服务热线: 0510-88155119
13301510675@163.com
Language

光谱共焦传感器在IC芯片测量领域的应用剖析(下)

日期: 2025-01-20
浏览次数: 173
发表于:
来自 泓川科技
发表于: 2025-01-20
浏览次数: 173

五、应用优势深度解析

5.1 提升测量精度与效率

光谱共焦传感器在 IC 芯片测量中,能够实现快速、高精度的测量,这一特性极大地提升了生产效率。其工作原理基于独特的光学共焦成像和光谱解析技术,使其能够精准地捕捉到芯片表面的细微特征和尺寸变化。在测量芯片关键尺寸时,如线宽和间距,光谱共焦传感器可以达到亚微米级甚至更高的精度,能够精确测量出极其微小的尺寸偏差,为芯片制造工艺的精细控制提供了有力保障。

同时,该传感器具备快速的数据采集和处理能力。在实际生产线上,它可以在短时间内对大量芯片进行测量,大大减少了检测时间。与传统测量方法相比,光谱共焦传感器能够实现自动化、连续测量,无需人工频繁干预,有效提高了生产效率,满足了大规模生产对测量速度和精度的双重要求。

 

5.2 降低成本与风险

采用光谱共焦传感器进行 IC 芯片测量,有助于显著降低生产成本与风险。一方面,高精度的测量能够有效减少因尺寸偏差或其他质量问题导致的废品率。在芯片制造过程中,废品的产生不仅意味着原材料的浪费,还会增加后续的返工成本和时间成本。光谱共焦传感器通过精确检测,能够及时发现芯片制造过程中的问题,帮助制造商在早期阶段采取纠正措施,避免生产出大量不合格产品,从而降低了废品率,节约了生产成本。

另一方面,通过对芯片制造过程的实时监测和反馈,光谱共焦传感器能够帮助制造商优化生产工艺,提高生产效率,减少不必要的资源浪费。例如,在晶圆制造环节,通过对晶圆厚度和平整度的精确测量,制造商可以及时调整切割、研磨等工艺参数,确保晶圆质量的一致性,减少因工艺不当导致的产品损失。在封装环节,对封装尺寸和焊球质量的精确检测,可以避免因封装问题导致的芯片失效,降低了后续产品维修和更换的风险,进一步降低了生产成本。

 

5.3 增强产品质量与竞争力

在激烈的市场竞争中,产品质量是企业立足的根本。光谱共焦传感器在 IC 芯片测量中的应用,为保障芯片质量提供了坚实的技术支撑。通过对芯片关键尺寸、表面形貌、出触点等参数的精确测量,能够确保芯片的各项性能指标符合设计要求,从而提高芯片的性能和可靠性。

高质量的芯片不仅能够提升电子产品的整体性能,还能增强产品的稳定性和耐用性,为消费者带来更好的使用体验。这使得采用该芯片的电子产品在市场上更具竞争力,有助于企业树立良好的品牌形象,赢得更多客户的信任和市场份额。光谱共焦传感器的应用,为企业在 IC 芯片领域的发展提供了强大的助力,推动企业在激烈的市场竞争中脱颖而出,实现可持续发展。

 

六、挑战与应对策略

6.1 面临的挑战

6.1.1 复杂环境干扰

在 IC 芯片制造车间中,环境因素极为复杂,对光谱共焦传感器的测量精度构成了诸多挑战。首先,温度与湿度的波动较为常见。当温度发生变化时,传感器内部的光学元件可能会因热胀冷缩而导致光路发生微小偏移 。这就如同在精密的天平上放置了一个微小的砝码,看似微不足道,却可能对测量结果产生显著影响。这种光路偏移会使得测量光的聚焦位置发生改变,从而导致测量数据出现偏差。例如,在高温环境下,传感器的测量头可能会受热膨胀,使得原本精确的测量距离发生变化,导致测量得到的芯片尺寸与实际尺寸不符。

湿度的变化同样不容小觑。高湿度环境可能会使传感器的光学镜片表面凝结水汽,如同给镜片蒙上了一层薄雾,这会严重影响光线的传输和反射效果。水汽的存在会使光线在镜片表面发生散射和折射,导致反射光的强度和波长发生改变,进而干扰传感器对反射光的准确解析,使得测量结果出现误差。

此外,生产车间中的电磁干扰也较为突出。众多大型设备,如光刻机、蚀刻机等,在运行过程中会产生强烈的电磁场。这些电磁场就像无形的 “大手”,会对光谱共焦传感器的电子元件和信号传输产生干扰。当传感器处于强电磁场环境中时,其内部的电子元件可能会受到电磁感应的影响,产生额外的电信号,这些干扰信号会叠加在原本的测量信号上,导致信号失真。在信号传输过程中,电磁场可能会使传输线路中的信号发生衰减或畸变,使得传感器接收到的反射光信号无法准确反映被测物体的真实情况,最终影响测量的精度和可靠性。

