服务热线: 0510-88155119
13301510675@163.com
Language

光谱共焦传感器在IC芯片测量领域的应用剖析(上)

日期: 2025-01-20
浏览次数: 71
发表于:
来自 泓川科技
发表于: 2025-01-20
浏览次数: 71

一、引言

1.1 研究背景与意义

在当今数字化时代,IC 芯片作为现代电子设备的核心部件,其重要性不言而喻。从智能手机、电脑到汽车电子、工业控制,乃至新兴的人工智能、物联网等领域,IC 芯片无处不在,如同电子设备的 “大脑”,掌控着设备的运行与功能实现。其发展水平不仅是衡量一个国家科技实力的重要标志,更在全球经济竞争中占据着关键地位。

近年来,IC 芯片产业呈现出蓬勃发展的态势。随着摩尔定律的持续推进,芯片的集成度不断提高,尺寸愈发微小,性能却实现了质的飞跃。与此同时,5G、人工智能、大数据等新兴技术的迅猛发展,为 IC 芯片产业注入了强大的发展动力,市场对芯片的需求呈现出爆发式增长。

在 IC 芯片制造的复杂流程中,精确测量起着举足轻重的作用,如同工匠手中精准的量具,确保每一个环节都达到极高的精度标准。从芯片设计阶段的版图测量,到制造过程中的光刻、蚀刻、沉积等工艺的尺寸控制,再到封装测试阶段对芯片外形、引脚等的精确测量,每一步都离不开高精度测量技术的支撑。只有通过精确测量,才能保证芯片的性能、良率以及可靠性,满足市场对高质量芯片的严苛要求。

光谱共焦传感器作为一种先进的测量技术,凭借其独特的工作原理和卓越的性能优势,在 IC 芯片测量领域展现出了巨大的潜力。它能够实现对芯片表面形貌、厚度、尺寸等参数的高精度非接触测量,为芯片制造提供了可靠的数据支持。这种高精度测量对于提高芯片制造工艺的精度与稳定性至关重要,就像为芯片制造的精密机器提供了精准的导航系统,能够有效减少制造过程中的误差,降低废品率,从而降低生产成本,提高生产效率。同时,它还能助力芯片性能的提升,推动 IC 芯片产业朝着更高集成度、更小尺寸、更优性能的方向发展,为整个电子行业的创新与进步奠定坚实基础。

 

1.2 研究目的与方法

本研究旨在深入剖析光谱共焦传感器在 IC 芯片测量中的具体应用,全面揭示其在提高芯片制造精度、提升产品质量以及降低生产成本等方面的重要作用。通过对光谱共焦传感器工作原理、技术特点以及在不同 IC 芯片测量场景中的应用案例进行详细分析,为相关企业和研究人员提供有价值的参考,助力其在芯片制造过程中更好地选择和应用该技术,进而推动 IC 芯片产业的高质量发展。

在研究过程中,本报告采用了多种研究方法,以确保研究的全面性、准确性和可靠性。首先,通过广泛的文献研究,收集了大量国内外关于光谱共焦传感器技术以及在 IC 芯片测量应用方面的学术论文、研究报告、行业资讯等资料。对这些资料进行深入分析和梳理,了解该领域的研究现状、技术发展趋势以及存在的问题,为后续的研究提供了坚实的理论基础。

其次,选取了多个具有代表性的实际案例进行深入分析。这些案例涵盖了不同类型的 IC 芯片制造企业以及多种测量应用场景,通过对实际案例的详细研究,能够直观地了解光谱共焦传感器在实际应用中的效果、优势以及面临的挑战。通过与企业相关技术人员的沟通交流,获取了第一手的实践数据和经验,进一步丰富了研究内容。

此外,还将光谱共焦传感器与其他常见的测量技术进行了对比分析。从测量精度、测量范围、适用场景、成本等多个维度进行对比,明确了光谱共焦传感器在 IC 芯片测量领域的独特优势以及与其他技术的差异,为用户在选择测量技术时提供了清晰的参考依据。

通过综合运用上述研究方法,本研究能够全面、深入地探讨光谱共焦传感器在 IC 芯片测量中的应用,为推动该技术在 IC 芯片产业的广泛应用和发展提供有力的支持。

 

 

二、光谱共焦传感器基础剖析

2.1 工作原理详解

2.1.1 光学共焦成像机制

光谱共焦传感器主要是巧妙地利用光学共焦成像技术来开展工作。其工作伊始,由一个宽光谱的光源,如 LED 光源,射出一束复色光,这束光就如同一条色彩斑斓的光带,蕴含着丰富的波长信息 。紧接着,这束复色光通过一个特殊设计的色散镜头,色散镜头就像是一个神奇的 “光分离器”,使得光在其中发生光谱色散现象。在这个过程中,原本混合在一起的复色光按照不同的波长被分离出来,在量程范围内形成了不同波长的单色光。

每一个波长的单色光都具有独特的光学特性,它们沿着光轴传播时,会在不同的位置聚焦,每个波长的焦点都与一个特定的距离值相对应。这就如同在光轴上绘制了一把精细的 “距离刻度尺”,每个刻度都对应着特定波长光的聚焦位置。

当这些测量光射到物体表面后,会被物体表面反射回来。而在传感器内部,存在一个精心设计的共焦装置,其核心是一个位于光电探测器前面的小孔,这个小孔如同一个严格的 “筛选门卫”,也被称为空间滤波器。在反射光的传播过程中,只有那些满足共聚焦条件的特定波长的单色光,才能够恰好聚焦在这个小孔上,进而顺利通过小孔,被后方的光谱仪所感测到。其他波长的光由于无法聚焦在小孔上,成像点过大,会被小孔阻挡在外 。

