服务热线: 0510-88155119
13301510675@163.com
Language

激光测量技术在(ADAS)驾驶辅助系统的应用案例(二)

日期: 2025-01-16
浏览次数: 88
发表于:
来自 泓川科技
发表于: 2025-01-16
浏览次数: 88

四、彩色激光同轴位移计应用实例洞察

4.1 镜面相关测量

4.1.1 镜面的倾斜及运动检测

在众多光学设备以及对镜面精度要求极高的工业场景中,准确检测镜面的倾斜及运动状态是确保设备正常运行和产品质量的关键环节。彩色激光同轴位移计 CL 系列在这一领域展现出了卓越的性能。

该系列位移计主要基于同轴测量原理,其独特之处在于采用了彩色共焦方式。在工作时,设备发射出特定的光束,这些光束垂直照射到镜面上。由于镜面具有良好的反射特性,光束会被垂直反射回来。CL 系列位移计通过精确分析反射光的波长、强度以及相位等信息,能够精准计算出镜面的倾斜角度以及运动的位移变化。

在实际应用场景中,以高端投影仪的镜头镜面检测为例。投影仪镜头镜面的微小倾斜或运动偏差都可能导致投影画面出现变形、模糊等问题,严重影响投影效果。使用 CL 系列彩色激光同轴位移计,在投影仪生产线上,对每一个镜头镜面进行实时检测。当镜面发生倾斜时,位移计能够迅速捕捉到反射光的变化,并通过内置的算法立即计算出倾斜角度。一旦检测到倾斜角度超出预设的标准范围,系统会及时发出警报,提示操作人员进行调整。对于镜头镜面在使用过程中的微小运动,该位移计同样能够敏锐感知,并将运动数据精确反馈给控制系统,以便对投影画面进行实时校正,确保投影质量始终保持在最佳状态。

激光测量技术在(ADAS)驾驶辅助系统的应用案例(一)

 

4.1.2 MEMS 镜倾斜检测

在微机电系统(MEMS)领域,MEMS 镜作为核心部件,其平坦度对系统的光学性能起着决定性作用。干涉式同轴 3D 位移测量仪 WI 系列在 MEMS 镜倾斜检测方面发挥着至关重要的作用。

WI 系列采用了先进的白光干涉方式,这一技术基于光的干涉原理。当白光照射到 MEMS 镜面上时,由于镜面不同位置的高度差异,反射光会产生不同的光程差。这些具有不同光程差的反射光相互干涉,形成特定的干涉条纹图案。WI 系列位移计通过对这些干涉条纹的精确分析,能够准确获取 MEMS 镜面上各点的高度信息,进而计算出镜面的平坦度以及倾斜情况。

在实际应用中,如在 MEMS 激光扫描系统中,MEMS 镜的平坦度直接影响激光束的扫描精度和稳定性。若 MEMS 镜存在倾斜或不平坦的情况,激光束在扫描过程中会出现偏差,导致扫描图案不准确,影响系统的正常工作。通过使用 WI 系列干涉式同轴 3D 位移测量仪,在 MEMS 镜的生产制造过程中进行严格的倾斜检测。在检测过程中,位移计将白光投射到 MEMS 镜面上,然后对反射光形成的干涉条纹进行高速、高精度的采集和分析。一旦发现 MEMS 镜的平坦度不符合标准,或者存在倾斜现象,生产工艺可以及时进行调整和修正,确保每一个 MEMS 镜都能满足高精度的使用要求,从而保障整个 MEMS 激光扫描系统的性能和可靠性 。

激光测量技术在(ADAS)驾驶辅助系统的应用案例(一) 

4.2 其他对象测量

4.2.1 相机模块相关测量

回顾前文,彩色激光同轴位移计在相机模块的多个测量环节中都有着重要应用。在相机模块的行程检测方面,采用彩色共焦方式的 CL 系列,凭借其光点直径在测量过程中不会随测量高度变化的特性,能够在整个测量范围内对相机模块的行程进行高精度测量。这确保了相机在进行变焦、对焦等操作时,镜头模块能够按照预设的行程准确移动,从而实现清晰、稳定的成像效果。

对于 CMOS 倾斜检测,CL 系列的同轴测量技术优势显著。即使面对透明或具有镜面特性的 CMOS,且在其发生倾斜的复杂情况下,该系列位移计也能通过精确分析反射光的信息,准确检测出 CMOS 的倾斜角度。这对于保证相机的感光元件处于最佳工作状态,获取高质量的图像至关重要。

这些测量环节紧密关联,共同保障了相机的生产质量。从相机模块的制造到最终成像效果的实现,每一个测量步骤都为相机的性能提供了坚实的技术支撑。通过精确控制相机模块的行程和确保 CMOS 的正确安装角度,有效提高了相机的成品率,减少了因生产过程中的测量误差而导致的产品质量问题,为相机生产企业带来了显著的经济效益和产品竞争力 。


