服务热线: 0510-88155119
13301510675@163.com
Language

激光测量技术在(ADAS)驾驶辅助系统的应用案例(二)

日期: 2025-01-16
浏览次数: 130
发表于:
来自 泓川科技
发表于: 2025-01-16
浏览次数: 130

四、彩色激光同轴位移计应用实例洞察

4.1 镜面相关测量

4.1.1 镜面的倾斜及运动检测

在众多光学设备以及对镜面精度要求极高的工业场景中,准确检测镜面的倾斜及运动状态是确保设备正常运行和产品质量的关键环节。彩色激光同轴位移计 CL 系列在这一领域展现出了卓越的性能。

该系列位移计主要基于同轴测量原理,其独特之处在于采用了彩色共焦方式。在工作时,设备发射出特定的光束,这些光束垂直照射到镜面上。由于镜面具有良好的反射特性,光束会被垂直反射回来。CL 系列位移计通过精确分析反射光的波长、强度以及相位等信息,能够精准计算出镜面的倾斜角度以及运动的位移变化。

在实际应用场景中,以高端投影仪的镜头镜面检测为例。投影仪镜头镜面的微小倾斜或运动偏差都可能导致投影画面出现变形、模糊等问题,严重影响投影效果。使用 CL 系列彩色激光同轴位移计,在投影仪生产线上,对每一个镜头镜面进行实时检测。当镜面发生倾斜时,位移计能够迅速捕捉到反射光的变化,并通过内置的算法立即计算出倾斜角度。一旦检测到倾斜角度超出预设的标准范围,系统会及时发出警报,提示操作人员进行调整。对于镜头镜面在使用过程中的微小运动,该位移计同样能够敏锐感知,并将运动数据精确反馈给控制系统,以便对投影画面进行实时校正,确保投影质量始终保持在最佳状态。

激光测量技术在(ADAS)驾驶辅助系统的应用案例(一)

 

4.1.2 MEMS 镜倾斜检测

在微机电系统(MEMS)领域,MEMS 镜作为核心部件,其平坦度对系统的光学性能起着决定性作用。干涉式同轴 3D 位移测量仪 WI 系列在 MEMS 镜倾斜检测方面发挥着至关重要的作用。

WI 系列采用了先进的白光干涉方式,这一技术基于光的干涉原理。当白光照射到 MEMS 镜面上时,由于镜面不同位置的高度差异,反射光会产生不同的光程差。这些具有不同光程差的反射光相互干涉,形成特定的干涉条纹图案。WI 系列位移计通过对这些干涉条纹的精确分析,能够准确获取 MEMS 镜面上各点的高度信息,进而计算出镜面的平坦度以及倾斜情况。

在实际应用中,如在 MEMS 激光扫描系统中,MEMS 镜的平坦度直接影响激光束的扫描精度和稳定性。若 MEMS 镜存在倾斜或不平坦的情况,激光束在扫描过程中会出现偏差,导致扫描图案不准确,影响系统的正常工作。通过使用 WI 系列干涉式同轴 3D 位移测量仪,在 MEMS 镜的生产制造过程中进行严格的倾斜检测。在检测过程中,位移计将白光投射到 MEMS 镜面上,然后对反射光形成的干涉条纹进行高速、高精度的采集和分析。一旦发现 MEMS 镜的平坦度不符合标准,或者存在倾斜现象,生产工艺可以及时进行调整和修正,确保每一个 MEMS 镜都能满足高精度的使用要求,从而保障整个 MEMS 激光扫描系统的性能和可靠性 。

激光测量技术在(ADAS)驾驶辅助系统的应用案例(一) 

4.2 其他对象测量

4.2.1 相机模块相关测量

回顾前文,彩色激光同轴位移计在相机模块的多个测量环节中都有着重要应用。在相机模块的行程检测方面,采用彩色共焦方式的 CL 系列,凭借其光点直径在测量过程中不会随测量高度变化的特性,能够在整个测量范围内对相机模块的行程进行高精度测量。这确保了相机在进行变焦、对焦等操作时,镜头模块能够按照预设的行程准确移动,从而实现清晰、稳定的成像效果。

对于 CMOS 倾斜检测,CL 系列的同轴测量技术优势显著。即使面对透明或具有镜面特性的 CMOS,且在其发生倾斜的复杂情况下,该系列位移计也能通过精确分析反射光的信息,准确检测出 CMOS 的倾斜角度。这对于保证相机的感光元件处于最佳工作状态,获取高质量的图像至关重要。