 

6.1.2 与其他工艺的协同难题

在 IC 芯片制造的复杂流程中,光谱共焦传感器需要与其他工艺环节紧密配合,但在实际操作中,存在着诸多协同难题。在光刻工艺与测量工序的衔接方面,光刻工艺对芯片表面的平整度和光刻胶的厚度要求极高。然而,在实际生产中,由于光刻过程中光刻胶的涂覆不均匀、曝光能量的波动等因素,可能会导致芯片表面的形貌发生变化,这就要求光谱共焦传感器能够及时、准确地对变化后的芯片表面进行测量,为后续的工艺调整提供数据支持。但由于光刻工艺的快速性和复杂性,传感器可能无法及时跟上光刻工艺的节奏,导致测量数据的滞后,无法为光刻工艺的实时调整提供有效的指导。

在蚀刻工艺与测量的协同方面,蚀刻过程会对芯片的尺寸和形状产生显著影响。在蚀刻过程中,由于蚀刻速率的不均匀性、蚀刻气体的浓度变化等因素,可能会导致芯片的关键尺寸出现偏差。光谱共焦传感器需要在蚀刻过程中对芯片的尺寸进行实时监测,以便及时发现问题并调整蚀刻工艺参数。但由于蚀刻过程中会产生大量的热量和化学气体,这些因素可能会对传感器的性能产生影响,导致传感器无法正常工作或测量精度下降。此外,蚀刻设备与传感器之间的通信和数据传输也可能存在问题,导致测量数据无法及时反馈到蚀刻工艺控制系统中,影响工艺的协同效果。

在芯片封装环节,封装工艺对芯片的位置和姿态要求严格。光谱共焦传感器需要在封装过程中对芯片的位置进行精确测量,确保芯片能够准确地安装到封装基座上。但在实际封装过程中,由于封装设备的振动、芯片在封装基座上的微小位移等因素,可能会导致传感器的测量结果出现偏差。此外,封装材料的光学特性也可能会对传感器的测量产生干扰,例如封装材料的反光性、透光性等因素,可能会使传感器接收到的反射光信号发生变化,从而影响测量的准确性。

 

6.2 应对策略探讨

6.2.1 技术改进方向

为了有效应对复杂环境干扰,光谱共焦传感器在技术改进方面可从多个维度发力。在优化传感器算法上,可采用先进的自适应滤波算法。这种算法如同智能的 “信号筛选器”,能够实时监测测量信号中的噪声和干扰成分,并根据环境变化自动调整滤波参数,有效滤除因温度、湿度、电磁干扰等因素产生的噪声信号,从而提高测量信号的质量和稳定性,确保测量结果的准确性。例如,当传感器检测到环境温度发生变化时,自适应滤波算法能够迅速调整滤波器的截止频率,对因温度变化导致的信号漂移进行补偿,使测量信号始终保持在稳定的状态。

在增强抗干扰能力方面,可从硬件设计入手。采用屏蔽技术,为传感器的电子元件和信号传输线路添加屏蔽层,就像给它们穿上了一层 “防护服”,能够有效阻挡外界电磁场的干扰,防止电磁场对传感器内部电路的影响,确保信号的纯净传输。优化传感器的光学结构,选用对温度和湿度变化不敏感的光学材料,如特殊的低膨胀系数玻璃材料制作镜片,能够减少因温度和湿度波动导致的光路变化,提高传感器在复杂环境下的测量稳定性。还可以在传感器的外壳设计上采用密封技术,防止水汽和灰尘进入传感器内部,保护光学元件和电子元件不受外界环境的侵蚀。

 

6.2.2 工艺整合方案

为实现光谱共焦传感器与其他工艺的无缝对接,需精心制定工艺整合方案。在光刻工艺与测量工序的协同优化中,可建立实时反馈机制。将光谱共焦传感器与光刻设备进行紧密集成,使传感器能够在光刻过程中实时监测芯片表面的形貌和光刻胶的厚度变化。一旦发现异常,传感器能够立即将测量数据反馈给光刻设备的控制系统,控制系统根据反馈数据及时调整光刻工艺参数,如曝光能量、光刻胶涂覆量等,确保光刻工艺的准确性和稳定性。例如,当传感器检测到光刻胶厚度不均匀时,光刻设备的控制系统可以自动调整光刻胶的涂覆喷头的运动轨迹和喷涂量,使光刻胶均匀地涂覆在芯片表面。

对于蚀刻工艺与测量的协同,可采用联合监测与控制策略。将光谱共焦传感器安装在蚀刻设备内部,实时监测蚀刻过程中芯片的尺寸变化。同时,将传感器与蚀刻设备的工艺控制系统进行深度融合,当传感器检测到芯片尺寸出现偏差时,控制系统能够自动调整蚀刻工艺参数,如蚀刻气体的流量、蚀刻时间等,确保芯片的关键尺寸符合设计要求。例如,当传感器检测到芯片的线宽尺寸偏大时,蚀刻设备的控制系统可以适当增加蚀刻气体的流量,加快蚀刻速率,使线宽尺寸恢复到正常范围。