 

4.2.2 其他应用拓展

除了在汽车制造、相机生产等领域的应用,彩色激光同轴位移计还具有广泛的潜在应用空间。在电子设备制造领域,对于手机、平板电脑等电子产品的精密零部件测量具有重要价值。例如,在手机屏幕与边框的贴合过程中,需要精确测量两者之间的间隙和贴合度,彩色激光同轴位移计可以实现高精度的非接触式测量,确保手机的外观质量和密封性。在航空航天领域,对于飞行器的精密零部件,如发动机叶片的表面轮廓测量、机翼结构件的变形监测等,该位移计能够在复杂的环境条件下进行高精度测量,为飞行器的安全运行提供可靠的数据支持。随着科技的不断发展,彩色激光同轴位移计有望在更多领域发挥重要作用,推动各行业的技术进步和产品质量提升 。

 

五、干涉式同轴 3D 位移测量仪应用探索

5.1 镜面平坦度测量

5.1.1 案例详情

在对镜面进行平坦度测量时,干涉式同轴 3D 位移测量仪 WI 系列发挥了关键作用。该系列采用白光干涉方式,利用光的干涉原理进行测量。当白光照射到镜面上时,由于镜面不同位置的高度差异,反射光会产生不同的光程差,进而形成特定的干涉条纹。

以光学仪器制造中的反射镜测量为例,在实际操作中,将反射镜放置在测量仪的工作台上,调整好测量仪的位置和角度,确保白光能够均匀地照射到反射镜的整个表面。测量仪发射出的白光经反射镜反射后,产生的干涉条纹被测量仪的高灵敏度探测器所捕捉。探测器将这些干涉条纹信息转化为电信号,并传输给测量仪的控制系统。控制系统通过内置的先进算法,对干涉条纹的形状、间距以及变化规律进行精确分析,从而计算出镜面上各点的高度信息。通过对大量点的高度数据进行整合和处理,测量仪能够全面、准确地评估镜面的平坦度,精确判断出镜面是否存在微小的起伏、凹陷或凸起等情况 。

 

5.1.2 对相关行业的影响

在光学仪器制造行业,镜面的平坦度直接关系到光学仪器的成像质量和性能。对于如望远镜、显微镜、投影仪等光学设备而言,高精度的镜面是确保光线准确聚焦、成像清晰的关键。如果镜面存在平坦度问题,光线在反射或折射过程中会发生散射或偏离,导致成像模糊、变形,严重影响光学仪器的使用效果。干涉式同轴 3D 位移测量仪能够精确测量镜面平坦度,使得光学仪器制造企业在生产过程中能够及时发现并纠正镜面的质量问题,确保每一个光学镜面都符合高精度的设计要求。这不仅有助于提高光学仪器的成品率,降低生产成本,还能显著提升产品的市场竞争力,推动光学仪器制造行业向更高精度、更高质量的方向发展 。

 

5.2 密封材料高度测量

5.2.1 测量过程与特点

在对充填密封材料后的高度进行测量时,干涉式同轴 3D 位移测量仪 WI 系列展现出了独特的优势。该系列仪器基于白光干涉原理,能够实现对目标物的高精度三维测量。

以汽车发动机密封材料的高度测量为例,在实际测量过程中,首先将测量仪安装在合适的位置,确保能够清晰地测量到密封材料的表面。当测量仪启动后,其发射出的白光照射到密封材料上。由于密封材料表面的高度存在差异,反射光会产生不同的光程差,从而形成干涉条纹。测量仪的探测器迅速捕捉这些干涉条纹,并将其转化为数字信号传输给系统。系统通过对干涉条纹的精确分析,能够计算出密封材料表面各点的高度信息。

WI 系列测量仪的一大特点是能够进行完全同轴测量,这使得它在测量过程中不受目标物材质及表面状态的影响。无论是透明的密封材料、具有镜面特性的材料,还是表面粗糙的密封材料,测量仪都能稳定、准确地获取其高度数据。该测量仪还具备快速测量的能力,能够在短时间内完成对密封材料多个点的高度测量,大大提高了测量效率 。

激光测量技术在(ADAS)驾驶辅助系统的应用案例(一)

 

5.2.2 实际应用价值

在汽车制造、电子设备制造等众多行业中,密封材料的高度对于保障产品的防水、防尘、防泄漏等性能起着至关重要的作用。如果密封材料的高度不足,可能无法完全填充密封间隙,导致密封不严,从而使产品在使用过程中容易受到外界环境的侵蚀,如水分、灰尘等的侵入,影响产品的正常运行和使用寿命。而密封材料高度过高,则可能会导致密封材料溢出,不仅浪费材料,还可能会对产品的其他部件造成污染或影响装配效果。