这些测量环节紧密关联,共同保障了相机的生产质量。从相机模块的制造到最终成像效果的实现,每一个测量步骤都为相机的性能提供了坚实的技术支撑。通过精确控制相机模块的行程和确保 CMOS 的正确安装角度,有效提高了相机的成品率,减少了因生产过程中的测量误差而导致的产品质量问题,为相机生产企业带来了显著的经济效益和产品竞争力 。


 

4.2.2 其他应用拓展

除了在汽车制造、相机生产等领域的应用,彩色激光同轴位移计还具有广泛的潜在应用空间。在电子设备制造领域,对于手机、平板电脑等电子产品的精密零部件测量具有重要价值。例如,在手机屏幕与边框的贴合过程中,需要精确测量两者之间的间隙和贴合度,彩色激光同轴位移计可以实现高精度的非接触式测量,确保手机的外观质量和密封性。在航空航天领域,对于飞行器的精密零部件,如发动机叶片的表面轮廓测量、机翼结构件的变形监测等,该位移计能够在复杂的环境条件下进行高精度测量,为飞行器的安全运行提供可靠的数据支持。随着科技的不断发展,彩色激光同轴位移计有望在更多领域发挥重要作用,推动各行业的技术进步和产品质量提升 。

 

五、干涉式同轴 3D 位移测量仪应用探索

5.1 镜面平坦度测量

5.1.1 案例详情

在对镜面进行平坦度测量时,干涉式同轴 3D 位移测量仪 WI 系列发挥了关键作用。该系列采用白光干涉方式,利用光的干涉原理进行测量。当白光照射到镜面上时,由于镜面不同位置的高度差异,反射光会产生不同的光程差,进而形成特定的干涉条纹。

以光学仪器制造中的反射镜测量为例,在实际操作中,将反射镜放置在测量仪的工作台上,调整好测量仪的位置和角度,确保白光能够均匀地照射到反射镜的整个表面。测量仪发射出的白光经反射镜反射后,产生的干涉条纹被测量仪的高灵敏度探测器所捕捉。探测器将这些干涉条纹信息转化为电信号,并传输给测量仪的控制系统。控制系统通过内置的先进算法,对干涉条纹的形状、间距以及变化规律进行精确分析,从而计算出镜面上各点的高度信息。通过对大量点的高度数据进行整合和处理,测量仪能够全面、准确地评估镜面的平坦度,精确判断出镜面是否存在微小的起伏、凹陷或凸起等情况 。

 

5.1.2 对相关行业的影响

在光学仪器制造行业,镜面的平坦度直接关系到光学仪器的成像质量和性能。对于如望远镜、显微镜、投影仪等光学设备而言,高精度的镜面是确保光线准确聚焦、成像清晰的关键。如果镜面存在平坦度问题,光线在反射或折射过程中会发生散射或偏离,导致成像模糊、变形,严重影响光学仪器的使用效果。干涉式同轴 3D 位移测量仪能够精确测量镜面平坦度,使得光学仪器制造企业在生产过程中能够及时发现并纠正镜面的质量问题,确保每一个光学镜面都符合高精度的设计要求。这不仅有助于提高光学仪器的成品率,降低生产成本,还能显著提升产品的市场竞争力,推动光学仪器制造行业向更高精度、更高质量的方向发展 。

 

5.2 密封材料高度测量

5.2.1 测量过程与特点

在对充填密封材料后的高度进行测量时,干涉式同轴 3D 位移测量仪 WI 系列展现出了独特的优势。该系列仪器基于白光干涉原理,能够实现对目标物的高精度三维测量。

以汽车发动机密封材料的高度测量为例,在实际测量过程中,首先将测量仪安装在合适的位置,确保能够清晰地测量到密封材料的表面。当测量仪启动后,其发射出的白光照射到密封材料上。由于密封材料表面的高度存在差异,反射光会产生不同的光程差,从而形成干涉条纹。测量仪的探测器迅速捕捉这些干涉条纹,并将其转化为数字信号传输给系统。系统通过对干涉条纹的精确分析,能够计算出密封材料表面各点的高度信息。

WI 系列测量仪的一大特点是能够进行完全同轴测量,这使得它在测量过程中不受目标物材质及表面状态的影响。无论是透明的密封材料、具有镜面特性的材料,还是表面粗糙的密封材料,测量仪都能稳定、准确地获取其高度数据。该测量仪还具备快速测量的能力,能够在短时间内完成对密封材料多个点的高度测量,大大提高了测量效率 。

激光测量技术在(ADAS)驾驶辅助系统的应用案例(一)

 

5.2.2 实际应用价值

在汽车制造、电子设备制造等众多行业中,密封材料的高度对于保障产品的防水、防尘、防泄漏等性能起着至关重要的作用。如果密封材料的高度不足,可能无法完全填充密封间隙,导致密封不严,从而使产品在使用过程中容易受到外界环境的侵蚀,如水分、灰尘等的侵入,影响产品的正常运行和使用寿命。而密封材料高度过高,则可能会导致密封材料溢出,不仅浪费材料,还可能会对产品的其他部件造成污染或影响装配效果。

