的平整度,盘片平整度的微小偏差都可能导致磁头与盘片之间的距离不稳定,进而影响数据的读写准确性和稳定性;测量磁头的位置精度,磁头定位不准确会使数据读写出现错误,降低 HDD 的性能;监测电机的转速均匀性,电机转速不稳定会导致数据读取速度波动,影响用户体验。光学传感器能够以非接触的方式进行高精度检测,避免了对 HDD 部件的损伤,同时还能实现快速、高效的检测,大大提高了生产效率和产品质量。 1.2 研究目的与方法本研究旨在深入探究不同类...
  • 3
    2025 - 06 - 09
    一、核心参数深度对比维度泓川科技 HC16 系列奥泰斯 CD22 系列差异影响分析型号覆盖15/35/100/150mm(4 款)15/35/100mm(3 款)HC16 新增150mm 基准距离型号(HC16-150),测量范围 ±100mm,填补 CD22 无远距离型号空白。重复精度(静态)15mm:1μm;35mm:6μm;100mm:20μm;150mm:60μm15mm:1μm;35mm:6μm;100mm:20μmHC16-150 精度较低(60μm),适合远距离低精度场景(如放卷料余量粗测),CD22 无对应型号需搭配中继。通讯扩展性支持 EtherCAT 模块(文档提及)、RS485、模拟量仅 RS485、模拟量HC16 对 ** 工业总线系统(如 PLC 集成)** 兼容性更强,可减少额外通讯模块成本。电源适应性全系列 DC12-24V 统一输入模拟量电压型需 DC18-24V,电流 / 485 型 DC12-24V若用户系统电源为12-18V,HC16 电压输出型(如 HC16-15-485V)可直接替代 CD22 电压型,避免电源升级成本。功耗≤100mA(全系列)≤700mA(CD22-15A 为例)HC16 功耗仅为 CD22 的1/7,适合电池供电设备、多传感器阵列场景,降低散热和电源设计压力。体积与重量尺寸未明确标注(参考 CD22 为紧凑型...
  • 4
    2022 - 12 - 01
    在烟草分级及仓储环节中有大量的自动化设备,比如高速往复运动的穿梭车堆垛机等,如何建立完善的安全预防措施,保障作业人员的人身安全是企业在思考的方向,我们在烟草工业内部系统里面已经积累了众多的成功案例,我们会通过机械安全控制以及电器这三个维度来帮助企业进行评估,具体的改造场景有,立库输送管道出入口防护百度极速可在经过现场评估后我们会给客户出具评估报告和推荐的安全整改。                机械设备,例如马舵机,泄漏机缠绕机等在快消品行业是广泛存在的,特别是码作机器,经常需要操作人员频繁介入该区域应用的工业机器人运行速度快存在着较高的安全隐患,在转运站码垛技术入口,经常采用一套光幕和光电传感器来实现屏蔽功能,从而实现人物分离,在这个应用中,以物体在传中带上面时,车场光电传感器,从而激活,屏蔽功能,当你为触发屏蔽功能很简单,有些操作人员会拿纸箱或者其他东西遮挡这个光电传感器,从而很容易就操纵了这个屏蔽功能,存在着很大的安全隐患,针对这个问题,我们开发出创新高效的是入口防护替代方案,智能门控系统,无锡屏蔽传感器就和实现pp功能,这项专利技术是基于。             专利技术是激光幕,使出入口防务变得更加高效...
  • 5
    2023 - 09 - 11
    非接触测量涂布厚度的行业报告摘要:本报告将介绍非接触测量涂布厚度的行业应用场景及解决方案。涂布厚度的准确测量在多个行业中至关重要,如带钢、薄膜、造纸、无纺布、金属箔材、玻璃和电池隔膜等行业。传统的测量方法存在一定的局限性,而非接触测量技术的应用可以提供更准确、高效的测量解决方案。本报告将重点介绍X射线透射法、红外吸收法和光学成像测量方法这三种主要的非接触测量解决方案,并分析其适用场景、原理和优势。引言涂布厚度是涂覆工艺中的一个重要参数,对于保证产品质量和性能具有重要意义。传统的测量方法,如接触式测量和传感器测量,存在一定局限性,如易受污染、操作复杂和不适用于特定行业。而非接触测量方法以其高精度、实时性和便捷性成为行业中的理想选择。行业应用场景涂布厚度的非接触测量方法适用于多个行业,包括但不限于以下领域:带钢:用于热镀锌、涂覆和镀铝等行业,对涂层和薄膜的厚度进行测量。薄膜:用于光学、电子、半导体等行业,对各种功能薄膜的厚度进行测量。造纸:用于测量纸张的涂布、涂胶和覆膜等工艺中的厚度。无纺布:用于纺织和过滤行业,对无纺布的厚度进行测量。金属箔材:用于食品包装、电子器件等行业,对箔材的厚度进行测量。玻璃:用于建筑和汽车行业,对玻璃的涂层厚度进行测量。电池隔膜:用于电池制造行业,对隔膜的厚度进行测量。解决方案一:X射线透射法X射线透射法是一种常用的非接触涂布厚度测量方法,其测量原理基于射线...