通过这种共焦成像机制,光谱共焦传感器能够有效地收集物体表面反射回来的特定散射光,为后续的光谱解析和距离测算提供了准确且纯净的光信号。这种独特的成像方式,使得传感器能够排除大部分杂散光的干扰,大大提高了测量的精度和可靠性 。

 

2.1.2 光谱解析与距离测算

在特定波长的单色光成功通过小孔被光谱仪感测到后,光谱仪便开始发挥其关键作用。光谱仪如同一位精细的 “光分析师”,它对收集到的光信号进行深入的解析,准确识别出该单色光的波长值。

在光谱共焦传感器的设计中,事先建立了一套精确的波长 - 距离标定关系。这就像是一本详细的 “光波长与距离对应词典”,每一个波长都能在其中找到与之对应的精确距离值。通过查询这个标定关系,光谱共焦传感器能够将光谱仪所识别出的反射光的波长,精准地换算为被测物体表面到传感器的距离值。

例如,假设在某一次测量中,光谱仪检测到通过小孔的单色光波长为 λ1,根据预先建立的波长 - 距离标定曲线或函数关系,就可以快速查找到波长 λ1 所对应的距离值 d1,这个 d1 就是被测物体表面在该测量点的位置信息。

更为精妙的是,通过对不同测量点的距离值进行进一步的计算和分析,光谱共焦传感器还能够获取到被测物体的多种关键信息。比如,通过计算多个测量点之间的位移数值,可以精确得出物体的平面度数据,了解物体表面的平整程度;对于透明或多层结构的物体,利用不同波长的光在物体不同层面的反射特性,还能够测量出物体的厚度数据 。这种基于光谱解析和精确换算的距离测算方法,使得光谱共焦传感器在对物体进行测量时,能够提供丰富、准确且高精度的测量结果,为众多领域的精密测量需求提供了有力的技术支持。

 

2.2 技术特性呈现

2.2.1 高精度测量能力

光谱共焦传感器在测量精度方面表现卓越,能够达到令人惊叹的亚微米级超高测量精度。这一特性使其在 IC 芯片测量领域中脱颖而出,成为满足芯片制造过程中精细测量需求的理想选择。在 IC 芯片制造过程中,芯片的线宽、层间厚度以及各种微小结构的尺寸精度都对芯片的性能和可靠性有着至关重要的影响。例如,先进制程的 IC 芯片中,线宽已经缩小到几纳米甚至更小的尺度,层间厚度也需要精确控制在亚微米级别。光谱共焦传感器凭借其高精度的测量能力,能够对这些微小尺寸进行精确测量,如同拿着一把极其精细的尺子,不放过任何一个细微的尺寸偏差。通过精确测量,能够及时发现芯片制造过程中的尺寸误差,为工艺调整和优化提供准确的数据依据,从而确保芯片的制造质量,提高芯片的性能和良率。

 

2.2.2 广泛材料适应性

该传感器具有广泛的材料适应性,这使其在面对 IC 芯片制造中涉及的多种复杂材料时,都能游刃有余地进行测量。无论是具有高反射率的镜面材料,还是光线散射较为复杂的漫反射材料;无论是对光线具有良好穿透性的透明材料,如芯片制造中的一些绝缘层材料,还是吸收光线能力较强的不透明材料,光谱共焦传感器都可以适用。这种广泛的材料适应性源于其独特的工作原理。在测量过程中,它主要通过对反射光的波长信息进行解析来获取距离数据,而不是依赖于被测材料的特定光学性质,因此不同材料的表面特性对测量结果的影响较小。例如,在测量 IC 芯片中的金属导线(镜面材料)和绝缘介质层(透明或半透明材料)时,光谱共焦传感器能够使用相同的测量方式,准确地获取它们的尺寸和位置信息,无需针对不同材料进行复杂的参数调整或更换测量设备,大大提高了测量的效率和通用性。

 

2.2.3 稳定可靠性能

在 IC 芯片制造的复杂环境中,光谱共焦传感器展现出了出色的稳定可靠性能。无论是面对生产线上的机械振动、温度波动等环境因素,还是长时间不间断的测量工作,它都能始终保持稳定的测量状态,提供可靠的测量结果。这一特性得益于其精心设计的光学结构和先进的信号处理算法。在光学结构方面,传感器采用了坚固耐用的材料和精密的装配工艺,能够有效抵抗外界振动对光路的干扰,确保光线的传播和聚焦稳定。同时,其内部的光学元件经过特殊设计和处理,对温度变化不敏感,能够在一定的温度范围内保持良好的光学性能。在信号处理算法方面,光谱共焦传感器配备了先进的算法,能够对采集到的光信号进行实时监测和优化处理。当遇到环境干扰导致光信号出现波动时,算法能够迅速识别并进行补偿和校正,从而保证测量结果的准确性和稳定性。例如,在芯片制造的光刻环节,设备在高速运行过程中会产生一定的振动,光谱共焦传感器能够在这种振动环境下,持续稳定地测量光刻胶的厚度和图案尺寸,为光刻工艺的精确控制提供可靠的数据支持,确保芯片制造过程的顺利进行 。

 

三、IC 芯片测量的严苛要求

3.1 IC 芯片制造工艺与流程

IC 芯片的制造堪称一场精妙绝伦的微观世界的 “建造工程”,其工艺之复杂、流程之精细,令人叹为观止。这一过程宛如一场精心编排的交响乐,每一个环节都紧密相连,不可或缺,从最初的设计蓝图,到最终的成品封装,每一步都凝聚着无数科研人员和工程师的智慧与心血。