干涉式同轴 3D 位移测量仪能够精确测量密封材料的高度,为生产企业提供了可靠的数据支持。企业可以根据测量结果,及时调整密封材料的涂抹工艺和用量,确保密封材料的高度符合设计要求,从而有效保障产品的防水、防尘等性能,提高产品的质量和可靠性,减少因密封问题导致的产品故障和售后维修成本,提升企业的经济效益和市场声誉 。

 

六、超高速 / 高精度 CMOS 激光位移传感器应用解析

6.1 压电元件振动测量

6.1.1 测量原理与实现

超高速 / 高精度 CMOS 激光位移传感器 LK 系列在压电元件振动测量中展现出独特的技术优势。该系列传感器实现了最大 392kHz 的采样周期,这一超高的采样频率使得它能够对高速振动的目标物进行精准的振动捕捉。其工作原理基于激光的反射特性,传感器发射出特定频率的激光束,激光束照射到压电元件表面后,会被反射回来。由于压电元件在振动过程中,其表面位置会发生快速且微小的变化,这种变化会导致反射光的相位、强度等特性发生相应改变。

传感器内部的超高速 CMOS 芯片能够以极快的速度对反射光的这些变化进行高频率的采样和精确的分析。通过对反射光信号的实时处理和计算,传感器可以准确地获取压电元件在不同时刻的振动位移、振动频率以及振动幅度等关键参数。例如,在对高频振动的压电元件进行测量时,传感器能够在极短的时间内,以极高的精度捕捉到压电元件振动过程中的每一个细微变化,从而为后续的数据分析和应用提供了丰富且准确的数据支持 。

激光测量技术在(ADAS)驾驶辅助系统的应用案例(一)

 

6.1.2 应用场景与意义

在声学领域,压电元件作为发声和接收声音信号的关键部件,其振动性能直接影响着声学设备的音质和性能。以高端音响系统中的压电式扬声器为例,通过使用超高速 / 高精度 CMOS 激光位移传感器对压电元件的振动进行精确测量,可以深入了解扬声器在不同音频信号驱动下的振动特性。通过对测量数据的分析,工程师们能够优化扬声器的设计和制造工艺,使其能够更准确地还原音频信号,提升音响系统的音质,为用户带来更加逼真、清晰的听觉体验。

在电子领域,压电元件常用于制造各种传感器和执行器,如压力传感器、加速度传感器等。对于压力传感器中的压电元件,通过测量其在不同压力作用下的振动情况,可以精确地感知压力的大小和变化。超高速 / 高精度 CMOS 激光位移传感器能够实时、准确地监测压电元件的振动状态,为压力传感器的高精度测量提供了有力保障。这使得压力传感器在工业自动化生产、航空航天等对压力测量精度要求极高的领域中,能够可靠地工作,确保系统的安全运行和精确控制 。

 

6.2 压电元件平面度测量

6.2.1 测量方式与优势

在对压电元件的平面度进行测量时,超高速 / 高精度 CMOS 激光位移传感器采用了以面捕捉目标物 3D 形状的先进测量方式。传感器发射出的激光束以特定的角度和模式覆盖整个压电元件的表面,形成一个密集的激光测量网络。当激光束照射到压电元件表面后,会根据表面的高度变化产生不同的反射路径和时间延迟。

传感器的探测器能够快速、精确地捕捉到这些反射光的变化信息,并将其转化为大量的空间坐标数据。通过对这些海量的空间坐标数据进行复杂的算法处理和分析,传感器可以构建出压电元件表面的精确三维模型。在这个三维模型中,每一个点的高度信息都被准确记录,从而可以直观地反映出压电元件表面的平整度情况。

这种测量方式具有显著的优势。相较于传统的平面度测量方法,如使用卡尺、千分表等接触式测量工具,该传感器实现了非接触式测量,避免了因接触而对压电元件表面造成的损伤,尤其适用于对表面精度要求极高的压电元件。其测量精度极高,能够检测到压电元件表面微小的凹凸不平,精度可达到微米甚至纳米级别。通过对整个表面进行全面的 3D 测量,能够获取更全面、准确的平面度信息,而不是局限于几个离散点的测量,从而更真实地反映压电元件的平面度状况 。


 

6.2.2 对产品质量的保障

压电元件的平面度对其性能稳定性有着至关重要的影响。在电子设备中,压电元件通常需要与其他部件进行精确的配合和连接。如果压电元件的平面度不符合要求,存在凹凸不平的情况,在与其他部件装配时,可能无法实现紧密贴合,导致接触不良。这会影响电子设备的电气性能,例如在电路连接中可能出现电阻增大、信号传输不稳定等问题,严重时甚至会导致设备故障。

