服务热线: 0510-88155119
13301510675@163.com
Language
项目案例 Case
Case 3D线激光

3D线激光位移传感器在巧克力缺漏检测中的优势与应用

日期: 2024-11-19
浏览次数: 57

引言

在自动化生产线上,对巧克力等小件商品的缺漏检测是确保产品质量和顾客满意度的关键环节。传统的2D相机检测方案虽然成本较低,但存在诸多局限,难以满足现代工业生产对高精度、高灵活性和高兼容性的需求。相比之下,3D线激光位移传感器,如HL-8200系列,以其独特的检测原理和卓越的性能,在巧克力缺漏检测中展现出显著优势。

传统2D相机检测的局限性

传统2D相机通过拍摄二维图像来检测巧克力的缺漏情况。这种方法虽然成本较低,但存在以下主要局限:

  1. 固定模板限制:2D相机每次只能针对一个固定的模板进行拍摄对比。当托盘或巧克力的颜色、形状发生变化时,需要重新调整光源和拍摄参数,这增加了操作的复杂性和成本。

  2. 光源调整复杂:对于不同颜色的巧克力或托盘,可能需要调整光源的强度和角度,以确保图像质量。这一过程不仅耗时,而且难以保证在各种条件下的一致性。

  3. 检测精度有限:依靠浓淡及彩色图像捕捉缺漏变化,精度容易受到环境光、拍摄角度等因素的影响。

  4. 兼容性差:对于颜色与托盘相近的巧克力,2D相机难以准确区分,容易导致误检或漏检。

3D线激光位移传感器的优势

检测原理

3D线激光位移传感器通过投射激光线到被测物体表面,并捕捉反射光来生成物体的三维轮廓。传感器内部的高精度CMOS相机实时记录激光线的变形情况,通过复杂的算法计算出物体的三维坐标信息。这一过程无需关心产品的颜色、形状或托盘的大小,只需检测物体表面的高度差异即可实现缺漏检测。

优势分析

  1. 高精度检测:3D线激光位移传感器可以达到微米级别的检测精度,远超传统2D相机的检测能力。

  2. 高灵活性:不受巧克力颜色、形状或托盘大小的影响,适用于各种生产场景和产品变化。

  3. 强兼容性:即使巧克力与托盘颜色相近,也能通过高度图像准确捕捉缺漏变化。

  4. 智能化检测:结合后期算法和深度学习技术,可以实现对复杂场景的自动识别和优化,提高检测效率和准确性。

应用案例

案例一:巧克力生产线缺漏检测

在某知名巧克力生产线上,采用HL-8200系列3D线激光位移传感器对巧克力进行缺漏检测。传感器安装在生产线末端,对经过的每一盘巧克力进行快速扫描。通过内置的算法对扫描数据进行处理,实时判断是否有巧克力缺漏。当检测到缺漏时,立即触发报警并停止生产线,确保每盘巧克力都符合质量标准。

案例二:多色巧克力混装检测

对于包含多种颜色巧克力的混装托盘,传统2D相机难以准确区分不同颜色的巧克力。而采用3D线激光位移传感器则无需担心颜色干扰。传感器通过扫描托盘表面的高度变化来判断巧克力是否存在缺漏。无论巧克力颜色如何变化,都能保持稳定的检测精度和效率。

3D线激光位移传感器在巧克力缺漏检测中的优势与应用


算法与公式

在3D线激光位移传感器的数据处理中,核心算法涉及三维坐标的计算和缺漏判断。以下是一个简化的算法流程:

1.

  1. 三维坐标计算

    设激光发射器的光轴与物体表面的交点为   P(x,y,z),激光线在CMOS相机上的成像点为p(u,v)。根据激光三角测量原理,可以通过以下公式计算三维坐标:  

        

其中, 是相机焦距, 是光轴与成像平面的距离,(cx,cy) 是 相机光心坐标, 是激光发射器在相机上的投影点坐标。

   2. 设托盘上预设的巧克力位置集合为3D线激光位移传感器在巧克力缺漏检测中的优势与应用实际扫描得到的三维点云为3D线激光位移传感器在巧克力缺漏检测中的优势与应用

     通过以下步骤判断缺漏:

    3D线激光位移传感器在巧克力缺漏检测中的优势与应用

3D线激光位移传感器在巧克力缺漏检测中的优势与应用

结论

综上所述,3D线激光位移传感器在巧克力缺漏检测中展现出显著优势。其高精度、高灵活性、强兼容性和智能化检测能力,使其成为现代工业生产线上不可或缺的检测工具。随着技术的不断发展,3D线激光位移传感器将在更多领域发挥重要作用,推动制造业向智能化、高效化方向迈进。


Case / 相关推荐
2024 - 11 - 19
点击次数: 57
引言在自动化生产线上,对巧克力等小件商品的缺漏检测是确保产品质量和顾客满意度的关键环节。传统的2D相机检测方案虽然成本较低,但存在诸多局限,难以满足现代工业生产对高精度、高灵活性和高兼容性的需求。相比之下,3D线激光位移传感器,如HL-8200系列,以其独特的检测原理和卓越的性能,在巧克力缺漏检测中展现出显著优势。传统2D相机检测的局限性传统2D相机通过拍摄二维图像来检测巧克力的缺漏情况。这种方法...
2024 - 11 - 19
点击次数: 37
引言在现代化生产线中,瓶身表面的透明收缩膜破裂检测一直是一个技术难题。由于传统相机图像难以捕捉薄膜破裂造成的细微表面形状变化,导致误检测率居高不下。为了解决这一问题,本文介绍了一种基于HL-8080系列3D线激光轮廓仪的“激光外观检测”技术,该技术能够准确捕捉瓶身表面形状的变化,从而实现可靠的收缩膜破裂检测。测量原理与方法3D线激光轮廓仪基本原理3D线激光轮廓仪采用激光三角测量法,通过激光发生器投...
2024 - 11 - 18
点击次数: 68
随着制造业对产品质量要求的不断提高,对管桶边缘高度差、毛刺以及薄壁杯子形状的高精度检测需求日益迫切。本文详细介绍了一种基于3D线激光位移传感器的高精度测量技术,该技术能够准确捕捉并分析管桶边缘及薄壁杯子的几何特征,为质量控制提供强有力的支持。一、技术背景3D线激光位移传感器是一种基于激光三角测量原理的高精度测量设备。它发射一束线激光到被测物体表面,并接收由物体表面反射回来的光信号。通过处理这些光信...
2024 - 11 - 18
点击次数: 32
在现代汽车安全系统中,安全气囊作为关键被动安全部件,其性能直接关系到乘客的生命安全。安全气囊弹出部分的切槽设计对于其快速、准确地展开至关重要。切槽的深度和宽度必须严格控制,以确保在碰撞发生时,安全气囊能够按照预期路径迅速充气展开,提供有效保护。本文将深入探讨如何利用HL-8200系列2D/3D线激光位移传感器,以非破坏性方式实现对安全气囊切槽深度的精准测量,确保每一枚安全气囊均符合严格的质量标准。...
2024 - 11 - 18
点击次数: 110
引言随着电动汽车(EV)的普及,电池盒的气密性成为确保车辆安全、可靠运行的关键因素之一。为了防止水分和异物侵入电池内部,电池盒外壳的FIPG(Form-In-Place Gasket,现场成型密封垫)涂覆技术被广泛应用。本文详细介绍如何利用3D相机技术,结合大动态范围的超高灵敏度CMOS传感器,对电池盒FIPG涂覆进行高精度检测,确保涂覆质量,从而提升电池盒的气密性。技术原理与优势技术原理3D成像...
2024 - 11 - 17
点击次数: 54
在现代汽车制造过程中,可动天窗的安装精度直接关系到车辆的整体性能和用户体验。传统测量方法在面对光泽涂装面和玻璃面的段差检测时,往往难以保证足够的精度和稳定性。然而,随着3D线激光轮廓仪技术的不断发展,这一问题得到了有效解决。本文将深入探讨3D线激光轮廓仪在可动天窗安装检测中的创新应用,并与其他主流测量方式进行优劣性对比。3D线激光轮廓仪的创新应用技术原理与优势3D线激光轮廓仪采用激光三角测量原理,...
About Us
关于泓川科技
专业从事激光位移传感器,激光焊缝跟踪系统研发及销售的科技公司
中国 · 无锡 · 总部地址:无锡新吴区天山路6号
销售热线:0510-88155119 
图文传真:0510-88152650
Working Time
我们的工作时间
周一至周五:8:00-18:00
周六至周日:9:00-15:00