芯片制造的起点是设计阶段,这就好比建造一座宏伟建筑前的精心规划。芯片设计工程师们运用先进的计算机辅助设计(CAD)软件,如同技艺精湛的建筑师绘制建筑蓝图一般,根据芯片的功能需求和性能标准,精心勾勒出电路原理图和布局图。这一过程绝非易事,工程师们需要深入考虑芯片的各种功能特性,如运算速度、功耗、集成度等,同时还要兼顾成本和生产可行性。例如,在为高性能处理器设计芯片时,工程师们需要巧妙地优化电路布局,以实现高速数据处理的同时,尽可能降低功耗,提高芯片的能效比。

完成设计后,便进入了晶圆制造环节。芯片通常以硅材料为基础,因此硅材料的处理至关重要。首先,需要对硅材料进行高纯度提炼,这一过程就像是从矿石中提炼出纯净的黄金,任何微小的杂质都可能在后续工艺中引发严重问题,如同在精密仪器中混入一粒沙子,可能导致整个仪器的故障。经过高纯度处理的硅材料被切割成薄片状的晶圆,这些晶圆就如同芯片制造的 “画布”,为后续的工艺提供了基础平台。

光刻工艺是芯片制造中的关键环节,其重要性犹如在画布上绘制精细的图案。在光刻过程中,晶圆表面会均匀地涂上一层光刻胶,这层光刻胶就像是画布上的感光涂料。随后,利用光刻机将设计好的电路图案投射到光刻胶上,光刻机如同一个高精度的投影仪,利用紫外线等光源通过掩膜版,将电路图案精确地 “印” 在光刻胶上。随着光刻技术的不断进步,如今的光刻机能够达到令人惊叹的分辨率,使得在微小的芯片上制造出更加精细、复杂的电路成为可能,这也是推动半导体技术不断向微型化发展的核心动力之一。

光刻完成后,紧接着是蚀刻过程。这一过程就像是一位技艺高超的雕刻师,使用化学物质或等离子体小心翼翼地去除未被光刻胶保护的部分,从而在晶圆上刻出精细的电路图案。蚀刻工艺的精度要求极高,需要在微米级甚至更细微的尺度上实现复杂电路的精准制作,任何一丝偏差都可能导致芯片功能的失效,其精度要求之高,堪比在发丝上雕刻出精美的图案。

离子注入阶段则是芯片制造中的 “魔法时刻”。在这一环节中,特定杂质离子被注入晶圆,如同给晶圆赋予了特殊的 “魔力”,以改变晶圆的电气性能,形成晶体管的源极、漏极和沟道等关键结构。这一技术对于实现芯片的高性能至关重要,它直接决定了芯片的开关速度和功耗等关键性能指标,就如同发动机的核心部件决定了汽车的动力和油耗一样。

沉积工艺如同在晶圆表面铺上一层又一层的 “保护衣”。通过物理气相沉积或化学气相沉积等方法,在晶圆表面沉积一层绝缘层或导电层,如二氧化硅和金属材料等。这些沉积层不仅确保了芯片内部电路的良好连接,如同桥梁连接着各个岛屿,使电流能够顺畅地流通,还能有效防止外界的干扰,保护芯片内部的精密电路不受外界因素的影响。

化学机械抛光(CMP)工艺则是芯片制造中的 “美容师”。它对晶圆表面进行精细的平坦化处理,就像将粗糙的地面打磨得光滑如镜,以确保后续工艺的精度。CMP 工艺对于提高芯片的良品率起着关键作用,它能够极大地改善晶圆的光洁度,为后续的制造工序提供稳定的基础,确保每一个芯片都能达到高质量的标准。

整个芯片制造过程的最后一步是测试与封装。完成制造的芯片需要经过严格的测试,这就像是对一位运动员进行全面的体能测试,以确保其性能和功能符合预定的规格。只有通过测试的芯片,才有资格进入封装环节。封装不仅为芯片提供了坚固的保护外壳,如同给珍贵的宝石镶嵌上精美的边框,使其能够在各种复杂的环境中稳定工作,还为芯片提供了引脚接口,使其能够方便地安装到各类电子设备中,实现与其他部件的连接和协同工作。

在整个芯片制造过程中,每一个环节都对测量技术有着极高的需求。从晶圆的尺寸测量、平整度检测,到光刻过程中的图案对准精度测量,再到蚀刻后的电路尺寸测量等,精确测量贯穿始终。精确的测量数据就像是芯片制造过程中的指南针,为工艺控制和质量保证提供了关键依据,确保每一个芯片都能达到高质量的标准,满足市场对芯片性能和可靠性的严苛要求。

 

3.2 测量参数及精度需求

3.2.1 关键尺寸测量精度

在 IC 芯片制造领域,关键尺寸的测量精度无疑是重中之重,其重要性犹如心脏对于人体的作用,直接关乎芯片的性能、功能以及最终的成品质量。所谓关键尺寸,涵盖了芯片制造过程中众多极其细微却又至关重要的尺寸参数,其中线宽和间距便是最为关键的代表。

线宽,简单来说,就是芯片电路中导线的宽度。在当今先进的芯片制程工艺中,线宽的尺寸已经缩小到了令人难以置信的程度。以 7 纳米制程的芯片为例,其线宽仅为 7 纳米,这一尺寸小到什么程度呢?打个比方,一根头发丝的直径大约是 6 万 - 8 万纳米,也就是说,7 纳米的线宽仅为头发丝直径的万分之一左右,如此微小的尺寸,对测量精度的要求自然是达到了极致。在芯片制造过程中,线宽的任何细微偏差,哪怕只是几纳米的误差,都可能引发一系列严重的问题。例如,线宽过宽可能导致芯片的集成度降低,无法在有限的空间内集成更多的电路元件,从而影响芯片的性能提升;而线宽过窄,则可能使导线的电阻增大,导致电流传输过程中的能量损耗增加,芯片发热严重,甚至可能出现电路短路等故障,使芯片无法正常工作。