干涉式同轴 3D 位移测量仪能够精确测量密封材料的高度,为生产企业提供了可靠的数据支持。企业可以根据测量结果,及时调整密封材料的涂抹工艺和用量,确保密封材料的高度符合设计要求,从而有效保障产品的防水、防尘等性能,提高产品的质量和可靠性,减少因密封问题导致的产品故障和售后维修成本,提升企业的经济效益和市场声誉 。

 

六、超高速 / 高精度 CMOS 激光位移传感器应用解析

6.1 压电元件振动测量

6.1.1 测量原理与实现

超高速 / 高精度 CMOS 激光位移传感器 LK 系列在压电元件振动测量中展现出独特的技术优势。该系列传感器实现了最大 392kHz 的采样周期,这一超高的采样频率使得它能够对高速振动的目标物进行精准的振动捕捉。其工作原理基于激光的反射特性,传感器发射出特定频率的激光束,激光束照射到压电元件表面后,会被反射回来。由于压电元件在振动过程中,其表面位置会发生快速且微小的变化,这种变化会导致反射光的相位、强度等特性发生相应改变。

传感器内部的超高速 CMOS 芯片能够以极快的速度对反射光的这些变化进行高频率的采样和精确的分析。通过对反射光信号的实时处理和计算,传感器可以准确地获取压电元件在不同时刻的振动位移、振动频率以及振动幅度等关键参数。例如,在对高频振动的压电元件进行测量时,传感器能够在极短的时间内,以极高的精度捕捉到压电元件振动过程中的每一个细微变化,从而为后续的数据分析和应用提供了丰富且准确的数据支持 。

激光测量技术在(ADAS)驾驶辅助系统的应用案例(一)

 

6.1.2 应用场景与意义

在声学领域,压电元件作为发声和接收声音信号的关键部件,其振动性能直接影响着声学设备的音质和性能。以高端音响系统中的压电式扬声器为例,通过使用超高速 / 高精度 CMOS 激光位移传感器对压电元件的振动进行精确测量,可以深入了解扬声器在不同音频信号驱动下的振动特性。通过对测量数据的分析,工程师们能够优化扬声器的设计和制造工艺,使其能够更准确地还原音频信号,提升音响系统的音质,为用户带来更加逼真、清晰的听觉体验。

在电子领域,压电元件常用于制造各种传感器和执行器,如压力传感器、加速度传感器等。对于压力传感器中的压电元件,通过测量其在不同压力作用下的振动情况,可以精确地感知压力的大小和变化。超高速 / 高精度 CMOS 激光位移传感器能够实时、准确地监测压电元件的振动状态,为压力传感器的高精度测量提供了有力保障。这使得压力传感器在工业自动化生产、航空航天等对压力测量精度要求极高的领域中,能够可靠地工作,确保系统的安全运行和精确控制 。

 

6.2 压电元件平面度测量

6.2.1 测量方式与优势

在对压电元件的平面度进行测量时,超高速 / 高精度 CMOS 激光位移传感器采用了以面捕捉目标物 3D 形状的先进测量方式。传感器发射出的激光束以特定的角度和模式覆盖整个压电元件的表面,形成一个密集的激光测量网络。当激光束照射到压电元件表面后,会根据表面的高度变化产生不同的反射路径和时间延迟。

传感器的探测器能够快速、精确地捕捉到这些反射光的变化信息,并将其转化为大量的空间坐标数据。通过对这些海量的空间坐标数据进行复杂的算法处理和分析,传感器可以构建出压电元件表面的精确三维模型。在这个三维模型中,每一个点的高度信息都被准确记录,从而可以直观地反映出压电元件表面的平整度情况。

这种测量方式具有显著的优势。相较于传统的平面度测量方法,如使用卡尺、千分表等接触式测量工具,该传感器实现了非接触式测量,避免了因接触而对压电元件表面造成的损伤,尤其适用于对表面精度要求极高的压电元件。其测量精度极高,能够检测到压电元件表面微小的凹凸不平,精度可达到微米甚至纳米级别。通过对整个表面进行全面的 3D 测量,能够获取更全面、准确的平面度信息,而不是局限于几个离散点的测量,从而更真实地反映压电元件的平面度状况 。


 