在一些对精度要求极高的应用场景,如高精度传感器、精密光学设备等,压电元件的平面度直接关系到设备的测量精度和工作效果。对于高精度压力传感器中的压电元件,若平面度不佳,会导致在压力测量过程中产生误差,使得测量结果不准确,无法满足实际应用的需求。通过使用超高速 / 高精度 CMOS 激光位移传感器对压电元件的平面度进行严格测量和质量控制,能够确保每一个压电元件都具有良好的平面度,从而保证其在各种应用场景中的性能稳定性,提高产品的整体质量和可靠性,减少因压电元件平面度问题而导致的产品质量问题和售后维修成本 。


News / 推荐阅读 +More
2025 - 09 - 05
点击次数: 12
高精度测量传感器全系列:赋能精密制造,适配多元检测需求聚焦半导体、光学膜、机械加工等领域的精密检测核心痛点,我们推出全系列高性能测量传感器,覆盖 “测厚、对焦、位移” 三大核心应用场景,以 “高精准、高速度、高适配” 为设计核心,为您的工艺控制与质量检测提供可靠技术支撑。以下为各产品系列的详细介绍:1.LTS-IR 红外干涉测厚传感器:半导体材料测厚专属核心用途:专为硅、碳化硅、砷化镓等半导体材料设计,精准实现晶圆等器件的厚度测量。性能优点:精度卓越:±0.1μm 线性精度 + 2nm 重复精度,确保测量数据稳定可靠;量程适配:覆盖 10μm2mm 测厚范围,满足多数半导体材料检测需求;高效高速:40kHz 采样速度,快速捕捉厚度数据,适配在线检测节奏;灵活适配:宽范围工作距离设计,可灵活匹配不同规格的检测设备与场景。2. 分体式对焦传感器:半导体 / 面板缺陷检测的 “高速对焦...
2025 - 09 - 02
点击次数: 30
泓川科技激光位移传感器产品技术报告尊敬的客户: 感谢您对泓川科技激光位移传感器产品的关注与信任。为帮助您全面了解我司产品,现将激光位移传感器相关技术信息从参数指标、设计原理、结构设计等八大核心维度进行详细说明,为您的选型、使用及维护提供专业参考。一、参数指标我司激光位移传感器涵盖 LTP400 系列与 LTP450 系列,各型号核心参数经纳米级高精度激光干涉仪标定验证,确保数据精准可靠,具体参数如下表所示:表 1:LTP400EA参数表参数类别具体参数LTP400EA备注基础测量参数测量中心距离400mm以量程中心位置计算(*1)量程200mm-重复精度(静态)3μm测量标准白色陶瓷样件,50kHz 无平均,取 65536 组数据均方根偏差(*2)线性度±0.03%F.S.(F.S.=200mm)采用纳米级激光干涉仪标定(*3)光源与光斑光源类型-激光功率可定制,部分型号提供 4...
2025 - 08 - 30
点击次数: 14
泓川科技发布 LT-CP 系列 ETHERCAT 总线高光谱共焦控制器,32KHz 高速采样引领工业高精度测量革新近日,工业高精度测量领域迎来技术突破 —— 泓川科技正式推出LT-CP 系列 ETHERCAT 总线高光谱共焦传感器控制器(含单通道 LT-CPS、双通道 LT-CPD、四通道 LT-CPF 三款型号,含普通光源与高亮激光光源版本)。该系列产品以 “32KHz 高速采样” 与 “ETHERCAT 工业总线” 为核心亮点,填补了行业内 “高频响应 + 实时协同” 兼具的技术空白,为新能源、半导体、汽车制造等高端领域的动态高精度测量需求提供了全新解决方案。一、核心突破:32KHz 高速采样,破解 “多通道降速” 行业痛点光谱共焦技术的核心竞争力在于 “高精度” 与 “响应速度” 的平衡,而 LT-CP 系列在速度维度实现了关键突破 ——单通道模式下最高采样频率达 32KHz,意味着...
2025 - 08 - 12
点击次数: 32
在半导体芯片制造、精密电子组装等高端工业场景中,一个棘手的矛盾始终存在:一方面,设备内部空间日益紧凑,毫米级的安装高度都可能成为 “禁区”;另一方面,随着产品结构复杂化,对测量量程的需求不断提升,5mm 以上的大量程检测已成为常态。如何在狭小空间内实现大量程精密测量?无锡泓川科技给出了突破性答案 ——光学转折镜,以创新设计让光谱共焦传感器的测量方向 “直角转向”,既节省安装空间,又兼容大量程需求,重新定义精密测量的空间可能性。传统方案的痛点:空间与量程难以两全在精密测量领域,侧出光传感器曾是狭小空间的 “救星”。泓川科技旗下 LTCR 系列作为 90° 侧向出光型号,凭借紧凑设计广泛应用于深孔、内壁等特征测量。但受限于结构设计,其量程多集中在 2.5mm 以内(如 LTCR4000 量程为 ±2mm),难以满足半导体晶圆厚度、大型精密构件高度差等大量程场景的需求。若选择...