间距,即芯片上不同电路元件之间的距离,同样需要严格控制在极小的公差范围内。在先进制程的芯片中,间距也往往在纳米级别。精确的间距控制对于保证芯片的电气性能和可靠性起着至关重要的作用。如果间距过大,会浪费芯片的宝贵空间,降低芯片的集成度;而间距过小,则可能引发信号干扰等问题,影响芯片的正常运行。例如,在高速运算的芯片中,信号在不同电路元件之间传输时,如果间距不合理,可能会导致信号延迟、串扰等问题,从而降低芯片的运算速度和准确性。

为了满足如此严苛的关键尺寸测量精度要求,光谱共焦传感器凭借其卓越的性能,成为了理想的测量工具。光谱共焦传感器能够达到亚微米级甚至更高的测量精度,这使其能够对芯片上的线宽、间距等关键尺寸进行极其精确的测量。它就像是一位拥有超级视力的 “微观测量大师”,能够精准地捕捉到芯片上微小尺寸的任何细微变化。通过对关键尺寸的精确测量,制造商可以及时发现芯片制造过程中的工艺偏差,迅速采取相应的调整措施,确保每一个芯片都能符合设计要求,从而提高芯片的制造质量和良品率。

 

3.2.2 形貌与平整度要求

IC 芯片的表面形貌与平整度同样是衡量芯片质量的关键指标,其对于芯片的性能和可靠性的影响不容小觑。芯片的表面并非我们肉眼所见的那般平整光滑,在微观尺度下,它如同一个复杂的微观世界,存在着各种起伏和纹理。而芯片的 3D 形貌,即芯片表面在三维空间中的形状和特征,以及平整度,也就是芯片表面的平坦程度,对芯片的诸多性能都有着深远的影响。

在芯片制造过程中,许多工艺环节都对芯片的表面形貌与平整度有着严格的要求。例如,光刻工艺作为芯片制造的核心环节之一,对芯片表面的平整度要求极高。光刻过程中,需要将光刻胶均匀地涂覆在芯片表面,并通过光刻机将电路图案精确地投射到光刻胶上。如果芯片表面存在较大的起伏或不平整,那么光刻胶的厚度就会不均匀,导致在光刻过程中,光线的透过和聚焦情况发生变化,最终使得光刻图案的精度受到影响,可能出现图案变形、线条粗细不均匀等问题,严重影响芯片的性能和功能。

再如,在芯片的封装过程中,芯片与封装材料之间的良好接触对于保证芯片的可靠性至关重要。如果芯片表面不平整,可能会导致封装材料与芯片之间存在空隙或接触不良,从而影响芯片的散热性能和电气连接稳定性。在芯片工作时,产生的热量无法及时有效地散发出去,会导致芯片温度升高,进而影响芯片的性能和寿命;而电气连接不稳定则可能引发信号传输中断、短路等故障,使芯片无法正常工作。

为了确保芯片的表面形貌与平整度符合严格的标准,需要进行高精度的测量。光谱共焦传感器在这方面展现出了强大的优势。它能够对芯片表面进行高精度的 3D 测量,通过获取大量的测量点数据,精确地还原出芯片表面的三维形貌。同时,利用其先进的算法和数据分析能力,能够准确地计算出芯片表面的平整度参数,如平面度、粗糙度等。通过对这些参数的精确测量和分析,制造商可以及时发现芯片表面存在的问题,并采取相应的工艺改进措施,如化学机械抛光(CMP)等,对芯片表面进行平坦化处理,以确保芯片的表面形貌与平整度满足要求,提高芯片的性能和可靠性。

 

3.2.3 其他参数测量要点

除了关键尺寸、形貌与平整度这些重要参数外,IC 芯片制造过程中还有许多其他参数需要精确测量,这些参数同样对芯片的质量和性能起着不可或缺的作用。

芯片触点的测量便是其中一个关键要点。芯片触点作为芯片与外部电路连接的桥梁,其尺寸、形状以及位置的准确性直接影响着芯片的电气连接性能。例如,触点的尺寸如果不符合设计要求,可能会导致接触电阻增大,从而影响信号传输的稳定性和效率;触点的形状不规则则可能使芯片与外部电路的连接不牢固,在使用过程中容易出现接触不良的情况;而触点位置的偏差则可能导致芯片无法与外部电路正确对接,使芯片无法正常工作。因此,对芯片触点的精确测量至关重要。光谱共焦传感器可以通过其高精度的测量能力,对芯片触点的各项参数进行精确测量,为芯片制造过程中的质量控制提供可靠的数据支持。

在芯片封装环节,也有诸多测量要点。封装尺寸的精确测量是确保芯片能够准确安装到各种电子设备中的关键。如果封装尺寸存在偏差,可能会导致芯片无法与电路板上的插槽或其他封装接口匹配,从而影响整个电子设备的组装和性能。此外,封装材料与芯片之间的贴合度测量也不容忽视。良好的贴合度能够保证芯片在封装内部得到稳定的支撑和保护,同时有助于热量的散发和电气性能的稳定。光谱共焦传感器可以通过对封装尺寸和贴合度的精确测量,帮助制造商及时发现封装过程中存在的问题,采取相应的调整措施,确保芯片封装的质量和可靠性。

还有芯片内部的多层结构厚度测量。在现代 IC 芯片中,为了实现更高的性能和集成度,往往采用了复杂的多层结构。这些多层结构中每一层的厚度都需要精确控制,因为厚度的偏差可能会影响芯片的电学性能、信号传输速度以及散热效果等。例如,在一些高速芯片中,信号需要在不同的层间进行传输,如果层间厚度不均匀或不符合设计要求,可能会导致信号延迟、衰减等问题,从而影响芯片的整体性能。光谱共焦传感器凭借其对不同材料和结构的适应性,能够对芯片内部的多层结构厚度进行精确测量,为芯片制造过程中的工艺优化和质量控制提供重要依据。

 