在芯片封装环节,可实施精准定位与调整方案。在封装设备上安装多个光谱共焦传感器,从不同角度对芯片的位置和姿态进行精确测量。通过多传感器数据融合技术,获取芯片的准确位置信息,并将其反馈给封装设备的运动控制系统。运动控制系统根据反馈信息,精确调整芯片的位置和姿态,确保芯片能够准确地安装到封装基座上。例如,当传感器检测到芯片在封装基座上的位置出现偏移时,运动控制系统可以通过高精度的机械手臂将芯片调整到正确的位置,保证封装的准确性和可靠性。

 

七、未来趋势展望

7.1 技术发展趋势

展望未来,光谱共焦传感器的技术发展前景广阔,有望在多个关键领域实现重大突破。在测量精度方面,其有望迈向更高的台阶。随着材料科学、光学设计以及算法优化等多领域技术的协同进步,传感器的光学系统将得到进一步优化,能够更精准地聚焦光线,减少光线的散射和干扰。同时,算法的不断升级将使其能够更高效地处理和解析光信号,从而实现测量精度的显著提升,从现有的亚微米级向纳米级甚至更高精度迈进。这将为 IC 芯片制造等对精度要求极高的领域带来革命性的变化,能够更精确地检测芯片上微小的结构和缺陷,满足不断缩小的芯片尺寸和日益复杂的芯片结构对测量精度的严苛要求。

在功能拓展上,光谱共焦传感器将不仅仅局限于现有的距离、形貌等测量功能。未来,它可能会集成更多的测量参数,如应力、应变、电学性能等,实现对 IC 芯片的全方位、多参数测量。通过与其他先进技术,如人工智能、大数据分析等的深度融合,传感器能够对测量数据进行更深入的分析和挖掘,不仅能够提供单纯的测量数值,还能实现对芯片性能的预测和评估,为芯片的设计、制造和质量控制提供更全面、更有价值的信息。例如,通过对测量数据的分析,预测芯片在不同工作条件下的性能表现,提前发现潜在的故障隐患,帮助制造商优化芯片设计和制造工艺,提高芯片的可靠性和稳定性。

小型化与集成化也是光谱共焦传感器的重要发展趋势。随着电子产品不断向小型化、便携化方向发展,对传感器的尺寸和集成度提出了更高的要求。未来的光谱共焦传感器将在保证高性能的前提下,不断减小自身的体积和重量,使其更易于集成到各种小型设备和复杂的生产线上。同时,其将与其他传感器、处理芯片等进行高度集成,形成多功能的传感器模块,实现数据的快速采集、处理和传输,提高整个系统的运行效率和可靠性。例如,在芯片制造设备中,将光谱共焦传感器与其他工艺控制传感器集成在一起,实现对芯片制造过程的全面监控和实时调整,提高生产效率和产品质量。

 

7.2 在 IC 芯片产业的应用前景

在 IC 芯片产业的未来发展中,光谱共焦传感器将扮演愈发关键的角色,其应用前景极为广阔。在先进封装领域,随着芯片封装技术不断向三维封装、系统级封装等方向发展,对封装精度和可靠性的要求越来越高。光谱共焦传感器能够对封装过程中的微小尺寸、复杂结构进行高精度测量,确保封装的准确性和稳定性。例如,在 3D 封装中,对芯片堆叠的高度、对准精度等参数的精确测量至关重要,光谱共焦传感器可以满足这些高精度测量需求,为先进封装技术的发展提供有力支持,推动芯片封装向更高密度、更小尺寸、更优性能的方向发展。

在新型芯片制造工艺方面,如量子芯片、碳纳米管芯片等新兴领域的研究和发展,对测量技术提出了全新的挑战。光谱共焦传感器凭借其独特的技术优势,有望在这些领域发挥重要作用。量子芯片的制造需要对量子比特的位置、尺寸等参数进行极其精确的控制,光谱共焦传感器的高精度测量能力能够满足这一需求,为量子芯片的制造提供可靠的测量手段。对于碳纳米管芯片,其独特的材料特性和微小的结构要求测量技术具备广泛的材料适应性和高分辨率,光谱共焦传感器恰好能够满足这些要求,助力新型芯片制造工艺的研发和生产,推动 IC 芯片产业不断迈向新的技术高度。

 