6.2.2 对产品质量的保障

压电元件的平面度对其性能稳定性有着至关重要的影响。在电子设备中,压电元件通常需要与其他部件进行精确的配合和连接。如果压电元件的平面度不符合要求,存在凹凸不平的情况,在与其他部件装配时,可能无法实现紧密贴合,导致接触不良。这会影响电子设备的电气性能,例如在电路连接中可能出现电阻增大、信号传输不稳定等问题,严重时甚至会导致设备故障。

在一些对精度要求极高的应用场景,如高精度传感器、精密光学设备等,压电元件的平面度直接关系到设备的测量精度和工作效果。对于高精度压力传感器中的压电元件,若平面度不佳,会导致在压力测量过程中产生误差,使得测量结果不准确,无法满足实际应用的需求。通过使用超高速 / 高精度 CMOS 激光位移传感器对压电元件的平面度进行严格测量和质量控制,能够确保每一个压电元件都具有良好的平面度,从而保证其在各种应用场景中的性能稳定性,提高产品的整体质量和可靠性,减少因压电元件平面度问题而导致的产品质量问题和售后维修成本 。


News / 推荐阅读 +More
2025 - 10 - 21
点击次数: 86
在工业精密测量中,传统红光激光位移传感器常受高反射、半透明、高温红热等特殊场景限制,而蓝光光源(405nm 波长)凭借独特物理特性实现突破。以下通过 “一问一答” 形式,详解蓝光传感器的优势、原理构造,并结合泓川科技 LTP 系列定制方案,看其如何解决特殊环境测量难题。1. 蓝光光源激光位移传感器相比传统红光,核心优势是什么?蓝光传感器的核心优势源于 405nm 波长的物理特性,相比传统 655nm 左右的红光,主要体现在三方面:更高横向分辨率:根据瑞利判据,光学分辨率与波长成反比。蓝光波长仅为红光的 62%(405nm/655nm≈0.62),相同光学系统下横向分辨率可提升约 38%,能形成更小光斑(如泓川 LTP025 蓝光版光斑最小达 Φ18μm),适配芯片针脚、晶圆等微米级结构测量。更强信号稳定性:蓝光单光子能量达 3.06eV,远高于红光的 2.05eV。在低反射率材料(如橡胶、...
2025 - 09 - 05
点击次数: 96
高精度测量传感器全系列:赋能精密制造,适配多元检测需求聚焦半导体、光学膜、机械加工等领域的精密检测核心痛点,我们推出全系列高性能测量传感器,覆盖 “测厚、对焦、位移” 三大核心应用场景,以 “高精准、高速度、高适配” 为设计核心,为您的工艺控制与质量检测提供可靠技术支撑。以下为各产品系列的详细介绍:1.LTS-IR 红外干涉测厚传感器:半导体材料测厚专属核心用途:专为硅、碳化硅、砷化镓等半导体材料设计,精准实现晶圆等器件的厚度测量。性能优点:精度卓越:±0.1μm 线性精度 + 2nm 重复精度,确保测量数据稳定可靠;量程适配:覆盖 10μm2mm 测厚范围,满足多数半导体材料检测需求;高效高速:40kHz 采样速度,快速捕捉厚度数据,适配在线检测节奏;灵活适配:宽范围工作距离设计,可灵活匹配不同规格的检测设备与场景。2. 分体式对焦传感器:半导体 / 面板缺陷检测的 “高速对焦...
2025 - 09 - 02
点击次数: 87
泓川科技激光位移传感器产品技术报告尊敬的客户: 感谢您对泓川科技激光位移传感器产品的关注与信任。为帮助您全面了解我司产品,现将激光位移传感器相关技术信息从参数指标、设计原理、结构设计等八大核心维度进行详细说明,为您的选型、使用及维护提供专业参考。一、参数指标我司激光位移传感器涵盖 LTP400 系列与 LTP450 系列,各型号核心参数经纳米级高精度激光干涉仪标定验证,确保数据精准可靠,具体参数如下表所示:表 1:LTP400EA参数表参数类别具体参数LTP400EA备注基础测量参数测量中心距离400mm以量程中心位置计算(*1)量程200mm-重复精度(静态)3μm测量标准白色陶瓷样件,50kHz 无平均,取 65536 组数据均方根偏差(*2)线性度±0.03%F.S.(F.S.=200mm)采用纳米级激光干涉仪标定(*3)光源与光斑光源类型-激光功率可定制,部分型号提供 4...
2025 - 08 - 30
点击次数: 79
