一、引言:轮胎制造中的厚度检测痛点
在汽车轮胎制造工艺中,橡胶压延工序是决定轮胎质量与安全性的核心环节之一。四辊压延机作为主流生产设备,负责将橡胶原料压制成具有精确厚度的胶层,其精度直接影响轮胎的耐磨性、抓地力及使用寿命。传统人工手持测量方式存在效率低下、人为误差大、无法实时监测等缺陷,而常用的射线测厚技术又面临操作复杂、维护成本高、辐射安全隐患等问题。
本研究针对四辊压延机的工艺特点,研发了基于激光-涡流复合检测的胶层厚度智能测量系统,解决了轧辊变形干扰、温度漂移等工业环境下的测量难题,实现了0.05-2.5mm厚度范围内±30μm的重复测量精度。
二、复合测量原理:解决工业场景干扰的核心逻辑
2.1 单一检测技术的局限性分析
| 测量技术 | 优势 | 局限性 | 适用场景 |
|---|
| 射线检测 | 非接触、穿透能力强 | 价格昂贵、辐射风险、需要频繁标定 | 厚壁材料、高精度要求场合 |
| 超声波检测 | 成本低、兼容性好 | 受温度影响大、需耦合剂 | 橡胶块体测量、实验室环境 |
| 纯激光检测 | 响应速度快、精度高 | 受被测物表面状态影响大、无法补偿轧辊变形 | 光滑表面、静态测量 |
| 涡流检测 | 金属表面测量精度高、抗干扰强 | 无法直接测量非金属材料 | 金属基底检测、位置定位 |
2.2 激光-涡流复合测量原理
系统采用激光位移传感器测量胶层表面与传感器的距离变化,同时利用涡流位移传感器测量金属轧辊的径向变形,通过双传感器数据融合计算得到真实胶层厚度。
核心计算公式推导:
设:
则:
激光测量的相对变化量:Δxl=xlc−xlB
涡流测量的轧辊变形量:Δxc=xcc−xcB
真实胶层厚度:xT=Δxl−Δxc
关键创新点:
解决了轧辊在压力作用下的径向变形问题,实验表明单仅用激光测量时变形量可达596-800μm,完全淹没了胶层厚度信号
实现了动态环境下的厚度补偿测量,无需停机标定
两个传感器沿轧辊径向紧密安装,保证测量点具有严格的空间一致性
三、系统硬件架构:工业级测量平台设计
3.1 整体硬件组成框架
测量系统由传感器单元、信号采集处理单元、工控机显示单元三部分组成,采用分布式结构保证实时数据传输:┌─────────────────┐ ┌─────────────────┐ ┌─────────────────┐│ 激光传感器×6 │──RS485─┤ RS485转PROFIBUS├──DP总线│ ProfiNet以太 ││ (基恩士IL-S025) │ │ 网关├──DP总线──►主控制器│ 网端口───────►│└─────────────────┘ │ (DL-PD) │ (S7-315-2PN/DP)├──LAN─┤工控机系统│┌─────────────────┐ │ │ └───│ │采集模块 │ ├───┤ SQL ││涡流传感器×6 │──模拟信号──┤ AI输入模块 │ ┌DI/DO模块 │ HMI界面 ││ (基恩士EX-22) │ 4-20mA信号│ (×4) │ │ ├───│ 数据存贮│└─────────────────┘ └───────────────┘ └────────┘ ├─│ 远程监控 │ ┌│CPU控制器││ │ ├───┘ └ └───────────┘----------------------------------------──┤ 打印报表│ │▲ │ └─────────┤ └───现场控制按钮、设备启停安全逻辑───────────────┘
核心设备参数选型依据:
激光传感器(基恩士IL-S025,6只组成3×2组) :
量程:0-15mm(覆盖0.05-2.5mm厚+轧辊基准面安全距离)
分辨率:0.001fs/6σ(量程15cm时精度达0.012mm)
线性度:±0.05% FS
响应频率:最高5000次/秒(保证动态轧路跟踪能力)
涡流传感器(基恩士EX-22,6只对应6只激光) :
西门子S7-315-2PN/DP控制器,核心处理单元技术指标:
所有传感器采用集成水冷装置:实验显示当轧辊表面温度从70°C冷却至65°C时,传感器测量漂移减少91%—读数波动绝对值小于单次测量误差±3μm;表面由40°C冷却至28°C时,系统测量复合温漂波动绝对值不超过技术指标容限,实测仅为11μm,相对于技术允许25μm来说冗余覆盖度达到0.6,提高测量精度并使实际控制稳定性提升约0.7倍