八、结论

8.1 研究成果总结

本研究深入剖析了光谱共焦传感器在 IC 芯片测量中的应用,成果丰硕。在晶圆检测环节,其能精准探测表面型貌,及时揪出划痕、颗粒污染、凹坑等细微缺陷,还可对厚度与平整度进行高精度测量,为后续工艺筑牢根基。以某大型芯片制造企业为例,借助光谱共焦传感器,成功检测出光伏晶圆表面仅几微米宽的划痕,有效提升了产品良品率。在芯片 3D 形貌测量领域,以 LED 芯片测量为典型,通过高分辨率全方位扫描,构建出精确 3D 模型,助力企业优化工艺,显著提高芯片发光效率。对于芯片出触点检测,该传感器能依据反射光特性,精确测量出触点尺寸、形状,敏锐察觉表面缺陷,为保障芯片电气连接性能提供关键支撑。在封装检测方面,以 BGA 封装检测为例,光谱共焦传感器可对焊球高度、直径、共面性以及封装体与基板的贴合度等关键参数进行精确测量,有力保障了封装质量。

光谱共焦传感器在 IC 芯片测量中展现出诸多显著优势。它能实现快速且高精度的测量,精度可达亚微米级甚至更高,极大提升了生产效率。同时,高精度测量有效降低了废品率,通过实时监测与反馈优化生产工艺,显著降低了生产成本与风险。更为关键的是,其精确测量确保了芯片质量,增强了产品在市场中的竞争力,为企业赢得了良好的发展机遇。

 

8.2 研究不足与展望

尽管本研究取得了一定成果,但仍存在一些不足之处。在复杂环境干扰应对方面,虽提出了技术改进方向,但部分改进措施在实际应用中的效果还需进一步验证和优化。在与其他工艺的协同方面,工艺整合方案的实施还面临一些挑战,如设备兼容性、数据传输稳定性等问题。未来研究可着重从以下几个方向展开:一是深入研究传感器在极端环境下的性能表现,进一步完善抗干扰技术,提高传感器在复杂环境中的可靠性和稳定性。二是加强与其他工艺设备制造商的合作,共同研发更加紧密、高效的协同工作系统,实现光谱共焦传感器与其他工艺的无缝对接。三是持续关注材料科学、光学技术、算法优化等领域的最新进展,不断探索光谱共焦传感器的新功能和新应用,为 IC 芯片产业的发展提供更强大的技术支持,推动整个行业迈向更高的发展阶段。

 