泓川科技发布 LT-CP 系列 ETHERCAT 总线高光谱共焦控制器,32KHz 高速采样引领工业高精度测量革新近日,工业高精度测量领域迎来技术突破 —— 泓川科技正式推出LT-CP 系列 ETHERCAT 总线高光谱共焦传感器控制器(含单通道 LT-CPS、双通道 LT-CPD、四通道 LT-CPF 三款型号,含普通光源与高亮激光光源版本)。该系列产品以 “32KHz 高速采样” 与 “ETHERCAT 工业总线” 为核心亮点,填补了行业内 “高频响应 + 实时协同” 兼具的技术空白,为新能源、半导体、汽车制造等高端领域的动态高精度测量需求提供了全新解决方案。一、核心突破:32KHz 高速采样,破解 “多通道降速” 行业痛点光谱共焦技术的核心竞争力在于 “高精度” 与 “响应速度” 的平衡,而 LT-CP 系列在速度维度实现了关键突破 ——单通道模式下最高采样频率达 32KHz,意味着...
2025 - 08 - 12
点击次数: 92
在半导体芯片制造、精密电子组装等高端工业场景中,一个棘手的矛盾始终存在:一方面,设备内部空间日益紧凑,毫米级的安装高度都可能成为 “禁区”;另一方面,随着产品结构复杂化,对测量量程的需求不断提升,5mm 以上的大量程检测已成为常态。如何在狭小空间内实现大量程精密测量?无锡泓川科技给出了突破性答案 ——光学转折镜,以创新设计让光谱共焦传感器的测量方向 “直角转向”,既节省安装空间,又兼容大量程需求,重新定义精密测量的空间可能性。传统方案的痛点:空间与量程难以两全在精密测量领域,侧出光传感器曾是狭小空间的 “救星”。泓川科技旗下 LTCR 系列作为 90° 侧向出光型号,凭借紧凑设计广泛应用于深孔、内壁等特征测量。但受限于结构设计,其量程多集中在 2.5mm 以内(如 LTCR4000 量程为 ±2mm),难以满足半导体晶圆厚度、大型精密构件高度差等大量程场景的需求。若选择...
About Us
关于泓川科技
专业从事激光位移传感器,激光焊缝跟踪系统研发及销售的科技公司
中国 · 无锡 · 总部地址:无锡新吴区天山路6号
销售热线:0510-88155119 
图文传真:0510-88152650
Working Time
我们的工作时间
周一至周五:8:00-18:00
周六至周日:9:00-15:00
Shown 企业秀 More
  • 1
    2023 - 09 - 20
    首先,让我们对TOF进行一次短暂的“速读”——它全称叫'time-of-flight',中文怎么说呢?风格洒脱地称之为“飞行时间”。你没听错,就是“飞行时间”。所有的颠覆与创新始于赤裸裸的想象,对吧?再来回过头,看看我们的主角TOF激光测距传感器。激光这东西,我想你肯定不陌生。科幻大片,医美广告里都被频繁提及。对这位明星,我们暂时按下暂停键, 我们聊一聊测距传感器——那可是能把复杂的三维世界,硬是证明成一串串精准数据的硬核工具。当然,他俩的组合,并不是偶然撞壁造成的火花。在“鹰眼”TOF的身上,激光变得更加酷炫,传感器技术也变得更为深邃。他们共舞的主线,就是光的飞行时间。想象一下,要在现实世界计算出光从物体发射出来,然后反射回传感器的时间。你愣了一秒,觉得好像进入了'黑洞'的领域。实则不然,TOF激光测距传感器就是这样“耳提面命”。它以光速旅行者的姿态,穿越空间,告诉我们物体与之间的距离。亲,你有听说过光速吗?大约每秒走30万公里哦,这个速度足够你在一秒钟内去绕地球七点五圈了!TOF激光测距传感器就是他们利用这么一个迅疾的光速,再加上高精度的时钟,来高效精确地计算出飞行时间并转化为距离数据。小编想说,TOF不仅玩科技,他更玩智谋,战胜了同类的超声波、红外线等测距设备。毕竟,被物的颜色、亮度、表面材质,或者环境的温湿度对他来说都不构成锁链。准确到“下毛...
  • 2
    2025 - 03 - 06
    背景与挑战随着电子封装技术的快速发展,直接镀铜陶瓷基板(DPC)因具备优异的导热性、机械强度及耐高温性能,被广泛应用于大功率LED、IGBT模块等领域。然而,其表面金属镀层的厚度均匀性直接影响器件的散热效率与可靠性。某客户需对一批DPC基板进行全检,要求**在正反面各选取10个金属块(含2个重复基准点)**进行高精度厚度测量,并同步获取表面轮廓与中心区高度数据,以满足严格的工艺质量控制标准。