服务热线: 0510-88155119
13301510675@163.com
Language

激光测量技术在(ADAS)驾驶辅助系统的应用案例(三)

日期: 2025-01-16
浏览次数: 55
发表于:
来自 泓川科技
发表于: 2025-01-16
浏览次数: 55

七、声纳传感器应用案例深析

7.1 外壳相关检测

7.1.1 外壳的外观检测

在声纳传感器的实际应用中,对外壳的外观检测是确保产品质量的关键步骤。在进行外壳外观检测时,声纳传感器并非仅依赖传统的图像明暗判断方式,而是借助先进的技术,利用 3D 形状的图像来实现精准的形状变化识别。

其工作过程如下:传感器发射特定频率和模式的声波,这些声波以特定的角度和范围向外传播,当遇到外壳表面时,会根据外壳表面的形状、材质以及纹理等特征产生不同的反射模式。反射回来的声波被传感器的接收装置高效捕捉,然后转化为电信号。系统对这些电信号进行复杂的处理和分析,通过独特的算法将其转换为详细的 3D 形状数据。在这个过程中,系统会对 3D 形状数据进行精确的分析和比对,与预先设定的标准外壳模型进行细致的匹配。一旦发现外壳的形状与标准模型存在差异,系统会立即识别出这些变化,从而确定外壳是否存在缺陷或不符合规格的情况。

激光测量技术在(ADAS)驾驶辅助系统的应用案例(三)

这种利用 3D 形状图像进行外观检测的方式具有诸多显著优势。它极大地提高了检测的准确性和可靠性。传统的基于图像明暗判断的方法,容易受到环境光、外壳表面光泽度以及颜色等多种因素的干扰,导致检测结果出现偏差。而 3D 形状图像检测技术能够直接获取外壳的真实形状信息,不受这些外部因素的影响,从而能够更准确地发现外壳表面的细微瑕疵,如划痕、凹陷、凸起等,以及形状上的偏差。该技术具有较强的稳定性。无论环境光如何变化,或者外壳处于何种复杂的工作环境中,它都能稳定地进行检测,确保检测结果的一致性和可靠性。这对于在不同生产环境和使用场景下保证产品质量的稳定性具有重要意义,有效避免了因检测误差而导致的次品流入市场,提高了产品的整体质量和品牌信誉 。

 

7.1.2 外壳与屏蔽壳间隙测量

在电子设备中,外壳与屏蔽壳之间的间隙大小对于设备的性能,尤其是电磁屏蔽性能、散热性能以及防护性能等方面有着至关重要的影响。如果间隙过大,可能会导致电磁干扰泄漏,影响设备的正常运行,同时也会降低设备的防护等级,使其容易受到外界环境因素的侵蚀。而间隙过小,则可能在装配过程中出现困难,甚至对设备内部的零部件造成损坏。

2D/3D 线激光测量仪在外壳与屏蔽壳间隙测量中发挥着关键作用。该测量仪搭载了 3200points/profile 的超高精细 CMOS 传感器,这一先进的传感器具备卓越的测量能力。在测量过程中,测量仪发射出线激光束,这些激光束以极细的光斑和高精度的定位,对外壳与屏蔽壳之间的间隙进行扫描。激光束在照射到间隙表面时,会根据间隙的宽窄和形状产生不同的反射和折射情况。超高精细 CMOS 传感器能够精确地捕捉到这些细微的变化,将反射光的信息转化为电信号,并传输给测量仪的控制系统。

激光测量技术在(ADAS)驾驶辅助系统的应用案例(三)

控制系统通过内置的先进算法,对这些电信号进行深入分析和处理。它能够根据激光束的发射角度、反射时间以及传感器的位置信息,精确计算出间隙各个点的位置和尺寸信息,从而构建出间隙的精确三维模型。通过对这个三维模型的分析,测量仪可以准确得出外壳与屏蔽壳之间的间隙大小,精度可达到非常高的水平,能够满足对间隙测量精度要求极高的应用场景。

这种对狭小间隙进行高精度测量的技术在实际应用中具有重要意义。在电子设备制造行业,特别是对于那些对电磁兼容性和防护性能要求严格的产品,如通信设备、航空航天电子设备等,精确控制外壳与屏蔽壳之间的间隙是确保产品性能和可靠性的关键。通过使用 2D/3D 线激光测量仪进行精确测量,生产企业能够在生产过程中及时发现间隙不符合要求的产品,采取相应的调整和改进措施,从而保证产品的质量和性能,提高生产效率,降低生产成本 。

 

7.2 部件安装相关测量

7.2.1 部件安装高度差测量

在设备的组装过程中,部件安装的高度差直接关系到整个设备的性能和稳定性。对于声纳传感器相关设备而言,部件安装高度差的精准测量尤为重要。在测量安装后的高度差时,2D/3D 线激光测量仪 LJ-X8000 系列发挥了重要作用。