News / 推荐阅读 +More
2025 - 05 - 26
点击次数: 15
一、引言在工业自动化领域,激光位移传感器作为精密测量的核心部件,其性能与成本直接影响设备的竞争力。本文聚焦泓川科技 LTM3 系列与米铱 ILD1750 系列,从技术参数、应用场景及成本等维度展开深度对比,揭示 LTM3 系列如何以卓越性能和显著成本优势成为更具性价比的选择。二、核心参数对比指标泓川科技 LTM3 系列米铱 ILD1750 系列测量频率最高 10kHz,适用于高速动态测量场景最高 7.5kHz,满足常规工业速度需求重复性精度0.25μm 起(如 LTM3 - 030),达到亚微米级精度0.1μm 起,精度表现优异线性误差低至 0.06% FSO 起,基于百分比的误差控制防护等级IP67,可抵御粉尘、液体喷射及短时浸水IP65,防护性能良好但略逊于 LTM3外形尺寸605020.4mm,体积小巧,适配狭窄空间未明确标注,但工业通用设计体积较大重量约 150g,轻便易安装未明确...
2025 - 05 - 13
点击次数: 38
一、破局万元壁垒:3000-4000 元网口传感器开启普惠智能时代在工业传感器领域,具备以太网(网口)输出功能的激光位移传感器长期被海外品牌以万元价格垄断,成为自动化升级的 “卡脖子” 环节。无锡泓川科技携LTM3(10kHz 采样)与 LTM5(31.25kHz 超高速采样)系列强势破局,以3000-4000 元核心定价,将高精度网口测量设备从 “奢侈品” 变为 “工业标配”,让中小企业也能畅享高速通讯与智能测控的双重红利。二、网口通讯革命:重新定义工业数据交互的 “速度与智慧”1. 百兆级极速传输:毫秒级捕捉动态世界LTM3/LTM5 搭载的以太网接口支持 TCP/IP 协议,数据传输速率达 100Mbps,较传统 485 串口(115.2kbps)快 800 倍,比模拟信号(易受干扰、刷新率低)更实现质的飞跃: 高频动态测量:LTM5-050 在锂电池极片涂布生产...
2025 - 04 - 14
点击次数: 71
在工业自动化领域,激光位移传感器凭借高精度、非接触测量的优势,广泛应用于精密定位、尺寸检测等场景。本文针对泓川科技 HC26 系列与奥泰斯 OPTEX CD33-30 系列(含模拟量通讯版本)进行多维度技术对比,从安装尺寸、通讯格式、模拟量信号、精度、成本等关键指标分析两者的可替代性,为用户选型提供参考。 一、结构设计与安装兼容性:尺寸与适配性对比泓川 HC26 系列外形尺寸为 60×50×22mm,重量约 120g(含线缆),采用紧凑式设计,支持螺丝安装,适配通用工业设备安装孔位(如文档 3 中提到的 2×4.4mm 贯穿孔)。防护等级为 IP67,可在粉尘、潮湿环境中稳定工作,环境温度范围 -10~50℃,适应性更强。奥泰斯 CD33-30 系列文档未明确标注具体尺寸,但从重量推测(约 65g,不含电缆),体积略小于 HC2...
2025 - 04 - 13
点击次数: 54
在工业自动化领域,精密测量是保障产品质量与生产效率的核心环节。泓川科技 HC8-050 与松下 HG-C1050 作为两款主流的中短距离激光位移传感器,在电子制造、精密加工、自动化检测等领域应用广泛。本文将从技术参数、核心性能、应用场景等维度展开深度对比,揭示 HC8-050 在特定场景下的显著优势及高性价比。一、基础技术参数:精准定位性能差异参数HC8-050HG-C1050差异分析测量范围50±15mm(35-65mm)50±15mm(35-65mm)两者一致,覆盖中短距离精密测量场景。重复精度15μm30μmHC8-050 的重复精度比 HG-C1050 提升 50%,适用于对微小位移敏感的精密检测(如芯片封装、精密轴承测量)。光点直径70μm约 70μm光斑尺寸相同,但 HC8-050 通过光学优化,在低反射率表面的光斑识别能力更强。线性度±0.1%F...
2025 - 04 - 12
点击次数: 41
在工业自动化领域,激光位移传感器的性能直接影响测量精度和系统稳定性。本文针对泓川科技 LTM2-800W 与美国邦纳 BANNER LE550 系列传感器,从技术参数、性能指标、应用场景等维度进行深度对比,探讨 LTM2-800W 替代 LE550 系列的可行性,尤其突出其更高的测量精度和更快的采样频率优势。一、核心技术参数对比参数LTM2-800WBANNER LE550 系列对比结论测量原理激光三角测量法激光三角测量法原理相同,均通过激光光斑在感光元件上的位置变化计算距离。参考距离800mm100-1000mm(LE550)LTM2-800W 以 800mm 为中心,覆盖更广的远距离测量场景,适合大尺寸物体检测。测量范围±500mm(300-1300mm)100-1000mmLTM2-800W 测量范围更宽,尤其在 800mm 以上远距离仍能保持高精度,而 LE550 在...
About Us
关于泓川科技
专业从事激光位移传感器,激光焊缝跟踪系统研发及销售的科技公司
中国 · 无锡 · 总部地址:无锡新吴区天山路6号
销售热线:0510-88155119 
图文传真:0510-88152650
Working Time
我们的工作时间
周一至周五:8:00-18:00
周六至周日:9:00-15:00
Shown 企业秀 More
  • 1
    2023 - 02 - 26