2025 - 06 - 22
点击次数: 92
一、国产化背景与战略意义在全球供应链竞争加剧的背景下,激光位移传感器作为工业自动化核心测量部件,其国产化生产对打破技术垄断、保障产业链安全具有重要战略意义。泓川科技 LTP 系列依托国内完整的光学、电子、机械产业链体系,实现了从核心零部件到整机制造的全流程国产化,彻底解决了接口卡脖子问题,产品精度与稳定性达到国际先进水平,同时具备更强的成本竞争力与定制化服务能力。二、核心部件全国产化组成体系(一)光学系统组件激光发射单元激光二极管:采用深圳镭尔特光电 655nm 红光 PLD650 系列(功率 0.5-4.9mW)及埃赛力达 905nm 红外三腔脉冲激光二极管,支持准直快轴压缩技术,波长稳定性 ±0.1nm,满足工业级高稳定性需求。准直透镜:选用杭州秋籁科技 KEWLAB CL-UV 系列,表面粗糙度 光学滤光片:深圳激埃特光电定制窄带滤光片,红外截止率 99.9%,有效消除环...
About Us
关于泓川科技
专业从事激光位移传感器,激光焊缝跟踪系统研发及销售的科技公司
中国 · 无锡 · 总部地址:无锡新吴区天山路6号
销售热线:0510-88155119 
图文传真:0510-88152650
Working Time
我们的工作时间
周一至周五:8:00-18:00
周六至周日:9:00-15:00
Shown 企业秀 More
  • 1
    2023 - 03 - 09
    激光位移传感器被广泛应用于各种领域中。其中一个很有用的应用是测量薄膜厚度。这种传感器可以在离表面很近的距离下进行高精度测量,因此非常适合这种应用。本文将介绍激光位移传感器如何用于测量薄膜厚度,包括测量方法、测量原理和市场应用。一、测量方法测量薄膜厚度的基本思路是利用激光位移传感器测量薄膜前后表面的距离差,然后通过几何公式计算出薄膜厚度。在实际操作中,测量方法大致可分为以下几种:1. 手持式测量手持式测量通常用于快速的现场检测。用户只需要将激光位移传感器靠近待测表面,然后通过读取显示屏上的数值判断薄膜厚度是否符合要求。这种方法不需要复杂的设备和步骤,非常易于使用。但是由于人手的震动和误差等因素,手持式测量的精度相对较低,只适用于需求不是特别高的场合。2. 自动化在线测量自动化在线测量一般用于工业生产线上的质量控制。这种方法需要将激光位移传感器与自动化设备相连接,将测量数据传递给计算机进行分析。在这种情况下,测量过程可以完全自动化,精度也可以得到保证。但是相对于手持式测量来说,这种方法需要的设备和技术要求更高,成本也更高。3. 显微镜下测量显微镜下测量常用于对细小薄膜厚度的测量。在这种情况下,用户需要将激光位移传感器与显微镜相结合进行测量。由于显微镜的存在,可以大大增强测量精度。但是相对于其他两种方法,这种方法需要的设备更多,并且技巧要求也更高。二、测量原理激光位移传感器利用的是激光三...
  • 2
    2025 - 01 - 14
    四、光学传感器应用对薄膜涂布生产的影响4.1 提升生产效率4.1.1 实时监测与反馈在薄膜涂布生产的复杂乐章中,光学传感器实时监测与反馈机制宛如精准的指挥棒,引领着生产的节奏。凭借其卓越的高速数据采集能力,光学传感器能够如同闪电般迅速捕捉涂布过程中的关键参数变化。在高速涂布生产线以每分钟数百米的速度运行时,传感器能够在瞬间采集到薄膜厚度、涂布速度、位置偏差等数据,为生产过程的实时监控提供了坚实的数据基础。这些采集到的数据如同及时的情报,被迅速传输至控制系统。控制系统则如同智慧的大脑,对这些数据进行深入分析。一旦发现参数偏离预设的理想范围,控制系统会立即发出指令,如同指挥官下达作战命令,对涂布设备的相关参数进行精准调整。当检测到薄膜厚度略微超出标准时,控制系统会迅速调整涂布头的压力,使涂布量精确减少,确保薄膜厚度回归正常范围。这种实时监测与反馈机制的存在,使得生产过程能够始终保持在最佳状态。它避免了因参数失控而导致的生产中断和产品质量问题,如同为生产线安装了一个智能的 “稳定器”。与传统的生产方式相比,生产调整的时间大幅缩短,从过去的数小时甚至数天,缩短至现在的几分钟甚至几秒钟,极大地提高了生产效率。4.1.2 减少停机时间在薄膜涂布生产的漫长旅程中,设备故障和产品质量问题如同隐藏在道路上的绊脚石,可能导致停机时间的增加,严重影响生产效率。而光学传感器的实时监测功能,就像一位警惕的卫...
  • 3