Shown 企业秀 More
  • 1
    2022 - 12 - 01
    在烟草分级及仓储环节中有大量的自动化设备,比如高速往复运动的穿梭车堆垛机等,如何建立完善的安全预防措施,保障作业人员的人身安全是企业在思考的方向,我们在烟草工业内部系统里面已经积累了众多的成功案例,我们会通过机械安全控制以及电器这三个维度来帮助企业进行评估,具体的改造场景有,立库输送管道出入口防护百度极速可在经过现场评估后我们会给客户出具评估报告和推荐的安全整改。                机械设备,例如马舵机,泄漏机缠绕机等在快消品行业是广泛存在的,特别是码作机器,经常需要操作人员频繁介入该区域应用的工业机器人运行速度快存在着较高的安全隐患,在转运站码垛技术入口,经常采用一套光幕和光电传感器来实现屏蔽功能,从而实现人物分离,在这个应用中,以物体在传中带上面时,车场光电传感器,从而激活,屏蔽功能,当你为触发屏蔽功能很简单,有些操作人员会拿纸箱或者其他东西遮挡这个光电传感器,从而很容易就操纵了这个屏蔽功能,存在着很大的安全隐患,针对这个问题,我们开发出创新高效的是入口防护替代方案,智能门控系统,无锡屏蔽传感器就和实现pp功能,这项专利技术是基于。             专利技术是激光幕,使出入口防务变得更加高效...
  • 2
    2023 - 09 - 11
    非接触测量涂布厚度的行业报告摘要:本报告将介绍非接触测量涂布厚度的行业应用场景及解决方案。涂布厚度的准确测量在多个行业中至关重要,如带钢、薄膜、造纸、无纺布、金属箔材、玻璃和电池隔膜等行业。传统的测量方法存在一定的局限性,而非接触测量技术的应用可以提供更准确、高效的测量解决方案。本报告将重点介绍X射线透射法、红外吸收法和光学成像测量方法这三种主要的非接触测量解决方案,并分析其适用场景、原理和优势。引言涂布厚度是涂覆工艺中的一个重要参数,对于保证产品质量和性能具有重要意义。传统的测量方法,如接触式测量和传感器测量,存在一定局限性,如易受污染、操作复杂和不适用于特定行业。而非接触测量方法以其高精度、实时性和便捷性成为行业中的理想选择。行业应用场景涂布厚度的非接触测量方法适用于多个行业,包括但不限于以下领域:带钢:用于热镀锌、涂覆和镀铝等行业,对涂层和薄膜的厚度进行测量。薄膜:用于光学、电子、半导体等行业,对各种功能薄膜的厚度进行测量。造纸:用于测量纸张的涂布、涂胶和覆膜等工艺中的厚度。无纺布:用于纺织和过滤行业,对无纺布的厚度进行测量。金属箔材:用于食品包装、电子器件等行业,对箔材的厚度进行测量。玻璃:用于建筑和汽车行业,对玻璃的涂层厚度进行测量。电池隔膜:用于电池制造行业,对隔膜的厚度进行测量。解决方案一:X射线透射法X射线透射法是一种常用的非接触涂布厚度测量方法,其测量原理基于射线...
  • 3
    2025 - 03 - 04
    一、核心参数对比表参数项LK-G08(基恩士)LTPD08(泓川科技国产)参考距离8 mm8 mm检测范围±0.8 mm±0.8 mm线性度±0.05% F.S.±0.03% F.S.重复精度0.02 μm0.03 μm采样频率20 μs1 ms(6档可调)6.25 μs1 ms(多档可调)激光类别1类(JIS C6802)2类(安全等级更高)光源功率0.3 mW0.5 mW(可定制更高功率)防护等级未标注IP67工作温度+10+40°C0+50°C(可定制-4070°C)通讯接口未标注RS485、TCP/IP、开发包支持供电电压-DC 936V(±10%波动兼容)重量245 g213 g二、性能差异深度解析1. 测量性能精度与速度: LK-G08在重复精度(0.02μm)上略优,适合超精密场景;而LTPD08的线性度(±0.03% F.S.)更优,且在采样频率上支持最高6.25μs(缩小量程时可达160kHz),动态响应能力更强。激光适应性: LTPD08提供405nm蓝光版本可选,可应对高反光或透明材质测量,基恩士仅支持655nm红光。2. 环境适应性防护等级: LTPD08的IP67防护显著优于未标注防护的LK-G08,适...