解决方案针对客户需求,我们采用LTC1200系列光谱共焦传感器(配套高精度运动平台与测控软件),设计了一套非接触式三维测厚方案:设备选型量程:±600μm(覆盖金属层典型厚度范围)重复精度:0.03μm(静态,确保基准点数据一致性)线性误差:<±0.3μm(满足亚微米级公差要求)采样频率:10kHz(高速扫描提升检测效率)选用LTC1200B型号传感器(光斑直径约19μm),兼顾测量精度与金属表面反射特性需求,其技术参数如下:搭配亚微米级定位平台,确保扫描路径精确控制。基准点设定以陶瓷基板裸露区域作为基准面,在正反面各设置2个重复测量点,通过传感器实时比对基准高度数据,消除基板翘曲或装夹误差对厚度计算的影响。实施流程数据采集:沿预设路径扫描金属块,同步记录轮廓点云与中心区高度(软件自动拟合最高点作为厚度参考值)。厚度计算:基于公式:\text{金属层厚度} = \text{金...
  • 3
    2023 - 09 - 25
    由于半导体生产工艺的复杂性和精密性,对晶圆切割的技术要求极高,传统的机械切割方式已经无法满足现代电子行业的需求。在这种情况下,光谱共焦位移传感器配合激光隐切技术(激光隐形切割)在晶圆切割中发挥了重要作用。以下将详细介绍这种新型高效切割技术的应用案例及其优势。原理:利用小功率的激光被光谱共焦位移传感器设定的预定路径所导,聚焦在直径只有100多纳米的光斑上,形成巨大的局部能量,然后根据这个能量将晶圆切割开。光谱共焦位移传感器在切割过程中实时检测切口深度和位置,确保切口的深广和位置的精确性。激光隐切与光谱共焦位移传感器结合的应用案例:以某种先进的半导体制程为例,晶圆经过深刻蚀、清洗、扩散等步骤后,需要进行精确切割。在这个过程中,首先,工程师根据需要的切割图案在软件上设定好切割路径,然后切割机通过光谱共焦位移传感器引导激光按照预定的路径且此过程工程师可以实时观察和测量切口深度和位置。优点:这种技术最大的优势就是它能够实现超微细切割,避免了大功率激光对芯片可能会带来的影响。另外,因为切割的深度和位置可以实时调控,这 法也非常具有灵活性。同时,由于使用光谱共焦位移传感器精确控制切割的深度和位置,所以切割出来的晶圆表面平整,质量更好。总的来看,光谱共焦位移传感器配合激光隐切在晶圆切割中的应用,不仅提升了生产效率,减少了废品率,而且大幅度提升了产品质量,对于当前和未来的半导体行业都将是一个革新的技...
  • 4
    2024 - 03 - 05
    非接触式激光位移传感器在生产线上的应用具有多方面的优势,下面将从精度、速度、可靠性、灵活性和安全性等方面进行逐一分析,并通过具体的应用场景来说明其应用价值。同时,还会与传统的接触式传感器进行比较,以突显非接触式激光位移传感器的独特优势。精度:非接触式激光位移传感器采用激光三角测量法,具有极高的测量精度。例如,在半导体制造过程中,需要精确控制薄膜的厚度,非接触式激光位移传感器可以实现微米级的测量精度,从而确保产品质量。相比之下,传统接触式传感器可能会因为接触力度的不同而影响测量精度。速度:非接触式激光位移传感器具有快速响应的特点,可以在生产线上实现高速测量。例如,在包装机械中,需要实时监测包装材料的位置和速度,非接触式激光位移传感器可以迅速捕捉到这些变化,从而确保包装过程的顺利进行。而传统接触式传感器可能会因为接触摩擦等因素而影响测量速度。可靠性:非接触式激光位移传感器无需与目标物体直接接触,因此可以避免因摩擦、磨损等因素导致的传感器损坏。此外,非接触式传感器还具有较好的抗干扰能力,可以在恶劣的生产环境中稳定工作。相比之下,传统接触式传感器更容易受到环境因素的影响而出现故障。灵活性:非接触式激光位移传感器可以适应不同的测量需求,通过调整激光发射角度、接收透镜焦距等参数,可以实现不同距离、不同角度的测量。此外,非接触式传感器还可以与计算机、PLC等设备进行连接,实现自动化控制和数据处理...
  • 5
    2025 - 03 - 27