    2023 - 08 - 21
    摘要:基膜厚度是许多工业领域中重要的参数,特别是在薄膜涂覆和半导体制造等领域。本报告提出了一种基于高精度光谱感测的基膜厚度测量方案,该方案采用非接触测量技术,具有高重复性精度要求和不损伤产品表面的优势。通过详细的方案设计、设备选择和实验验证,展示了如何实现基膜厚度的准确测量,并最终提高生产效率。引言基膜厚度的精确测量对于许多行业来说至关重要。传统测量方法中的接触式测量存在损伤产品表面和对射测量不准确的问题。相比之下,高精度光谱感测技术具有非接触、高重复性和高精度的优势,因此成为了基膜厚度测量的理想方案。方案设计基于高精度光谱感测的基膜厚度测量方案设计如下:2.1 设备选择选择一台高精度光谱感测仪器,具备以下特点:微米级或亚微米级分辨率:满足对基膜厚度的高精度要求。宽波长范围:覆盖整个感兴趣的波长范围。快速采集速度:能够快速获取数据,提高生产效率。稳定性和重复性好:确保测量结果的准确性和可靠性。2.2 光谱感测技术采用反射式光谱感测技术,原理如下:在感测仪器中,发射一个宽光谱的光源,照射到待测样品表面。根据不同厚度的基膜对光的反射率不同,形成一个光谱反射率图像。通过对反射率图像的分析和处理,可以确定基膜的厚度。2.3 实验设计设计实验验证基膜厚度测量方案的准确性和重复性。选择一系列已知厚度的基膜作为标准样品。使用高精度光谱感测仪器对标准样品进行测量,并记录测量结果。重复多次测量,并计...
  • 4
    2023 - 12 - 23
    摘要:圆筒内壁的检测在工业生产中具有重要意义,传统方法存在诸多问题。本文介绍了一种新型的检测系统,该系统结合了改进的激光三角测距法和机器视觉技术,旨在解决传统方法的不足。新方法可以在高温环境下工作,对小径圆筒进行测量,且测量精度高、速度快。通过实验验证,该系统能够实现圆筒内壁的高质量、高速度的在线检测,为现代工业生产提供了有力支持。关键词:圆筒内壁检测;机器视觉;激光三角测距法;在线检测引言圆筒内壁检测是工业生产中的重要环节,其质量直接关系到产品的性能和使用寿命。传统的检测方法存在诸多问题,如检测精度不高、速度慢、无法在线检测等。为了解决这些问题,本文提出了一种新型的检测系统,该系统结合了改进的激光三角测距法和机器视觉技术,旨在实现圆筒内壁的高质量、高速度的在线检测。工作原理本系统采用激光三角测距法作为主要测量手段。激光三角测距法是一种非接触式测量方法,通过激光投射到被测物体表面并反射回来,再通过传感器接收,经过处理后可以得到被测物体的距离和尺寸信息。本系统对传统的激光三角测距法进行了改进,使其能够在高温环境下工作,并对小径圆筒进行测量。同时,本系统还采用了机器视觉技术进行辅助测量和判断。机器视觉技术是通过计算机模拟人类的视觉功能,实现对图像的采集、处理和分析。本系统利用机器视觉技术对圆筒内壁表面进行图像采集和处理,通过算法识别和判断内壁表面的缺陷和尺寸信息。通过将激光三角测距法和...
  • 5
    2025 - 03 - 05
    在工业自动化领域,激光位移传感器是精密测量的核心器件。本文以国产泓川科技的LTP150与基恩士的LK-G150为对比对象,从核心技术参数、功能设计及性价比等维度,解析国产传感器的创新突破与本土化优势。一、核心参数对比:性能旗鼓相当,国产线性度更优精度与稳定性LTP150的线性度为±0.02%F.S.,优于LK-G150的±0.05%F.S.,表明其全量程范围内的测量一致性更佳。重复精度方面,LK-G150(0.5μm)略高于LTP150(1.2μm),但需注意LK-G150数据基于4096次平均化处理,而LTP150在无平均条件下的65536次采样仍保持1.2μm偏差,实际动态场景下稳定性更可靠。采样频率与响应速度LTP150支持50kHz全量程采样,并可扩展至160kHz(量程缩小至20%),远超LK-G150的1kHz上限。高频采样能力使其在高速生产线(如电池极片、半导体晶圆检测)中可捕捉更多细节,避免数据遗漏。环境适应性两者均具备IP67防护与抗振设计,但LTP150可选**-40°C至70°C宽温版本**,覆盖极寒或高温车间环境,而LK-G150仅支持050°C,适用场景受限。以下是 LTP150(泓川科技) 与 LK-G150(基恩士) 激光位移传感器的核心参数对比表格,重点突出国产...
  • 6
    2025 - 01 - 14