  • 4
    2023 - 09 - 16
    大家好,今天给大家详细说明下目前我们市面上用的激光位移传感器内部构造及详细原理、应用、市场种类、及未来发展,我在网上搜索了很多资料,发现各大平台或者厂商提供的信息大多千篇一律或者式只言片语,要么是之说出大概原理,要买只讲出产品应用,对于真正想了解激光位移传感器三角回差原理的朋友们来说总是没有用办法说透,我今天花点时间整理了各大平台的大牛们的解释,再结合自己对产品这么多年来的认识,整理出以下这篇文章,希望能给想要了解这种原理的小伙伴一点帮助!好了废话不多说我们直接上干货首先我们要说明市面上的激光测量位移或者距离的原理有很多,比如最常用的激光三角原理,TOF时间飞行原理,光谱共焦原理和相位干涉原理,我们今天给大家详细介绍的是激光三角测量法和激光回波分析法,激光三角测量法一般适用于高精度、短距离的测量,而激光回波分析法则用于远距离测量,下面分别介绍激光三角测量原理和激光回波分析原理。让我们给大家分享一个激光位移传感器原理图,一般激光位移传感器采用的基本原理是光学三角法:半导体激光器:半导体激光器①被镜片②聚焦到被测物体⑥。反射光被镜片③收集,投射到CMOS阵列④上;信号处理器⑤通过三角函数计算阵列④上的光点位置得到距物体的距离。一 、激光位移传感器原理之激光三角测量法原理1.激光发射器通过镜头将可见红色激光射向被测物体表面,经物体反射的激光通过接收器镜头,被内部的CCD线性相机接收,根据...
  • 5
    2024 - 01 - 21
    白光干涉测厚仪是一种非接触式测量设备,广泛应用于测量晶圆上液体薄膜的厚度。其原理基于分光干涉原理,通过利用反射光的光程差来测量被测物的厚度。白光干涉测厚仪工作原理是将宽谱光(白光)投射到待测薄膜表面上,并分析返回光的光谱。被测物的上下表面各形成一个反射,两个反射面之间的光程差会导致不同波长(颜色)的光互相增强或者抵消。通过详细分析返回光的光谱,可以得到被测物的厚度信息。白光干涉测厚仪在晶圆水膜厚度测量中具有以下优势:1. 测量范围广:能够测量几微米到1mm左右范围的厚度。2. 小光斑和高速测量:采用SLD(Superluminescent Diode)作为光源,具有小光斑和高速测量的特点,能够实现快速准确的测量。下面是使用白光干涉测厚仪测量晶圆上水膜厚度的详细步骤:1. 准备工作:确保待测晶圆样品表面清洁平整,无杂质和气泡。2. 参数设置:调整白光干测厚涉仪到合适的工作模式,并确定合适的测量参数和光学系统设置。根据具体要求选择光谱范围、采集速度等参数。3. 样品放置:将待测晶圆放置在白光干涉测厚仪的测量台上,并固定好位置,使其与光学系统保持稳定的接触。确保样品与测量台平行,并避免外界干扰因素。4. 启动测量:启动白光干涉测厚仪,开始测量水膜厚度。通过记录和分析返回光的光谱,可以得到晶圆上水膜的厚度信息。可以通过软件实时显示和记录数据。5. 连续监测:对于需要连续监测晶圆上水膜厚度变...
  • 6
    2025 - 03 - 22
    一、核心性能参数对比:精度与场景适配性参数泓川科技LTC2600(标准版)泓川LTC2600H(定制版)基恩士CL-P015(标准版)参考距离15 mm15 mm15 mm测量范围±1.3 mm±1.3 mm±1.3 mm光斑直径9/18/144 μm(多模式)支持定制(最小φ5 μm)ø25 μm(单点式)重复精度50 nm50 nm100 nm线性误差±0.49 μm(标准模式)分辨率0.03 μm0.03 μm0.25 μm(理论值)防护等级IP40IP67(定制)IP67耐温范围0°C ~ +50°C-20°C ~ +200°C(定制)0°C ~ +50°C真空支持不支持支持(10^-3 Pa,定制)支持(10^-6 Pa,标准版)重量228 g250 g(高温版)180 g性能深度解析精度碾压:LTC2600的重复精度(50 nm)显著优于CL-P015(100 nm),线性误差(光斑灵活性:LTC2600支持多光斑模式(最小φ5 μm定制),可兼顾微小目标检测与粗糙面稳定性;CL-P015仅提供单点式光斑(ø25 μm),适用场景受限。环境适应性:CL-P015标准版支持超高真空(10^-6 Pa),但C2600通过...