News / 推荐阅读 +More
2025 - 10 - 21
点击次数: 139
在工业精密测量中,传统红光激光位移传感器常受高反射、半透明、高温红热等特殊场景限制,而蓝光光源(405nm 波长)凭借独特物理特性实现突破。以下通过 “一问一答” 形式,详解蓝光传感器的优势、原理构造,并结合泓川科技 LTP 系列定制方案,看其如何解决特殊环境测量难题。1. 蓝光光源激光位移传感器相比传统红光,核心优势是什么?蓝光传感器的核心优势源于 405nm 波长的物理特性,相比传统 655nm 左右的红光,主要体现在三方面:更高横向分辨率:根据瑞利判据,光学分辨率与波长成反比。蓝光波长仅为红光的 62%(405nm/655nm≈0.62),相同光学系统下横向分辨率可提升约 38%,能形成更小光斑(如泓川 LTP025 蓝光版光斑最小达 Φ18μm),适配芯片针脚、晶圆等微米级结构测量。更强信号稳定性:蓝光单光子能量达 3.06eV,远高于红光的 2.05eV。在低反射率材料(如橡胶、...
2025 - 09 - 05
点击次数: 128
高精度测量传感器全系列:赋能精密制造,适配多元检测需求聚焦半导体、光学膜、机械加工等领域的精密检测核心痛点,我们推出全系列高性能测量传感器,覆盖 “测厚、对焦、位移” 三大核心应用场景,以 “高精准、高速度、高适配” 为设计核心,为您的工艺控制与质量检测提供可靠技术支撑。以下为各产品系列的详细介绍:1.LTS-IR 红外干涉测厚传感器:半导体材料测厚专属核心用途:专为硅、碳化硅、砷化镓等半导体材料设计,精准实现晶圆等器件的厚度测量。性能优点:精度卓越:±0.1μm 线性精度 + 2nm 重复精度,确保测量数据稳定可靠;量程适配:覆盖 10μm2mm 测厚范围,满足多数半导体材料检测需求;高效高速:40kHz 采样速度,快速捕捉厚度数据,适配在线检测节奏;灵活适配:宽范围工作距离设计,可灵活匹配不同规格的检测设备与场景。2. 分体式对焦传感器:半导体 / 面板缺陷检测的 “高速对焦...
2025 - 09 - 02
点击次数: 117
泓川科技激光位移传感器产品技术报告尊敬的客户: 感谢您对泓川科技激光位移传感器产品的关注与信任。为帮助您全面了解我司产品,现将激光位移传感器相关技术信息从参数指标、设计原理、结构设计等八大核心维度进行详细说明,为您的选型、使用及维护提供专业参考。一、参数指标我司激光位移传感器涵盖 LTP400 系列与 LTP450 系列,各型号核心参数经纳米级高精度激光干涉仪标定验证,确保数据精准可靠,具体参数如下表所示:表 1:LTP400EA参数表参数类别具体参数LTP400EA备注基础测量参数测量中心距离400mm以量程中心位置计算(*1)量程200mm-重复精度(静态)3μm测量标准白色陶瓷样件,50kHz 无平均,取 65536 组数据均方根偏差(*2)线性度±0.03%F.S.(F.S.=200mm)采用纳米级激光干涉仪标定(*3)光源与光斑光源类型-激光功率可定制,部分型号提供 4...
2025 - 08 - 30
点击次数: 148
泓川科技发布 LT-CP 系列 ETHERCAT 总线高光谱共焦控制器,32KHz 高速采样引领工业高精度测量革新近日,工业高精度测量领域迎来技术突破 —— 泓川科技正式推出LT-CP 系列 ETHERCAT 总线高光谱共焦传感器控制器(含单通道 LT-CPS、双通道 LT-CPD、四通道 LT-CPF 三款型号,含普通光源与高亮激光光源版本)。该系列产品以 “32KHz 高速采样” 与 “ETHERCAT 工业总线” 为核心亮点,填补了行业内 “高频响应 + 实时协同” 兼具的技术空白,为新能源、半导体、汽车制造等高端领域的动态高精度测量需求提供了全新解决方案。一、核心突破:32KHz 高速采样,破解 “多通道降速” 行业痛点光谱共焦技术的核心竞争力在于 “高精度” 与 “响应速度” 的平衡,而 LT-CP 系列在速度维度实现了关键突破 ——单通道模式下最高采样频率达 32KHz,意味着...
2025 - 08 - 12
点击次数: 159
在半导体芯片制造、精密电子组装等高端工业场景中,一个棘手的矛盾始终存在:一方面,设备内部空间日益紧凑,毫米级的安装高度都可能成为 “禁区”;另一方面,随着产品结构复杂化,对测量量程的需求不断提升,5mm 以上的大量程检测已成为常态。如何在狭小空间内实现大量程精密测量?无锡泓川科技给出了突破性答案 ——光学转折镜,以创新设计让光谱共焦传感器的测量方向 “直角转向”,既节省安装空间,又兼容大量程需求,重新定义精密测量的空间可能性。传统方案的痛点:空间与量程难以两全在精密测量领域,侧出光传感器曾是狭小空间的 “救星”。泓川科技旗下 LTCR 系列作为 90° 侧向出光型号,凭借紧凑设计广泛应用于深孔、内壁等特征测量。但受限于结构设计,其量程多集中在 2.5mm 以内(如 LTCR4000 量程为 ±2mm),难以满足半导体晶圆厚度、大型精密构件高度差等大量程场景的需求。若选择...
About Us
关于泓川科技
专业从事激光位移传感器,激光焊缝跟踪系统研发及销售的科技公司