    1. 引言在工业自动化领域,激光位移传感器是实现高精度非接触测量的核心器件。基恩士 IL-S025 作为市场主流产品,以其 1μm 重复精度和稳定性能著称。然而,随着国产传感器技术的突破,泓川科技 LTM3-030/LTM3-030W 型号凭借更高的性能参数和经济性,为用户提供了新的选择。本文将从技术参数、性能表现、应用场景等方面,深入对比分析两者的替代可行性。 2. 核心技术参数对比参数基恩士 IL-S025泓川科技 LTM3-030/LTM3-030W对比结论重复精度1μm0.25μm(LTM3-030)/ 0.25μm(LTM3-030W)LTM3 系列更优(4 倍精度提升)线性误差±0.075% F.S.(±5mm 范围)LTM3-030W 更优(接近 IL-S025)测量范围±5mm(参考距离 25mm)±5mm(参考距离 30mm)等效采样频率3kHz(采样周期 0.33ms)10kHzLTM3 系列更优(3倍速度提升)光斑尺寸25×1200μm(线性光斑)Φ35μm(M3-030)/ Φ35×400μm(M3-030W)LTM3 系列光斑更小(点光斑更聚焦)光源类型660nm 激光(Class 2)655nm 激光(Class 2)等效接口配置需外接放大器单元(支持 EtherNet/IP 等)...
  • 6
    2025 - 01 - 16
    一、引言1.1 研究背景与目的在汽车行业迈向智能化与自动化的进程中,先进驾驶辅助系统(ADAS)作为关键技术,正发挥着愈发重要的作用。ADAS 凭借多种传感器与智能算法,能够实时监测车辆周边环境,为驾驶员提供预警与辅助控制,极大地提升了驾驶的安全性与舒适性。本报告旨在深入剖析《ADAS 相关工具 核心功能 & 技术》中所涉及的 ADAS 相关工具应用案例,通过详细描述各案例的具体应用场景、工作原理及达成的效果,深度挖掘这些工具在汽车制造及 ADAS 系统开发过程中的重要价值,为行业内相关人员提供具有实际参考意义的信息,助力推动 ADAS 技术的进一步发展与广泛应用。 1.2 研究方法与数据来源本报告通过对《ADAS 相关工具 核心功能 & 技术》进行全面细致的整理与深入分析,从中系统地提取出各类 ADAS 相关工具的应用案例。在分析过程中,对每个案例的技术原理、应用场景以及所实现的功能进行了详细阐述,并结合实际情况进行了深入探讨。本文所引用的 ADAS 相关工具的应用案例及技术原理均来自《ADAS 相关工具 核心功能 & 技术》文档,该文档为此次研究提供了丰富且详实的一手资料,确保了研究的准确性与可靠性。 二、车载相机应用案例剖析2.1 底部填充胶涂抹高度测量2.1.1 案例描述在汽车电子制造中,车载相机的底部填充胶涂抹高度对于确保相机的...
  • 7
    2022 - 12 - 03
    激光测距传感器的功能,你了解多少呢?大家好,我是无锡宏川传感学堂的李同学。激光测距传感器的功能可分为距离测量和窗口测量。其中距离测量在测距应用中传感器可以随时投入使用。直接给出与物体之间的距离。测量值可用于系统控制或者物体的精准定位。此外还可以选择对数字量模拟,量输出进行调整。如果需要检测尺寸较小的物体。可直接进行窗口测量。通过对参照物进行自学习,传感器可直接测得与标称尺寸的偏差。在这种情况下,数字量输出也可以进行相应的参数进行。除了传感器的尺寸和测量范围。光斑的形状也尤其重要,点击光代表精准聚焦。能精确测量小尺寸的物体。线激光能可靠测量粗糙度比较大的表面积。带纹理的彩色表面。在光泽不均匀或极其粗糙的表面上也能进行稳定的测量。
  • 8
    2023 - 10 - 01
    '新吴科之匠',泓川科技有限公司全新打造的传感器新标杆,我们凝聚高端技术力量,专注于高精度、高性能的激光位移传感器LTP系列,光谱共焦传感器LTC系列,白光干涉测厚传感器,线光谱共焦传感器,以及3D结构光和3D线激光。 强大的研发能力和对细节无穷追求,让我们的产品在每个细微处都彰显出卓越品质。'新吴科之匠'不仅寓意着尖端科技的集中体现,更代表着对品质的极致追求。我们相信,只有最好,才能过硬。
Message 最新动态
蓝光光源激光位移传感器:优势、原理与特殊场景解决方案 —— 泓川科技 LTP 系列 405nm 定制... 2025 - 10 - 21 在工业精密测量中,传统红光激光位移传感器常受高反射、半透明、高温红热等特殊场景限制,而蓝光光源(405nm 波长)凭借独特物理特性实现突破。以下通过 “一问一答” 形式,详解蓝光传感器的优势、原理构造,并结合泓川科技 LTP 系列定制方案,看其如何解决特殊环境测量难题。1. 蓝光光源激光位移传感器相比传统红光,核心优势是什么?蓝光传感器的核心优势源于 405nm 波长的物理特性,相比传统 655nm 左右的红光,主要体现在三方面:更高横向分辨率:根据瑞利判据,光学分辨率与波长成反比。