    一、引言1.1 研究背景与意义在工业制造、科研等众多领域,精密测量技术如同基石,支撑着产品质量的提升与科学研究的深入。光谱共焦传感器作为精密测量领域的关键技术,正以其独特的优势,在诸多行业中发挥着无可替代的作用。它能精确测量物体的位移、厚度、表面轮廓等参数,为生产过程的精确控制与产品质量的严格把控提供了关键数据支持。基恩士作为传感器领域的佼佼者,其推出的光谱共焦传感器在市场上备受瞩目。基恩士光谱共焦传感器凭借卓越的性能,如高精度、高稳定性、快速响应等,在精密测量领域中脱颖而出。在半导体制造过程中,芯片的生产对精度要求极高,基恩士光谱共焦传感器可精准测量芯片的厚度、线宽等关键参数,保障芯片的性能与质量。在光学元件制造领域,其能够精确测量透镜的曲率、厚度等参数,助力生产出高质量的光学元件。研究基恩士光谱共焦传感器,对于推动精密测量技术的发展具有重要意义。通过深入剖析其原理、结构、性能以及应用案例,能够为相关领域的技术创新提供参考,促进测量技术的不断进步。在实际应用中,有助于用户更合理地选择和使用该传感器,提高生产效率,降低生产成本。在汽车制造中,利用基恩士光谱共焦传感器对零部件进行精密测量,可优化生产流程,减少废品率。 1.2 研究现状在国外,光谱共焦传感器的研究起步较早,技术也相对成熟。法国的STIL公司作为光谱共焦传感器的发明者,一直处于该领域的技术前沿。其研发的光谱共焦...
  • 7
    2025 - 02 - 19
    一、测量原理与技术框架高精度激光位移传感器实现1μm以下精度的核心在于三角测量法的深度优化。如图1所示,当激光束投射到被测表面时,散射光斑经接收透镜在CMOS/CCD阵列上形成位移图像。根据几何关系:\Delta x = \frac{L \cdot \sinθ}{M \cdot \cos(α±θ)}Δx=M⋅cos(α±θ)L⋅sinθ其中L为基距,θ为接收角,M为放大倍数。要实现亚微米分辨率需突破传统三角法的三个技术瓶颈:光斑质量退化、环境噪声干扰、信号处理延迟。二、关键算法突破1. 光斑中心定位算法采用改进型高斯混合模型(GMM)结合小波变换降噪,可有效抑制散斑噪声。研究显示[1],基于Marr小波的边缘检测算法可使定位精度提升至0.12像素(对应0.05μm)。2. 动态补偿算法LTP系列采用专利技术(CN202310456789.1)中的自适应卡尔曼滤波:PYTHONclass AdaptiveKalman:    def update(self, z):        # 实时调整过程噪声协方差Q        se...
  • 8
    2023 - 03 - 20
    介绍工业光电传感器是现代制造业中最常用的检测设备之一,广泛应用于自动化生产线、机械加工、装配、物流搬运等行业。随着国民经济的不断发展,中国的工业光电传感器制造业也不断发展壮大,成为制造业的一支重要力量。本文旨在对中国产的工业光电传感器现状进行描述。发展历史20世纪80年代初期,我国的工业自动化程度比较低,大部分生产线仍采用人力操作,制造业存在高人力成本、低效率、品质难以保证等问题。为了提高制造业的效率和品质,中国开始引入外国的工业自动化设备,其中就包括工业光电传感器。80年代中后期,国内开始试水制造工业光电传感器,并逐步发展壮大。90年代初期,随着国民经济的增长和工业自动化的加速推进,中国的工业光电传感器制造业进入快速发展期。如今,中国的工业光电传感器制造业已经处于全球领先地位,成为世界闻名的光电传感器生产基地之一。产业链分析商业模式中国的工业光电传感器制造业商业模式主要是以生产销售为主,较少采用研发生产销售一体化模式。生产企业主要供应给自动化设备制造商,然后这些自动化设备制造商销售给最终用户,最终用户则使用这些设备来自动化生产线。除此之外,还有一些企业将工业光电传感器产品应用到自己的设备制造中,以提高自己产品的品质和效率,然后再将自己的产品销售给最终用户。在商业模式上,中国的工业光电传感器制造业与欧美等发达国家还存在一定的差距。技术研发中国的工业光电传感器制造业在技术研发方面逐渐...
Message 最新动态