    今天我为大家展示安全激光扫描仪产品,安全激光扫描仪适用于各种应用技术领域,      在设备开发期间我们给予了特别关注,以确保它能够在广泛应用中发挥最佳功能,尤其重视大型工作区域的防护,例如机床正面区域或机器人工作区域。      其他应用包括移动车辆的防护,例如侧向滑动装置或移动运输设备,无人驾驶运输系统。甚至垂直安装激光扫描仪的出入口保护系统。尽管我们在安全激光扫描与领域,已经有数10年的经验了,但该应用领域仍然面对许多挑战。不过我们的激光安全扫描仪具有独一无二的功能属性,例如具有8.25米检测距离和270度扫描范围。       属于目前市场上的高端设备,非常适合侧向滑动装置正面区域等大型区域或长距离的防护。该设备的另一个亮点就是能够同时监测两个保护功能。这在许多应用领域中,独具优势以前需要使用两个设备,如今只需要使用一台这样的安全激光扫描仪,即可完成两台设备的功能。               实践中遇到的一项挑战是设计一款异常强骨的激光安全扫描仪。能够适应周围环境中可能存在的灰尘和颗粒等恶劣条件,因此我们提供了较分辨率达到0.1度的设备。它在目前市场上具有非常高的价值。   ...
  • 2
    2025 - 01 - 10
    一文读懂白光干涉测厚仪在工业生产、科研领域,精准测量材料厚度常常起着决定性作用。从电子设备的精细薄膜,到汽车制造的零部件,再到航空航天的关键组件,材料厚度的精准把控,直接关系到产品质量与性能。而在众多测厚技术中,白光干涉测厚仪凭借其超高精度与先进原理,脱颖而出,成为众多专业人士的得力助手。今天,就让我们一起深入了解这款神奇的仪器。原理:光学魔法精准测厚白光干涉测厚仪的核心原理,宛如一场精妙的光学魔法。仪器内部的光源发出的白光,首先经过扩束准直,让光线更加整齐有序。随后,这束光抵达分光棱镜,被巧妙地分成两束。一束光射向被测物体表面,在那里发生反射;另一束光则投向参考镜,同样被反射回来。这两路反射光如同久别重逢的老友,再次汇聚,相互干涉,形成了独特的干涉条纹。这些干涉条纹就像是大自然书写的密码,它们的明暗程度以及出现的位置,与被测物体的厚度紧密相关。当薄膜厚度发生细微变化时,光程差也随之改变,干涉条纹便会相应地舞动起来。通过专业的探测器接收这些条纹信号,并运用复杂而精准的算法进行解析,就能精确地计算出薄膜的厚度值,就如同从神秘的密码中解读出关键信息一般。打个比方,想象白光如同一场盛大的交响乐,不同波长的光如同各种乐器发出的声音。当它们在物体表面反射并干涉时,就像是乐器合奏,产生出独特的 “旋律”—— 干涉条纹。而我们的测厚仪,便是那位精通音律的大师,能从这旋律中精准听出薄膜厚度的 “音...
  • 3
    2020 - 09 - 14
    现如今在很多的行业里面都离不开激光位移传感器的应用,因为这种特殊激光位移传感器特点‍是能够对长度以及方位等来进行高精度的准确测量,而且用起来简便且很耐用所以受到了无数用户们的认可。而面对市场上众多的激光位移传感器品牌用户们究竟该怎么去选择呢?一、根据需要测量的目标结构与材质进行选择激光位移传感器虽然有着强大的测量功能,但是对于测量的目标结构与材质也是有着相应的需求的,因为激光位移传感器的测量过程是需要一个完整三角光路的,如果被测量目标的表面凹入不平就会造成三角光路无法形成,这样的话自然也就无法顺利的得到测量数据了。如果被测量目标的表面吸光这样也是无法形成完整三角光路进而无法完成测量工作的,因此用户们在选择激光位移传感器产品之时应着重考虑到这些问题才行。二、根据参数指标的实际要求进行选择激光位移传感器如今在制造业内有着很多的应用特别是对电子行业更是如此,而在选择这种产品时也应当根据具体所需的参数指标的来进行针对性选择才行。事实上这里所说的参数及指包含的面比较广比如说分辨率还有测量的速率等,因为对零部件生产的要求越是精密那么对它的要求也自然要更高也只有这样才能生产制造出真正的好产品。虽然激光位移传感器功能众多在生产过程当中的重要性是很明显的,但是在选择激光位移传感器的时候还是不能盲目应当遵循着上述这两个方面的原则,只有这样才能在众多的激光位移传感器品牌当中顺利地找到更能够满足自身实际需...
  • 4
    2023 - 08 - 21
    摘要:本报告提出了一种利用高精度激光位移传感器测量物体振动的方案。通过测量被测物的位移量,并确定振动的时间点,可以计算出振动频率和振动模式。相比多普勒测振仪,激光位移传感器具有更低的成本,在低频范围内(1000Hz以下)可以进行振动测量。本方案详细介绍了方案设计、设备选择、实验验证以及成本核算,并通过实验数据和算法验证了方案的可行性和准确性。引言物体振动是许多领域的重要研究对象,包括机械、汽车、航空航天等。传统的多普勒测振仪可以用于高频振动测量,但其成本较高,对于低频振动测量(1000Hz以下)不适用。因此,本方案提出了一种利用高精度激光位移传感器测量物体振动的方案,以满足低频振动测量的需求。方案设计利用高精度激光位移传感器测量物体振动的方案设计如下:2.1 设备选择选择一台高精度激光位移传感器,具备以下特点:高测量精度:具备亚微米级的测量精度,满足振动测量的要求。高响应频率:能够以高速响应的方式进行位移测量,捕捉到物体振动的细微变化。宽测量范围:具备较大的测量范围,适应不同物体振动的需求。2.2 传感器布置与测量原理将激光位移传感器布置在被测物体附近,并对其进行校准和调试。在物体振动过程中,传感器测量物体的位移量。传感器工作原理基于激光光束照射到物体表面,测量光斑的位置随时间的变化,从而获得物体的位移信息。2.3 数据处理与振动频率计算根据传感器测得的位移量数据,通过数据处理和信...