中国 · 无锡 · 总部地址:无锡新吴区天山路6号
销售热线:0510-88155119 
图文传真:0510-88152650
Working Time
我们的工作时间
周一至周五:8:00-18:00
周六至周日:9:00-15:00
Shown 企业秀 More
  • 1
    2023 - 09 - 20
    首先,让我们对TOF进行一次短暂的“速读”——它全称叫'time-of-flight',中文怎么说呢?风格洒脱地称之为“飞行时间”。你没听错,就是“飞行时间”。所有的颠覆与创新始于赤裸裸的想象,对吧?再来回过头,看看我们的主角TOF激光测距传感器。激光这东西,我想你肯定不陌生。科幻大片,医美广告里都被频繁提及。对这位明星,我们暂时按下暂停键, 我们聊一聊测距传感器——那可是能把复杂的三维世界,硬是证明成一串串精准数据的硬核工具。当然,他俩的组合,并不是偶然撞壁造成的火花。在“鹰眼”TOF的身上,激光变得更加酷炫,传感器技术也变得更为深邃。他们共舞的主线,就是光的飞行时间。想象一下,要在现实世界计算出光从物体发射出来,然后反射回传感器的时间。你愣了一秒,觉得好像进入了'黑洞'的领域。实则不然,TOF激光测距传感器就是这样“耳提面命”。它以光速旅行者的姿态,穿越空间,告诉我们物体与之间的距离。亲,你有听说过光速吗?大约每秒走30万公里哦,这个速度足够你在一秒钟内去绕地球七点五圈了!TOF激光测距传感器就是他们利用这么一个迅疾的光速,再加上高精度的时钟,来高效精确地计算出飞行时间并转化为距离数据。小编想说,TOF不仅玩科技,他更玩智谋,战胜了同类的超声波、红外线等测距设备。毕竟,被物的颜色、亮度、表面材质,或者环境的温湿度对他来说都不构成锁链。准确到“下毛...
  • 2
    2025 - 03 - 06
    背景与挑战随着电子封装技术的快速发展,直接镀铜陶瓷基板(DPC)因具备优异的导热性、机械强度及耐高温性能,被广泛应用于大功率LED、IGBT模块等领域。然而,其表面金属镀层的厚度均匀性直接影响器件的散热效率与可靠性。某客户需对一批DPC基板进行全检,要求**在正反面各选取10个金属块(含2个重复基准点)**进行高精度厚度测量,并同步获取表面轮廓与中心区高度数据,以满足严格的工艺质量控制标准。解决方案针对客户需求,我们采用LTC1200系列光谱共焦传感器(配套高精度运动平台与测控软件),设计了一套非接触式三维测厚方案:设备选型量程:±600μm(覆盖金属层典型厚度范围)重复精度:0.03μm(静态,确保基准点数据一致性)线性误差:<±0.3μm(满足亚微米级公差要求)采样频率:10kHz(高速扫描提升检测效率)选用LTC1200B型号传感器(光斑直径约19μm),兼顾测量精度与金属表面反射特性需求,其技术参数如下:搭配亚微米级定位平台,确保扫描路径精确控制。基准点设定以陶瓷基板裸露区域作为基准面,在正反面各设置2个重复测量点,通过传感器实时比对基准高度数据,消除基板翘曲或装夹误差对厚度计算的影响。实施流程数据采集:沿预设路径扫描金属块,同步记录轮廓点云与中心区高度(软件自动拟合最高点作为厚度参考值)。厚度计算:基于公式:\text{金属层厚度} = \text{金...
  • 3
    2023 - 09 - 25
    由于半导体生产工艺的复杂性和精密性,对晶圆切割的技术要求极高,传统的机械切割方式已经无法满足现代电子行业的需求。在这种情况下,光谱共焦位移传感器配合激光隐切技术(激光隐形切割)在晶圆切割中发挥了重要作用。以下将详细介绍这种新型高效切割技术的应用案例及其优势。原理:利用小功率的激光被光谱共焦位移传感器设定的预定路径所导,聚焦在直径只有100多纳米的光斑上,形成巨大的局部能量,然后根据这个能量将晶圆切割开。光谱共焦位移传感器在切割过程中实时检测切口深度和位置,确保切口的深广和位置的精确性。激光隐切与光谱共焦位移传感器结合的应用案例:以某种先进的半导体制程为例,晶圆经过深刻蚀、清洗、扩散等步骤后,需要进行精确切割。在这个过程中,首先,工程师根据需要的切割图案在软件上设定好切割路径,然后切割机通过光谱共焦位移传感器引导激光按照预定的路径且此过程工程师可以实时观察和测量切口深度和位置。优点:这种技术最大的优势就是它能够实现超微细切割,避免了大功率激光对芯片可能会带来的影响。另外,因为切割的深度和位置可以实时调控,这 法也非常具有灵活性。同时,由于使用光谱共焦位移传感器精确控制切割的深度和位置,所以切割出来的晶圆表面平整,质量更好。总的来看,光谱共焦位移传感器配合激光隐切在晶圆切割中的应用,不仅提升了生产效率,减少了废品率,而且大幅度提升了产品质量,对于当前和未来的半导体行业都将是一个革新的技...
  • 4
    2024 - 03 - 05