  • 7
    2025 - 01 - 14
    四、与其他品牌光谱共焦传感器对比4.1 性能差异对比4.1.1 精度、稳定性等核心指标对比在精度方面,基恩士光谱共焦传感器展现出卓越的性能。以其超高精度型CL - L(P)015为例,直线性误差可达±0.49µm,这一精度在众多测量任务中都能实现极为精确的测量。相比之下,德国某知名品牌的同类型传感器,其精度虽也能达到较高水平,但在一些对精度要求极高的应用场景中,仍稍逊于基恩士。在测量高精度光学镜片的曲率时,基恩士传感器能够更精确地测量出镜片的微小曲率变化,确保镜片的光学性能符合严格标准。在稳定性上,基恩士光谱共焦传感器同样表现出色。其采用了先进的光学设计和稳定的机械结构,能够有效减少因环境因素和机械振动对测量结果的影响。即使在生产车间等振动较大的环境中,也能保持稳定的测量输出。而法国某品牌的传感器,在稳定性方面则存在一定的不足。在受到轻微振动时,测量结果可能会出现波动,影响测量的准确性和可靠性。在精密机械加工过程中,法国品牌的传感器可能会因为机床的振动而导致测量数据不稳定,需要频繁进行校准和调整,而基恩士传感器则能保持稳定的测量,为生产过程提供可靠的数据支持。响应速度也是衡量光谱共焦传感器性能的重要指标。基恩士光谱共焦传感器在这方面具备快速响应的优势,能够快速捕捉被测物体的位置变化。在对高速运动的物体进行测量时,能够及时反馈物体的位置信息,确保测量的实时性。相比...
  • 8
    2023 - 09 - 20
    首先,让我们对TOF进行一次短暂的“速读”——它全称叫'time-of-flight',中文怎么说呢?风格洒脱地称之为“飞行时间”。你没听错,就是“飞行时间”。所有的颠覆与创新始于赤裸裸的想象,对吧?再来回过头,看看我们的主角TOF激光测距传感器。激光这东西,我想你肯定不陌生。科幻大片,医美广告里都被频繁提及。对这位明星,我们暂时按下暂停键, 我们聊一聊测距传感器——那可是能把复杂的三维世界,硬是证明成一串串精准数据的硬核工具。当然,他俩的组合,并不是偶然撞壁造成的火花。在“鹰眼”TOF的身上,激光变得更加酷炫,传感器技术也变得更为深邃。他们共舞的主线,就是光的飞行时间。想象一下,要在现实世界计算出光从物体发射出来,然后反射回传感器的时间。你愣了一秒,觉得好像进入了'黑洞'的领域。实则不然,TOF激光测距传感器就是这样“耳提面命”。它以光速旅行者的姿态,穿越空间,告诉我们物体与之间的距离。亲,你有听说过光速吗?大约每秒走30万公里哦,这个速度足够你在一秒钟内去绕地球七点五圈了!TOF激光测距传感器就是他们利用这么一个迅疾的光速,再加上高精度的时钟,来高效精确地计算出飞行时间并转化为距离数据。小编想说,TOF不仅玩科技,他更玩智谋,战胜了同类的超声波、红外线等测距设备。毕竟,被物的颜色、亮度、表面材质,或者环境的温湿度对他来说都不构成锁链。准确到“下毛...
Message 最新动态
蓝光光源激光位移传感器:优势、原理与特殊场景解决方案 —— 泓川科技 LTP 系列 405nm 定制... 2025 - 10 - 21 在工业精密测量中,传统红光激光位移传感器常受高反射、半透明、高温红热等特殊场景限制,而蓝光光源(405nm 波长)凭借独特物理特性实现突破。以下通过 “一问一答” 形式,详解蓝光传感器的优势、原理构造,并结合泓川科技 LTP 系列定制方案,看其如何解决特殊环境测量难题。1. 蓝光光源激光位移传感器相比传统红光,核心优势是什么?蓝光传感器的核心优势源于 405nm 波长的物理特性,相比传统 655nm 左右的红光,主要体现在三方面:更高横向分辨率:根据瑞利判据,光学分辨率与波长成反比。蓝光波长仅为红光的 62%(405nm/655nm≈0.62),相同光学系统下横向分辨率可提升约 38%,能形成更小光斑(如泓川 LTP025 蓝光版光斑最小达 Φ18μm),适配芯片针脚、晶圆等微米级结构测量。