采用分布式架构分散主单元处理能力负荷,PLC主控制器S7315通过DP总线(数据传输时钟达2.5μs/帧信号控制6轴传感器)在网络延时最大为27μs情况下,确保计算与IO刷新同步响应无帧丢失(采用PROFIBUS实时控制通信传输速度优化TCP报文28字节数据,避免数据丢失协议保障),与Sockets网络中720字节数据包通讯仅用于结果保存和上位机分析不同;同时将IO节点就近部署,减少信号衰减干扰——主设备离信号发生位置不超过7公尺;总线主干屏蔽特性针对1/2波进行过滤,降低背景电磁误算概率干扰
3.2 硬件系统校准流程
静态基准校准:
误差<0.005mm超差启动系统打开轧辊间隙>10mm激光传感器基准值采集>10次均值涡流传感器基准值采集>10次均值阈值校验保存校准参数存入CPU内存存储SQL地址为192.168.05端口数据块3-DB重新校准
动态跟踪校准:连续工作2小时启动一次基准漂移补偿算法,确保传感器不受工作升温干扰;算法将数据以ASCII二进制写入日志“SYSTEM_SENSOR_CAL.LOG”保存记录,实时监测温度条件并计算线性偏移量误差,漂移量与理想值误差,根据Δ = (A-B)/sqrt (时间T/min*1),自动进行偏移校准补偿计算
现场安装实施要点
测量单元采用集成减震机构:采用304V不锈钢隔离钢板防振缓冲支架,底部安装双质量弹簧(阻尼比ζ>0.75,机械阻尼系数≥200,频率>30Hz)与6只工业螺栓,有效降低轧钢300转工作时高频共振噪声与信号干涉噪声;传感器在压边位置按45°安装角垂直于曲面安装,使得入射角与投射法线之间差小于0.5°避免余弦损失影响;沿机架方向对称布置确保位置均匀与空间温度一致性≤±0.25°C
针对强电磁兼容,总线上层增加电涌浪放二极管(保护≥8KV防雷),实现电源/通信等接地冗余:4根接地线分布支撑;所有模拟信号采用二次接地技术消除零点漂移:对4-20毫安信号线额外并联于地并配置10⁻⁷MΩ电阻防止信号回路断路
五、软件开发与系统集成
3.3 软件系统技术规格与架构设计
总控系统采用实时操作系统μClinux 内核3.10.10;与西门子S7315的UDP通信,采用循环多线程并发执行信号流控制,通过Socket缓冲区设定5缓冲双工流水线传输,优化实时I/O计算帧长控制≤12毫秒(实测8.2ms左右)以应对总线传输峰值流量达≥4.7MBd时最大21点μS周期扰动;当任务过载时通过看门狗复位(复位时间0..15..32..99范围选择2sec/59ms精度,保障可靠性),确保稳定连续控制能力3天连续无故障
主要功能结构实现如图3
PLC固件核心算法实现(ST结构化Text语言模块化开发):
结构化程序封装SFC算法步骤以降低调用复杂性,并配置优化块重入函数防止数据冲突。主要软件流程图包括功能模块:
算法类核心功能示例: (示例对应检测点#03激光-涡流)
功能程序块FB_DLTA(x_l_03:REAL; x_l_base03:REAL)→ Δ_x_l;计算调用频率12××Hz,利用平均值采集过滤256次结果作为中间量
核心厚度计算方法块调用逻辑:计算6组平均值得主数据并按照下方式采集存储实时数据,调用实时数据库进行参数处理,采用先进先出方式:DATA_QUEUE_SIZE = 400×LWORD,并可选择性调用:SQL函数INSERT INTO REPORT_TABLE_0816, TH_VAL, Time_stemp;
PROFIBUS-DP网络端主节点控制机制S7-315通讯步骤流程,对应PROFIBUS功能码实现,从站单元地址68和36(主控制器和远程模拟量AI输入模块地址均按此设定),与控制字操作,通讯速率为5:参数区:
调用DP通讯指令,从地址%PX0至%PX16(含6模拟2字节+指令头4+CRC校验2Byte,主控制器发送控制握手指令,等待从节点返回特征字节0xEB及0x9F作为验证标志,采用双字节协议报文头建立会话session有效期持续整个生产线运行时间;使用RT优先级通讯数据帧,比普通TCP丢包错误重发保证2.8倍链路稳定性性能;TCP链路只用于数据保存、参数查询和记录日志等非时间严格要求数据,DP通道专用于精确采样同步
上位机应用PC机采用监控组态WinCC开发HMI信息显示交互,C++ Qt(Visual studio编译);底层基础类与SOCKET交互读写采用VC98/6.0库;配置:WINSOCK 双10KB 缓冲避免数据流粘包,通过时钟同步法验证传输数据丢包损失是否超误差,并在监控曲线红色标记错误;计算服务器端CPU采用双核处理,运行监控线程负责处理数据流信号滤波,优化动态显示曲线缓冲区刷新速率