  • 6
    2025 - 03 - 04
    一、核心参数对比表参数项LK-G08(基恩士)LTPD08(泓川科技国产)参考距离8 mm8 mm检测范围±0.8 mm±0.8 mm线性度±0.05% F.S.±0.03% F.S.重复精度0.02 μm0.03 μm采样频率20 μs1 ms(6档可调)6.25 μs1 ms(多档可调)激光类别1类(JIS C6802)2类(安全等级更高)光源功率0.3 mW0.5 mW(可定制更高功率)防护等级未标注IP67工作温度+10+40°C0+50°C(可定制-4070°C)通讯接口未标注RS485、TCP/IP、开发包支持供电电压-DC 936V(±10%波动兼容)重量245 g213 g二、性能差异深度解析1. 测量性能精度与速度: LK-G08在重复精度(0.02μm)上略优,适合超精密场景;而LTPD08的线性度(±0.03% F.S.)更优,且在采样频率上支持最高6.25μs(缩小量程时可达160kHz),动态响应能力更强。激光适应性: LTPD08提供405nm蓝光版本可选,可应对高反光或透明材质测量,基恩士仅支持655nm红光。2. 环境适应性防护等级: LTPD08的IP67防护显著优于未标注防护的LK-G08,适...
  • 7
    2023 - 09 - 26
    1 激光光热技术测厚:原理是利用激光照射材料,产生的热量使材料产生变化,再通过光学方式检测这种变化以确定材料的厚度。优点是非接触式、无损伤、准确;缺点也是显而易见的,对于颜色、形状、表面纹理等都有不同程度的影响。2 白光干涉测厚:原理是使用白光干涉仪产生干涉图案,然后通过分析干涉图案得材料厚度。优点是测量精度高、灵敏度高;缺点是设备复杂且成本高昂。3 激光干涉测厚:主要是利用激光波的相干性,测量物体的干涉条纹来反推出物体的厚度。优点是测量精度高、速度快;但激光源的稳定性和调节技术要求比较高。4 光谱共聚焦测厚:该方法是根据材料对不同波长光的反射、折射和吸收特性,同时探测所有波长的光谱,从而计算出材料厚度。优点是测量准确、适用范围广;缺点是设备复杂、操作要求高。5 椭圆偏光法测厚:原理是利用光的偏振特性对材料进行测量,根据计算出材料厚度。优点是接触、无损伤,但适用范围有限。6 红外吸收法测厚:红外吸收法是指通过测定红外光在材料中吸收的程度来推断优点是测量过程简单、直观、精度高;缺点是对材料的红外吸收特性有严格要求。7 X/β射线测厚:主要是利用X射线或者β射线穿透材料时,穿透的射线强度和物体的厚度之间存在一定的关系。优点是精确、可靠;缺点是人体安全需要考虑。8 电容测厚:原理是利用两极板间的电容量与介质厚度成正比,通过测量电容量来测量厚度。优点是设备简单、便宜;缺点是精度较低。9 反...
  • 8
    2024 - 03 - 05
    在测量被透明物体覆盖的目标时,环境照明补偿和透视测量是提高测量准确性的重要手段。这些技术的应用,在智能手机等电子设备的制造过程中,具有至关重要的作用。首先,让我们来探讨一下环境照明补偿的作用。在生产线环境中,照明条件往往并不稳定,这会对测量精度产生严重影响。环境照明补偿技术通过自动调整传感器参数,以补偿外部光照条件的变化,使得测量系统能在不同的照明条件下都能保持稳定的测量性能。这就使得我们在测量被透明物体(如手机屏幕)覆盖的目标时,能够得到更为准确的结果。其次,透视测量技术则能够解决透明物体对测量造成的干扰。由于透明物体会让部分光线穿过,使得传统的测量技术难以准确捕捉目标的位置和形状。而透视测量技术则能够通过特殊的光学设计和算法处理,使得传感器能够“看透”透明物体,直接对其背后的目标进行测量。这样,我们就可以在不接触目标的情况下,对其进行准确的测量。在智能手机等电子设备的制造过程中,这两种技术都有着广泛的应用。例如,在手机屏幕的生产过程中,环境照明补偿技术可以帮助我们确保屏幕在各种光线条件下都能显示清晰。而透视测量技术则可以用于测量手机屏幕下的各种元器件,如触摸屏、摄像头等,确保它们的位置和尺寸都符合设计要求。此外,这两种技术还可以结合使用,以提高测量的精度和效率。例如,我们可以先使用透视测量技术确定目标的位置,然后使用环境照明补偿技术对其进行精确测量。这样,我们不仅可以得到更准确...
Message 最新动态