蓝光波长仅为红光的 62%(405nm/655nm≈0.62),相同光学系统下横向分辨率可提升约 38%,能形成更小光斑(如泓川 LTP025 蓝光版光斑最小达 Φ18μm),适配芯片针脚、晶圆等微米级结构测量。更强信号稳定性:蓝光单光子能量达 3.06eV,远高于红光的 2.05eV。在低反射率材料(如橡胶、有机涂层)表面,能激发出更强散射信号;同时穿透性更低,仅在材料表层作用,避免内部折射干扰,适合表面精准测量。更优抗干扰能力:蓝光波段与红热辐射(500nm 以上)、户外强光(可见光为主)重叠度低,搭配专用滤光片后,可有效隔绝高温物体自发光、阳光直射等干扰,这是红光难以实现的。2. 蓝光激光位移传感器的原理构造是怎样的?为何能实现高精度测量?蓝光传感器的高精度的核心是 “光学设计 + 信号处理 + ...
泓川科技国产系列光谱共焦/激光位移传感器/白光干涉测厚产品性能一览 2025 - 09 - 05 高精度测量传感器全系列:赋能精密制造,适配多元检测需求聚焦半导体、光学膜、机械加工等领域的精密检测核心痛点,我们推出全系列高性能测量传感器,覆盖 “测厚、对焦、位移” 三大核心应用场景,以 “高精准、高速度、高适配” 为设计核心,为您的工艺控制与质量检测提供可靠技术支撑。以下为各产品系列的详细介绍:1.LTS-IR 红外干涉测厚传感器:半导体材料测厚专属核心用途:专为硅、碳化硅、砷化镓等半导体材料设计,精准实现晶圆等器件的厚度测量。性能优点:精度卓越:±0.1μm 线性精度 + 2nm 重复精度,确保测量数据稳定可靠;量程适配:覆盖 10μm2mm 测厚范围,满足多数半导体材料检测需求;高效高速:40kHz 采样速度,快速捕捉厚度数据,适配在线检测节奏;灵活适配:宽范围工作距离设计,可灵活匹配不同规格的检测设备与场景。2. 分体式对焦传感器:半导体 / 面板缺陷检测的 “高速对焦助手”核心用途:针对半导体、面板领域的高精度缺陷检测场景,提供高速实时对焦支持,尤其适配显微对焦类检测设备。性能优点:对焦速度快:50kHz 高速对焦,同步匹配缺陷检测的实时性需求;对焦精度高:0.5μm 对焦精度,保障缺陷成像清晰、检测无偏差;设计灵活:分体式结构,可根据检测设备的安装空间与布局灵活调整,降低适配难度。3. LT-R 反射膜厚仪:极薄膜厚检测的 “精密管家”核心用途:专注于极薄膜...
多方面研究泓川科技LTP系列大量程全国产激光位移传感器 2025 - 09 - 02 泓川科技激光位移传感器产品技术报告尊敬的客户: 感谢您对泓川科技激光位移传感器产品的关注与信任。为帮助您全面了解我司产品,现将激光位移传感器相关技术信息从参数指标、设计原理、结构设计等八大核心维度进行详细说明,为您的选型、使用及维护提供专业参考。一、参数指标我司激光位移传感器涵盖 LTP400 系列与 LTP450 系列,各型号核心参数经纳米级高精度激光干涉仪标定验证,确保数据精准可靠,具体参数如下表所示:表 1:LTP400EA参数表参数类别具体参数LTP400EA备注基础测量参数测量中心距离400mm以量程中心位置计算(*1)量程200mm-重复精度(静态)3μm测量标准白色陶瓷样件,50kHz 无平均,取 65536 组数据均方根偏差(*2)线性度±0.03%F.S.(F.S.=200mm)采用纳米级激光干涉仪标定(*3)光源与光斑光源类型-激光功率可定制,部分型号提供 405nm 蓝光版本(*4)光束直径聚焦点光斑 Φ300μm中心位置直径,两端相对变大(*5)电气参数电源电压DC9-36V-功耗约 2.5W-短路保护反向连接保护、过电流保护-输出与通信模拟量输出(选配)电压:0-5V/010V/-1010V;电流:420mA探头可独立提供电压、电流与 RS485 输出(*6)通讯接口RS485 串口、TCP/IP 网口可选配模拟电压 / 电流输出模块(*7)响应...
Copyright ©2005 - 2013 无锡泓川科技有限公司

1

犀牛云提供企业云服务
Our Link
X
3

SKYPE 设置

4

阿里旺旺设置

等待加载动态数据...

等待加载动态数据...

5

电话号码管理

  • 0510-88155119
6

二维码管理

等待加载动态数据...

等待加载动态数据...

展开