    非接触式激光位移传感器在生产线上的应用具有多方面的优势,下面将从精度、速度、可靠性、灵活性和安全性等方面进行逐一分析,并通过具体的应用场景来说明其应用价值。同时,还会与传统的接触式传感器进行比较,以突显非接触式激光位移传感器的独特优势。精度:非接触式激光位移传感器采用激光三角测量法,具有极高的测量精度。例如,在半导体制造过程中,需要精确控制薄膜的厚度,非接触式激光位移传感器可以实现微米级的测量精度,从而确保产品质量。相比之下,传统接触式传感器可能会因为接触力度的不同而影响测量精度。速度:非接触式激光位移传感器具有快速响应的特点,可以在生产线上实现高速测量。例如,在包装机械中,需要实时监测包装材料的位置和速度,非接触式激光位移传感器可以迅速捕捉到这些变化,从而确保包装过程的顺利进行。而传统接触式传感器可能会因为接触摩擦等因素而影响测量速度。可靠性:非接触式激光位移传感器无需与目标物体直接接触,因此可以避免因摩擦、磨损等因素导致的传感器损坏。此外,非接触式传感器还具有较好的抗干扰能力,可以在恶劣的生产环境中稳定工作。相比之下,传统接触式传感器更容易受到环境因素的影响而出现故障。灵活性:非接触式激光位移传感器可以适应不同的测量需求,通过调整激光发射角度、接收透镜焦距等参数,可以实现不同距离、不同角度的测量。此外,非接触式传感器还可以与计算机、PLC等设备进行连接,实现自动化控制和数据处理...
  • 5
    2025 - 03 - 27
    1. 引言在工业自动化领域,激光位移传感器是实现高精度非接触测量的核心器件。基恩士 IL-S025 作为市场主流产品,以其 1μm 重复精度和稳定性能著称。然而,随着国产传感器技术的突破,泓川科技 LTM3-030/LTM3-030W 型号凭借更高的性能参数和经济性,为用户提供了新的选择。本文将从技术参数、性能表现、应用场景等方面,深入对比分析两者的替代可行性。 2. 核心技术参数对比参数基恩士 IL-S025泓川科技 LTM3-030/LTM3-030W对比结论重复精度1μm0.25μm(LTM3-030)/ 0.25μm(LTM3-030W)LTM3 系列更优(4 倍精度提升)线性误差±0.075% F.S.(±5mm 范围)LTM3-030W 更优(接近 IL-S025)测量范围±5mm(参考距离 25mm)±5mm(参考距离 30mm)等效采样频率3kHz(采样周期 0.33ms)10kHzLTM3 系列更优(3倍速度提升)光斑尺寸25×1200μm(线性光斑)Φ35μm(M3-030)/ Φ35×400μm(M3-030W)LTM3 系列光斑更小(点光斑更聚焦)光源类型660nm 激光(Class 2)655nm 激光(Class 2)等效接口配置需外接放大器单元(支持 EtherNet/IP 等)...
  • 6
    2025 - 01 - 16
    一、引言1.1 研究背景与目的在汽车行业迈向智能化与自动化的进程中,先进驾驶辅助系统(ADAS)作为关键技术,正发挥着愈发重要的作用。ADAS 凭借多种传感器与智能算法,能够实时监测车辆周边环境,为驾驶员提供预警与辅助控制,极大地提升了驾驶的安全性与舒适性。本报告旨在深入剖析《ADAS 相关工具 核心功能 & 技术》中所涉及的 ADAS 相关工具应用案例,通过详细描述各案例的具体应用场景、工作原理及达成的效果,深度挖掘这些工具在汽车制造及 ADAS 系统开发过程中的重要价值,为行业内相关人员提供具有实际参考意义的信息,助力推动 ADAS 技术的进一步发展与广泛应用。 1.2 研究方法与数据来源本报告通过对《ADAS 相关工具 核心功能 & 技术》进行全面细致的整理与深入分析,从中系统地提取出各类 ADAS 相关工具的应用案例。在分析过程中,对每个案例的技术原理、应用场景以及所实现的功能进行了详细阐述,并结合实际情况进行了深入探讨。本文所引用的 ADAS 相关工具的应用案例及技术原理均来自《ADAS 相关工具 核心功能 & 技术》文档,该文档为此次研究提供了丰富且详实的一手资料,确保了研究的准确性与可靠性。 二、车载相机应用案例剖析2.1 底部填充胶涂抹高度测量2.1.1 案例描述在汽车电子制造中,车载相机的底部填充胶涂抹高度对于确保相机的...
  • 7
    2022 - 12 - 03
    激光测距传感器的功能,你了解多少呢?大家好,我是无锡宏川传感学堂的李同学。激光测距传感器的功能可分为距离测量和窗口测量。其中距离测量在测距应用中传感器可以随时投入使用。直接给出与物体之间的距离。测量值可用于系统控制或者物体的精准定位。此外还可以选择对数字量模拟,量输出进行调整。如果需要检测尺寸较小的物体。可直接进行窗口测量。通过对参照物进行自学习,传感器可直接测得与标称尺寸的偏差。在这种情况下,数字量输出也可以进行相应的参数进行。除了传感器的尺寸和测量范围。光斑的形状也尤其重要,点击光代表精准聚焦。能精确测量小尺寸的物体。线激光能可靠测量粗糙度比较大的表面积。带纹理的彩色表面。在光泽不均匀或极其粗糙的表面上也能进行稳定的测量。
  • 8
    2023 - 10 - 01
    '新吴科之匠',泓川科技有限公司全新打造的传感器新标杆,我们凝聚高端技术力量,专注于高精度、高性能的激光位移传感器LTP系列,光谱共焦传感器LTC系列,白光干涉测厚传感器,线光谱共焦传感器,以及3D结构光和3D线激光。 强大的研发能力和对细节无穷追求,让我们的产品在每个细微处都彰显出卓越品质。'新吴科之匠'不仅寓意着尖端科技的集中体现,更代表着对品质的极致追求。我们相信,只有最好,才能过硬。