更强信号稳定性:蓝光单光子能量达 3.06eV,远高于红光的 2.05eV。在低反射率材料(如橡胶、有机涂层)表面,能激发出更强散射信号;同时穿透性更低,仅在材料表层作用,避免内部折射干扰,适合表面精准测量。更优抗干扰能力:蓝光波段与红热辐射(500nm 以上)、户外强光(可见光为主)重叠度低,搭配专用滤光片后,可有效隔绝高温物体自发光、阳光直射等干扰,这是红光难以实现的。2. 蓝光激光位移传感器的原理构造是怎样的?为何能实现高精度测量?蓝光传感器的高精度的核心是 “光学设计 + 信号处理 + ...
泓川科技国产系列光谱共焦/激光位移传感器/白光干涉测厚产品性能一览 2025 - 09 - 05 高精度测量传感器全系列:赋能精密制造,适配多元检测需求聚焦半导体、光学膜、机械加工等领域的精密检测核心痛点,我们推出全系列高性能测量传感器,覆盖 “测厚、对焦、位移” 三大核心应用场景,以 “高精准、高速度、高适配” 为设计核心,为您的工艺控制与质量检测提供可靠技术支撑。以下为各产品系列的详细介绍:1.LTS-IR 红外干涉测厚传感器:半导体材料测厚专属核心用途:专为硅、碳化硅、砷化镓等半导体材料设计,精准实现晶圆等器件的厚度测量。性能优点:精度卓越:±0.1μm 线性精度 + 2nm 重复精度,确保测量数据稳定可靠;量程适配:覆盖 10μm2mm 测厚范围,满足多数半导体材料检测需求;高效高速:40kHz 采样速度,快速捕捉厚度数据,适配在线检测节奏;灵活适配:宽范围工作距离设计,可灵活匹配不同规格的检测设备与场景。2. 分体式对焦传感器:半导体 / 面板缺陷检测的 “高速对焦助手”核心用途:针对半导体、面板领域的高精度缺陷检测场景,提供高速实时对焦支持,尤其适配显微对焦类检测设备。性能优点:对焦速度快:50kHz 高速对焦,同步匹配缺陷检测的实时性需求;对焦精度高:0.5μm 对焦精度,保障缺陷成像清晰、检测无偏差;设计灵活:分体式结构,可根据检测设备的安装空间与布局灵活调整,降低适配难度。3. LT-R 反射膜厚仪:极薄膜厚检测的 “精密管家”核心用途:专注于极薄膜...
多方面研究泓川科技LTP系列大量程全国产激光位移传感器 2025 - 09 - 02 泓川科技激光位移传感器产品技术报告尊敬的客户: 感谢您对泓川科技激光位移传感器产品的关注与信任。为帮助您全面了解我司产品,现将激光位移传感器相关技术信息从参数指标、设计原理、结构设计等八大核心维度进行详细说明,为您的选型、使用及维护提供专业参考。一、参数指标我司激光位移传感器涵盖 LTP400 系列与 LTP450 系列,各型号核心参数经纳米级高精度激光干涉仪标定验证,确保数据精准可靠,具体参数如下表所示:表 1:LTP400EA参数表参数类别具体参数LTP400EA备注基础测量参数测量中心距离400mm以量程中心位置计算(*1)量程200mm-重复精度(静态)3μm测量标准白色陶瓷样件,50kHz 无平均,取 65536 组数据均方根偏差(*2)线性度±0.03%F.S.(F.S.=200mm)采用纳米级激光干涉仪标定(*3)光源与光斑光源类型-激光功率可定制,部分型号提供 405nm 蓝光版本(*4)光束直径聚焦点光斑 Φ300μm中心位置直径,两端相对变大(*5)电气参数电源电压DC9-36V-功耗约 2.5W-短路保护反向连接保护、过电流保护-输出与通信模拟量输出(选配)电压:0-5V/010V/-1010V;电流:420mA探头可独立提供电压、电流与 RS485 输出(*6)通讯接口RS485 串口、TCP/IP 网口可选配模拟电压 / 电流输出模块(*7)响应...
Copyright ©2005 - 2013 无锡泓川科技有限公司

1

犀牛云提供企业云服务
Our Link
X
3

SKYPE 设置

4

阿里旺旺设置

等待加载动态数据...

等待加载动态数据...

5

电话号码管理

  • 0510-88155119
6

二维码管理

等待加载动态数据...

等待加载动态数据...

展开