泓川科技国产系列光谱共焦/激光位移传感器/白光干涉测厚产品性能一览 2025 - 09 - 05 高精度测量传感器全系列:赋能精密制造,适配多元检测需求聚焦半导体、光学膜、机械加工等领域的精密检测核心痛点,我们推出全系列高性能测量传感器,覆盖 “测厚、对焦、位移” 三大核心应用场景,以 “高精准、高速度、高适配” 为设计核心,为您的工艺控制与质量检测提供可靠技术支撑。以下为各产品系列的详细介绍:1.LTS-IR 红外干涉测厚传感器:半导体材料测厚专属核心用途:专为硅、碳化硅、砷化镓等半导体材料设计,精准实现晶圆等器件的厚度测量。性能优点:精度卓越:±0.1μm 线性精度 + 2nm 重复精度,确保测量数据稳定可靠;量程适配:覆盖 10μm2mm 测厚范围,满足多数半导体材料检测需求;高效高速:40kHz 采样速度,快速捕捉厚度数据,适配在线检测节奏;灵活适配:宽范围工作距离设计,可灵活匹配不同规格的检测设备与场景。2. 分体式对焦传感器:半导体 / 面板缺陷检测的 “高速对焦助手”核心用途:针对半导体、面板领域的高精度缺陷检测场景,提供高速实时对焦支持,尤其适配显微对焦类检测设备。性能优点:对焦速度快:50kHz 高速对焦,同步匹配缺陷检测的实时性需求;对焦精度高:0.5μm 对焦精度,保障缺陷成像清晰、检测无偏差;设计灵活:分体式结构,可根据检测设备的安装空间与布局灵活调整,降低适配难度。3. LT-R 反射膜厚仪:极薄膜厚检测的 “精密管家”核心用途:专注于极薄膜...
多方面研究泓川科技LTP系列大量程全国产激光位移传感器 2025 - 09 - 02 泓川科技激光位移传感器产品技术报告尊敬的客户: 感谢您对泓川科技激光位移传感器产品的关注与信任。为帮助您全面了解我司产品,现将激光位移传感器相关技术信息从参数指标、设计原理、结构设计等八大核心维度进行详细说明,为您的选型、使用及维护提供专业参考。一、参数指标我司激光位移传感器涵盖 LTP400 系列与 LTP450 系列,各型号核心参数经纳米级高精度激光干涉仪标定验证,确保数据精准可靠,具体参数如下表所示:表 1:LTP400EA参数表参数类别具体参数LTP400EA备注基础测量参数测量中心距离400mm以量程中心位置计算(*1)量程200mm-重复精度(静态)3μm测量标准白色陶瓷样件,50kHz 无平均,取 65536 组数据均方根偏差(*2)线性度±0.03%F.S.(F.S.=200mm)采用纳米级激光干涉仪标定(*3)光源与光斑光源类型-激光功率可定制,部分型号提供 405nm 蓝光版本(*4)光束直径聚焦点光斑 Φ300μm中心位置直径,两端相对变大(*5)电气参数电源电压DC9-36V-功耗约 2.5W-短路保护反向连接保护、过电流保护-输出与通信模拟量输出(选配)电压:0-5V/010V/-1010V;电流:420mA探头可独立提供电压、电流与 RS485 输出(*6)通讯接口RS485 串口、TCP/IP 网口可选配模拟电压 / 电流输出模块(*7)响应...
泓川科技发布 LT-CP 系列 ETHERCAT 总线高光谱共焦控制器,32KHz 高速采样引领工业... 2025 - 08 - 30 泓川科技发布 LT-CP 系列 ETHERCAT 总线高光谱共焦控制器,32KHz 高速采样引领工业高精度测量革新近日,工业高精度测量领域迎来技术突破 —— 泓川科技正式推出LT-CP 系列 ETHERCAT 总线高光谱共焦传感器控制器(含单通道 LT-CPS、双通道 LT-CPD、四通道 LT-CPF 三款型号,含普通光源与高亮激光光源版本)。该系列产品以 “32KHz 高速采样” 与 “ETHERCAT 工业总线” 为核心亮点,填补了行业内 “高频响应 + 实时协同” 兼具的技术空白,为新能源、半导体、汽车制造等高端领域的动态高精度测量需求提供了全新解决方案。一、核心突破:32KHz 高速采样,破解 “多通道降速” 行业痛点光谱共焦技术的核心竞争力在于 “高精度” 与 “响应速度” 的平衡,而 LT-CP 系列在速度维度实现了关键突破 ——单通道模式下最高采样频率达 32KHz,意味着每秒可完成 32000 次精准距离 / 厚度测量,相当于对动态移动的被测物体(如高速传输的电池极片、晶圆)实现 “无遗漏” 的高频捕捉,测量分辨率与动态响应能力远超行业常规 10-20KHz 级别控制器。更具稀缺性的是,该系列打破了 “多通道即降速” 的传统局限:即使在双通道模式(最高 16KHz)、四通道模式(最高 8KHz)下,仍保持高频响应的稳定性。以四通道 LT-CPF 为例,其每通道 8...
Copyright ©2005 - 2013 无锡泓川科技有限公司

1

犀牛云提供企业云服务
Our Link
X
3

SKYPE 设置

4

阿里旺旺设置

等待加载动态数据...

等待加载动态数据...

5

电话号码管理

  • 0510-88155119
6

二维码管理

等待加载动态数据...

等待加载动态数据...

展开