Message 最新动态
蓝光光源激光位移传感器:优势、原理与特殊场景解决方案 —— 泓川科技 LTP 系列 405nm 定制... 2025 - 10 - 21 在工业精密测量中,传统红光激光位移传感器常受高反射、半透明、高温红热等特殊场景限制,而蓝光光源(405nm 波长)凭借独特物理特性实现突破。以下通过 “一问一答” 形式,详解蓝光传感器的优势、原理构造,并结合泓川科技 LTP 系列定制方案,看其如何解决特殊环境测量难题。1. 蓝光光源激光位移传感器相比传统红光,核心优势是什么?蓝光传感器的核心优势源于 405nm 波长的物理特性,相比传统 655nm 左右的红光,主要体现在三方面:更高横向分辨率:根据瑞利判据,光学分辨率与波长成反比。蓝光波长仅为红光的 62%(405nm/655nm≈0.62),相同光学系统下横向分辨率可提升约 38%,能形成更小光斑(如泓川 LTP025 蓝光版光斑最小达 Φ18μm),适配芯片针脚、晶圆等微米级结构测量。更强信号稳定性:蓝光单光子能量达 3.06eV,远高于红光的 2.05eV。在低反射率材料(如橡胶、有机涂层)表面,能激发出更强散射信号;同时穿透性更低,仅在材料表层作用,避免内部折射干扰,适合表面精准测量。更优抗干扰能力:蓝光波段与红热辐射(500nm 以上)、户外强光(可见光为主)重叠度低,搭配专用滤光片后,可有效隔绝高温物体自发光、阳光直射等干扰,这是红光难以实现的。2. 蓝光激光位移传感器的原理构造是怎样的?为何能实现高精度测量?蓝光传感器的高精度的核心是 “光学设计 + 信号处理 + ...
泓川科技国产系列光谱共焦/激光位移传感器/白光干涉测厚产品性能一览 2025 - 09 - 05 高精度测量传感器全系列:赋能精密制造,适配多元检测需求聚焦半导体、光学膜、机械加工等领域的精密检测核心痛点,我们推出全系列高性能测量传感器,覆盖 “测厚、对焦、位移” 三大核心应用场景,以 “高精准、高速度、高适配” 为设计核心,为您的工艺控制与质量检测提供可靠技术支撑。以下为各产品系列的详细介绍:1.LTS-IR 红外干涉测厚传感器:半导体材料测厚专属核心用途:专为硅、碳化硅、砷化镓等半导体材料设计,精准实现晶圆等器件的厚度测量。性能优点:精度卓越:±0.1μm 线性精度 + 2nm 重复精度,确保测量数据稳定可靠;量程适配:覆盖 10μm2mm 测厚范围,满足多数半导体材料检测需求;高效高速:40kHz 采样速度,快速捕捉厚度数据,适配在线检测节奏;灵活适配:宽范围工作距离设计,可灵活匹配不同规格的检测设备与场景。2. 分体式对焦传感器:半导体 / 面板缺陷检测的 “高速对焦助手”核心用途:针对半导体、面板领域的高精度缺陷检测场景,提供高速实时对焦支持,尤其适配显微对焦类检测设备。性能优点:对焦速度快:50kHz 高速对焦,同步匹配缺陷检测的实时性需求;对焦精度高:0.5μm 对焦精度,保障缺陷成像清晰、检测无偏差;设计灵活:分体式结构,可根据检测设备的安装空间与布局灵活调整,降低适配难度。3. LT-R 反射膜厚仪:极薄膜厚检测的 “精密管家”核心用途:专注于极薄膜...
多方面研究泓川科技LTP系列大量程全国产激光位移传感器 2025 - 09 - 02 泓川科技激光位移传感器产品技术报告尊敬的客户: 感谢您对泓川科技激光位移传感器产品的关注与信任。为帮助您全面了解我司产品,现将激光位移传感器相关技术信息从参数指标、设计原理、结构设计等八大核心维度进行详细说明,为您的选型、使用及维护提供专业参考。一、参数指标我司激光位移传感器涵盖 LTP400 系列与 LTP450 系列,各型号核心参数经纳米级高精度激光干涉仪标定验证,确保数据精准可靠,具体参数如下表所示:表 1:LTP400EA参数表参数类别具体参数LTP400EA备注基础测量参数测量中心距离400mm以量程中心位置计算(*1)量程200mm-重复精度(静态)3μm测量标准白色陶瓷样件,50kHz 无平均,取 65536 组数据均方根偏差(*2)线性度±0.03%F.S.(F.S.=200mm)采用纳米级激光干涉仪标定(*3)光源与光斑光源类型-激光功率可定制,部分型号提供 405nm 蓝光版本(*4)光束直径聚焦点光斑 Φ300μm中心位置直径,两端相对变大(*5)电气参数电源电压DC9-36V-功耗约 2.5W-短路保护反向连接保护、过电流保护-输出与通信模拟量输出(选配)电压:0-5V/010V/-1010V;电流:420mA探头可独立提供电压、电流与 RS485 输出(*6)通讯接口RS485 串口、TCP/IP 网口可选配模拟电压 / 电流输出模块(*7)响应...
Copyright ©2005 - 2013 无锡泓川科技有限公司

1

犀牛云提供企业云服务
Our Link
X
3

SKYPE 设置

4

阿里旺旺设置

等待加载动态数据...

等待加载动态数据...

5

电话号码管理

  • 0510-88155119
6

二维码管理

等待加载动态数据...

等待加载动态数据...

展开