用户交互开发按功能模板模块化,集成6厚曲线显示模块支持横向多屏显示及叠加;具备2万次/个月单文件,23字节条目历史数据处理容量实现滚动记录方式,采用内存交换算法(如LRU)保留最近7日记录防止数据库拥塞:报警机制含邮件告警TCP IP,接收端口:报警系统实时写入监控界面Log_Alert
根据测量历史数据管理生产与质量分析;系统可扩展性含配方参数设定,并能上传XML质量分析数据,数据接口预留PLC模拟I/O端子便于对接S7150ET200与第三方控制器
SOCKET数据流报文通信结构(S7工业协议兼容):
TCP通信参数本地Server端口设定为2006 (字节序采用endian="Little-endian")发送请求帧字节:
+────────────+──────────+───────────+───────────────────────────+─────────+───────+
| 0EBH 报头校验 | 帧控制字 | 传感器组编号(xx) | 命令控制 | |
+────────── 2 字节 + 2 +4(8Byte) ...|
请求应答结构报文长度 = (6个实测浮点厚度值 32bit + 2工作状态参数Byte×)= (8Byte×6 + 2Byte)= 总发送50Byte(双字节对齐填充2Byte)
实验与性能验证:精度与可靠性分析,测量系统检测指标结果
表四组实验结果数据统计如下,满足≤ ±30um,最大3个标准差对应数值:S_(Nmax),实测所有样品≤23μm
其中,盖胶实验#1,手对比千分检测0.23 mm结果±2μm,在9-12:40 连续98采样数据点误差μ={ |x_i-0.00023| } : [0x60e ..0x716 hex浮点0x640单位ul], max绝对值=0.047|x-x_T|=23.1|um,与实验对比得出:连续生产线条件0.0μ= ±20μm误差概率区间为92%分布范围内
#生产质量规格统计-工艺特性:测量节拍平均为响应输出:3 sec条件稳定时,传感器数据融合周期滤波采样64/采集数据量130Hz=0.223秒
时间节拍测试曲线:启动3.2s后得到稳定采集数据:总响应由:RS48(节点总线延)1.03s,PLC输入0.17s,通讯时间 0.73 S+显示器数据显示0.54组成,验证满足3秒设计规范
表 轧不同变形下传感器采集读数波动补偿性能验证(补偿前后标准S值,μ =4单位/统计基准1K组测试结果基准4s计算):(根据间隙调整实验实验在载荷从0.3KN~~4.T作用下的数据补偿分析:原始测得激光x±0.64μm涡流变化量187um,计算补偿后σ_T<29um):结果完全满足±3要求,工业现场连续稳定实现:测量系统可靠度可达 99.94/MTBF时间:系统模拟长时间疲劳运行22x24:48hrs 故障率为 1/( 3.7X 平均无故障时间 ), 修复时间为5′。稳定性能实际应用条件已达≥9d
实验室+现场对照测试验证,得到了充分实践数据:不同载荷与环境温度运行测试条件下,经过算法稳定补偿后的厚度稳定保持 0.07≤|平均值与差异|≤ 30μm范围的工业级工程应用
研究与产品意义结论
直接应用价值:
本系统较传统人工检测效率提高≈3,365倍数据,相对于传统点抽检变为边连续连续24 实时在线跟踪,保障了每平米胎面均匀性精确控制至200μm内厚度变化趋势精度提升率到91%以上;同时无需放射设备降低耗材使用维护经费约人民币:¥2每年;人员/物资安全风险指数降78指数/千人比事故,替代人工接触与放射性危险场景
技术研究拓展意义
基于激光与涡流位移检测的方法还可广泛推广为塑料、金属涂渡层的厚度自动化检测;通过改进还进一步适应曲面形状测量检测检测,特别是复合复合材料喷涂在线性检测与快速反控制。项目研发解决了国内依赖进口高端压延厚度测量系统局面,具有完全自主知识产权,性能指标达到NDC等国外同类产品测量结果与价格优势比
| 技术对比 | 本激光涡流复 | 国外进口 |
|---- | ---- | ---- |
| 精度|±30μm|±35μm|购置成本|62万|2*6=进口NDC274 |每年维护费|≈1-2(不含)|N\DC为13万+ 服务费
图. 两种胶料纵向横向厚度对比(横坐标0-2公尺橡胶)。红色线手对比,本仪器曲线一致性相关性在0.97以上
该测量系统自2×18年投入量产装备,已成功为56条压延测量线替代原进口方案进行技术更新应用改造,实现企业年经济效益 约达985万元/三条线,并对轮胎一致性生产产生质的提升作用