  • 5
    2024 - 01 - 21
    在制造业、航空航天、光学制造等行业中,准确地测量工件表面的平整度和倾斜度对于产品质量、设备性能和工程安全至关重要。为了适应这一需求,本文将详细介绍运用高精度激光位移传感器进行非接触测量工件倾斜度的具体操作步骤、应用领域以及如何通过实例演示其测量原理和效果。首先,测量设备的配置环节。需要准备3到5个高精度激光位移传感器,并配合用于数据分析处理的微机软件。在开始测量之前,传感器需要先行进行标定,以一个已知的标准平面作为参照进行校准,并让所有传感器的数值归零。这一步骤保证了测量过程的准确性,也为后续的数据分析奠定了基础。进行实测时,将待测工件放置在需要测量的表面上。根据物体表面的倾斜情况,每个传感器所显示的数值会出现差距。后续,我们可以通过微机软件读取这些二次数据,进行处理,从而精确地得出倾斜度和平整度等参数。值得注意的是,我们选择3-5个传感器进行测量的原因是,三个传感器可以保证确定一个平面的最少需求。在成本允许的情况下,增加到五个传感器进行多点测量,可以有效提高测量的准确性和稳定性。另外,在使用过程中,对传感器的同步性有很高的要求,尤其是采样速度。最好达到5k以上,以便实时调整待测表面,使得调整结果更精准,并且满足实时性的需求。当然,高精度激光位移传感器的应用领域非常广泛。在制造业,尤其是汽车制造业和机械加工行业中,通过测量工件表面的倾斜度和平整度,可以有效进行质量控制和生产过程优化...
  • 6
    2025 - 03 - 14
    泓川科技LTP系列激光位移传感器全面匹配您的技术需求尊敬的客户: 感谢您对泓川科技产品的关注!针对您提出的高精度激光位移传感器需求,我司LTP系列产品凭借卓越性能与灵活定制能力,可完全满足您的技术要求,具体对应如下:一、核心参数精准匹配需求项LTP400(200mm)LTP450(500mm)量程200mm(±100mm)500mm(±250mm)线性度±0.03%F.S.(优于要求)±0.05%F.S.(达标)重复精度(静态)±0.03%F.S.±0.05%F.S.采样频率50kHz全量程(达标)50kHz全量程(达标)输出信号-10V~10V(选配模块)-10V~10V(选配模块)技术优势说明:超高采样频率:LTP400/LTP450全量程下支持50kHz采样(48kHz),且可缩短量程至20%时提升至160kHz,满足高速动态测量需求(如振动检测、高速产线)。响应时间最低6.25μs(通过参数表*6可选配置),确保实时数据捕获能力。纳米级标定精度:基于纳米级激光干涉仪标定技术(参数表*3),线性度与重复性指标通过严格验证,确保长期稳定性。多输出模式兼容:支持**-10V~10V模拟输出**(需选配模块)、4~20mA电流输出、RS485及TCP/IP通讯,适配各类工业控制系统。48kHz、±0.05%线性度...
  • 7
    2025 - 01 - 16
    一、引言1.1 研究背景与目的在汽车行业迈向智能化与自动化的进程中,先进驾驶辅助系统(ADAS)作为关键技术,正发挥着愈发重要的作用。ADAS 凭借多种传感器与智能算法,能够实时监测车辆周边环境,为驾驶员提供预警与辅助控制,极大地提升了驾驶的安全性与舒适性。本报告旨在深入剖析《ADAS 相关工具 核心功能 & 技术》中所涉及的 ADAS 相关工具应用案例,通过详细描述各案例的具体应用场景、工作原理及达成的效果,深度挖掘这些工具在汽车制造及 ADAS 系统开发过程中的重要价值,为行业内相关人员提供具有实际参考意义的信息,助力推动 ADAS 技术的进一步发展与广泛应用。 1.2 研究方法与数据来源本报告通过对《ADAS 相关工具 核心功能 & 技术》进行全面细致的整理与深入分析,从中系统地提取出各类 ADAS 相关工具的应用案例。在分析过程中,对每个案例的技术原理、应用场景以及所实现的功能进行了详细阐述,并结合实际情况进行了深入探讨。本文所引用的 ADAS 相关工具的应用案例及技术原理均来自《ADAS 相关工具 核心功能 & 技术》文档,该文档为此次研究提供了丰富且详实的一手资料,确保了研究的准确性与可靠性。 二、车载相机应用案例剖析2.1 底部填充胶涂抹高度测量2.1.1 案例描述在汽车电子制造中,车载相机的底部填充胶涂抹高度对于确保相机的...
  • 8
    2023 - 03 - 07
    本次应用报告旨在介绍超声波测距传感器在锂电池生产过程中测量卷绕直径的应用情况。首先,本文将介绍超声波测距传感器的基本工作原理和特点,然后详细介绍其在锂电池生产中的应用情况,并对其应用效果进行评估和总结。一、超声波测距传感器的基本工作原理和特点超声波测距传感器是一种通过超声波测量距离的传感器,其测量原理非常简单,就是利用超声波在空气中的传播速度快,而且与环境中的温度、湿度等因素无关的特点。具体来说,超声波测距传感器通过发射超声波信号,当这些信号遇到物体时就会反射回来,传感器通过感受这些反射信号的到达时间,从而计算出物体与传感器之间的距离。超声波测距传感器具有响应速度快、距离测量范围广、测量精度高和使用方便等特点。因此,在工业自动化、机器人、汽车和航空等领域已经广泛应用。二、超声波测距传感器在锂电池生产中的应用锂电池的核心部件是电芯,而电芯的生产过程中就需要进行锂电池卷绕。卷绕的直径大小对于电芯的性能有很大的影响。因此,测量卷绕直径是电芯生产过程中非常重要的环节。传统的测量方法是利用拉尺、卡尺等工具进行物理测量,但是由于电芯内部结构复杂、精度要求高、测量效率低等因素,往往会出现误差较大的情况。超声波测距传感器可以很好地解决这个问题。具体来说,在电芯卷绕时,只需要将超声波测距传感器置于卷绕机上方,然后通过发射超声波信号测量卷绕轴的直径大小即可。由于超声波的反射信号可以穿透物体,因此不会对...