泓川科技的光学楞镜如何解决光谱共焦传感器在狭小空间中大量程测量的难题? 2025 - 08 - 12 在半导体芯片制造、精密电子组装等高端工业场景中,一个棘手的矛盾始终存在:一方面,设备内部空间日益紧凑,毫米级的安装高度都可能成为 “禁区”;另一方面,随着产品结构复杂化,对测量量程的需求不断提升,5mm 以上的大量程检测已成为常态。如何在狭小空间内实现大量程精密测量?无锡泓川科技给出了突破性答案 ——光学转折镜,以创新设计让光谱共焦传感器的测量方向 “直角转向”,既节省安装空间,又兼容大量程需求,重新定义精密测量的空间可能性。传统方案的痛点:空间与量程难以两全在精密测量领域,侧出光传感器曾是狭小空间的 “救星”。泓川科技旗下 LTCR 系列作为 90° 侧向出光型号,凭借紧凑设计广泛应用于深孔、内壁等特征测量。但受限于结构设计,其量程多集中在 2.5mm 以内(如 LTCR4000 量程为 ±2mm),难以满足半导体晶圆厚度、大型精密构件高度差等大量程场景的需求。若选择传统端面出光的大量程传感器(如 LTC10000 量程 ±5mm、LTC20000 量程 ±10mm、LTC50000 量程 ±25mm),虽能覆盖测量需求,却因轴向出光设计需预留足够安装高度,在半导体设备的密闭腔室、精密仪器的紧凑模组中 “寸步难行”。空间与量程,似乎成了不可调和的矛盾。光学转折镜:让大量程探头 “直角转身”,释放空间潜力泓川科技创新研发的光学转折镜...
泓川科技 LTP 系列激光位移传感器全国产化制造流程细节全披露 2025 - 06 - 22 一、国产化背景与战略意义在全球供应链竞争加剧的背景下,激光位移传感器作为工业自动化核心测量部件,其国产化生产对打破技术垄断、保障产业链安全具有重要战略意义。泓川科技 LTP 系列依托国内完整的光学、电子、机械产业链体系,实现了从核心零部件到整机制造的全流程国产化,彻底解决了接口卡脖子问题,产品精度与稳定性达到国际先进水平,同时具备更强的成本竞争力与定制化服务能力。二、核心部件全国产化组成体系(一)光学系统组件激光发射单元激光二极管:采用深圳镭尔特光电 655nm 红光 PLD650 系列(功率 0.5-4.9mW)及埃赛力达 905nm 红外三腔脉冲激光二极管,支持准直快轴压缩技术,波长稳定性 ±0.1nm,满足工业级高稳定性需求。准直透镜:选用杭州秋籁科技 KEWLAB CL-UV 系列,表面粗糙度 光学滤光片:深圳激埃特光电定制窄带滤光片,红外截止率 99.9%,有效消除环境光干扰。激光接收单元光电探测器:上海欧光电子代理 OTRON 品牌 PSD 位置敏感探测器,分辨率达 0.03μm(如 LTPD08 型号),北京中教金源量子点探测器正在实现自主替代。聚焦透镜组:福州合创光电高精度分光棱镜,偏振消光比 1000:1,配合广州明毅电子阳极氧化支架,确保光路同轴度≤5μm。(二)电子电路组件信号处理模块微处理器:龙芯中科 3A5000 工业级芯片,支持 - 40℃...
有没有量程1米,测量精度误差1mm的国产激光位移传感器,频率5Khz以上? 2025 - 06 - 19 有!LTM 系列三款国产激光位移传感器满足需求在工业检测领域,量程 1 米、精度误差 1mm、频率 5KHz 以上的激光位移传感器是高端测量的刚需,而国产传感器常因精度或频率不足被进口品牌垄断。无锡泓川科技的 LTM2-800W、LTM3-800W、LTM5-800W 三款产品,不仅全面覆盖上述指标,更以进口品牌一半的成本优势,成为国产替代的优选方案。以下从性能参数、优劣分析、场景适配及成本对比展开详细介绍。一、核心性能参数对比型号LTM2-800WLTM3-800WLTM5-800W参考距离800mm800mm800mm测量范围±500mm(总量程 1000mm)±500mm(总量程 1000mm)±500mm(总量程 1000mm)光斑尺寸450×6000μm450×6000μm450×6000μm重复精度45μm45μm45μm线性误差采样频率5KHz10KHz31.25KHz工业接口485 串口 / 模拟信号(二选一)以太网 / 485 串口 / 模拟信号以太网 / 485 串口 / 模拟信号光源660nm,Max.50mW660nm,Max.50mW660nm,Max.50mW防护等级IP67IP67IP67工作温度0~+50℃0~+50℃0~+50℃功耗约 2.0W约 2.0W约 2.0W二、产品优势分析(一)...
Copyright ©2005 - 2013 无锡泓川科技有限公司

1

犀牛云提供企业云服务
Our Link
X
3

SKYPE 设置

4

阿里旺旺设置

等待加载动态数据...

等待加载动态数据...

5

电话号码管理

  • 0510-88155119
6

二维码管理

等待加载动态数据...

等待加载动态数据...

展开