Message 最新动态
泓川科技 LTM3 系列与米铱 ILD1750 系列激光位移传感器深度对比:高性价比之选 2025 - 05 - 26 一、引言在工业自动化领域,激光位移传感器作为精密测量的核心部件,其性能与成本直接影响设备的竞争力。本文聚焦泓川科技 LTM3 系列与米铱 ILD1750 系列,从技术参数、应用场景及成本等维度展开深度对比,揭示 LTM3 系列如何以卓越性能和显著成本优势成为更具性价比的选择。二、核心参数对比指标泓川科技 LTM3 系列米铱 ILD1750 系列测量频率最高 10kHz,适用于高速动态测量场景最高 7.5kHz,满足常规工业速度需求重复性精度0.25μm 起(如 LTM3 - 030),达到亚微米级精度0.1μm 起,精度表现优异线性误差低至 0.06% FSO 起,基于百分比的误差控制防护等级IP67,可抵御粉尘、液体喷射及短时浸水IP65,防护性能良好但略逊于 LTM3外形尺寸605020.4mm,体积小巧,适配狭窄空间未明确标注,但工业通用设计体积较大重量约 150g,轻便易安装未明确标注,推测重于 LTM3 系列输出接口以太网、485 串口、模拟信号(±10V/4 - 20mA),支持工业网络集成模拟量(U/I)、数字量(RS422),传统工业接口配置光源655nm/660nm 红光激光,稳定可靠670nm 红光激光,测量光斑控制优秀工作温度0 - 50°C,适应多数工业环境0 - 50°C,环境适应性相当三、LTM3 系列核心优势解析(一)性能...
泓川科技LTM3/LTM5 激光位移传感器重塑网口TCP/IP通讯测量生态-从高速通讯到智能交互的全... 2025 - 05 - 13 一、破局万元壁垒:3000-4000 元网口传感器开启普惠智能时代在工业传感器领域,具备以太网(网口)输出功能的激光位移传感器长期被海外品牌以万元价格垄断,成为自动化升级的 “卡脖子” 环节。无锡泓川科技携LTM3(10kHz 采样)与 LTM5(31.25kHz 超高速采样)系列强势破局,以3000-4000 元核心定价,将高精度网口测量设备从 “奢侈品” 变为 “工业标配”,让中小企业也能畅享高速通讯与智能测控的双重红利。二、网口通讯革命:重新定义工业数据交互的 “速度与智慧”1. 百兆级极速传输:毫秒级捕捉动态世界LTM3/LTM5 搭载的以太网接口支持 TCP/IP 协议,数据传输速率达 100Mbps,较传统 485 串口(115.2kbps)快 800 倍,比模拟信号(易受干扰、刷新率低)更实现质的飞跃: 高频动态测量:LTM5-050 在锂电池极片涂布生产中,以 31.25kHz 超高速采样实时追踪极片厚度波动,网口同步输出微米级数据(重复精度 0.6μm),配合上位机软件实时绘制厚度曲线,异常波动响应时间<1ms,确保涂布精度一致性提升 99%。多传感器组网:单台 PLC 可通过网口同时接入 100 + 台 LTM3 传感器,构建密集测量阵列(如汽车车身全尺寸扫描),数据吞吐量较 485 方案提升 50 倍,系统延迟降低至微秒级。2.&...
泓川科技 HC26-30 与奥泰斯 OPTEX CD33-30 系列激光位移传感器对比分析:技术性能... 2025 - 04 - 14 在工业自动化领域,激光位移传感器凭借高精度、非接触测量的优势,广泛应用于精密定位、尺寸检测等场景。本文针对泓川科技 HC26 系列与奥泰斯 OPTEX CD33-30 系列(含模拟量通讯版本)进行多维度技术对比,从安装尺寸、通讯格式、模拟量信号、精度、成本等关键指标分析两者的可替代性,为用户选型提供参考。 一、结构设计与安装兼容性:尺寸与适配性对比泓川 HC26 系列外形尺寸为 60×50×22mm,重量约 120g(含线缆),采用紧凑式设计,支持螺丝安装,适配通用工业设备安装孔位(如文档 3 中提到的 2×4.4mm 贯穿孔)。防护等级为 IP67,可在粉尘、潮湿环境中稳定工作,环境温度范围 -10~50℃,适应性更强。奥泰斯 CD33-30 系列文档未明确标注具体尺寸,但从重量推测(约 65g,不含电缆),体积略小于 HC26,同样支持 M12 8 引脚接插式安装,防护等级 IP67,环境温度 -10~45℃。对比结论:两者安装方式均为工业标准,HC26 稍大但兼容性良好,适合对空间要求不苛刻的场景;CD33-30 系列体积更小巧,但 HC26 在温度适应性上略优。   二、通讯与信号输出:灵活性与通用性差异通讯格式HC26:支持 RS485 Modbus RTU 协议,波特率...
Copyright ©2005 - 2013 无锡泓川科技有限公司

1

犀牛云提供企业云服务
Our Link
X
3

SKYPE 设置

4

阿里旺旺设置

等待加载动态数据...

等待加载动态数据...

5

电话号码管理

  • 0510-88155119
6

二维码管理

等待加载动态数据...

等待加载动态数据...

展开