该测量仪通过扫描目标物并将其识别为 3D 形状,实现了一次检测多个位置测量点的功能。具体操作过程如下:测量仪发射出线激光束,这些激光束以特定的角度和密度覆盖目标部件的表面。当激光束照射到部件表面时,会根据部件表面的高度差异产生不同的反射路径和时间延迟。测量仪的探测器能够快速、准确地捕捉到这些反射光的变化信息,并将其转化为大量的空间坐标数据。通过对这些海量的空间坐标数据进行复杂的算法处理和分析,测量仪构建出部件的精确 3D 模型。

在这个 3D 模型中,每个测量点的高度信息都被准确记录。通过对不同部件上对应测量点的高度数据进行对比和计算,测量仪可以精确得出部件安装后的高度差。这种测量方法具有高效、准确的特点。相较于传统的逐个测量点进行测量的方式,它能够一次性获取多个测量点的信息,大大提高了测量效率,减少了测量时间和工作量。其测量精度非常高,能够检测到极其微小的高度差,为设备的精确装配提供了可靠的数据支持。

部件安装高度差的精准测量对装配质量有着深远的影响。如果部件安装高度差不符合设计要求,可能会导致设备在运行过程中出现一系列问题。例如,在机械传动部件的安装中,高度差可能会导致部件之间的配合不良,增加摩擦和磨损,降低设备的使用寿命,甚至可能引发设备故障,影响生产的正常进行。在电子设备中,部件安装高度差可能会影响电路连接的稳定性,导致信号传输不畅、短路等问题,严重影响设备的电气性能。通过精确测量部件安装高度差,装配人员可以及时发现并调整安装过程中的偏差,确保每个部件都安装在正确的位置,从而提高装配质量,保障设备的正常运行,提升产品的可靠性和稳定性 。

 

7.2.2 安装传感器时车身角度测量

在车身安装声纳传感器时,准确测量车身位置及角度是确保传感器能够正常工作并发挥最佳性能的关键环节。2D/3D 线激光测量仪 LJ-X8000 系列在这一测量任务中展现出了独特的优势。

该测量仪具有最大 720mm 的广泛测量范围,这使得它能够轻松检测车身等大型目标物。在测量车身角度时,测量仪通过发射线激光束对车身进行全面扫描。激光束从不同角度照射到车身上,根据车身的形状和位置产生不同的反射模式。测量仪的传感器迅速捕捉这些反射光,并将其转化为详细的空间坐标数据。通过对这些空间坐标数据的分析,测量仪可以构建出车身的精确 3D 模型。

在这个 3D 模型的基础上,测量仪利用先进的算法,通过对比车身特定部位的坐标信息与预设的标准值,能够准确计算出车身的角度。例如,通过测量车身底部几个关键支撑点的高度差以及它们之间的相对位置关系,结合测量仪内部的几何计算模型,就可以精确得出车身的倾斜角度。

这一测量在传感器安装中具有重要的意义。声纳传感器的工作效果高度依赖于其安装角度的准确性。如果车身角度测量不准确,导致传感器安装倾斜,那么传感器发射的声波信号可能无法按照预期的方向传播和接收,从而影响对周围环境的探测精度。在汽车行驶过程中,可能会出现对障碍物的误判、漏判等情况,严重威胁行车安全。准确测量车身角度能够确保传感器安装在正确的位置和角度上,使得传感器发射的声波能够均匀、有效地覆盖周围区域,提高传感器对目标物体的检测精度和可靠性,为车辆的安全行驶提供有力保障 。

 

八、毫米波雷达相关应用案例探讨

8.1 天线元件平坦度测量

8.1.1 测量流程与要点

在毫米波雷达的制造过程中,对天线元件平坦度的测量至关重要。采用 2D/3D 线激光测量仪 LJ-X8000 系列进行测量时,首先需将测量仪安装在合适的位置,确保其发射的线激光能够全面覆盖天线元件表面。测量仪的支持宽度达最大 720mm ,可对天线元件进行大范围的扫描。

测量过程中,线激光以特定的角度和间距照射到天线元件上,由于元件表面的平坦度差异,激光的反射情况会有所不同。测量仪搭载的高灵敏度探测器迅速捕捉这些反射光的变化,并将其转化为电信号。通过对电信号的精确分析和处理,测量仪能够构建出天线元件表面的三维轮廓模型。在此模型的基础上,测量仪可以同时测量多个任意指定点的高度信息,通过对比这些点的高度数据与理想平坦状态下的标准值,就能准确计算出天线元件的平坦度偏差 。

需要重点关注的要点包括测量仪的安装精度,必须保证其发射的激光能够垂直且均匀地照射到天线元件表面,以避免因照射角度偏差导致测量误差。测量环境的稳定性也十分关键,应尽量减少环境振动、温度波动等因素的干扰,确保测量过程的稳定性。


 激光测量技术在(ADAS)驾驶辅助系统的应用案例(三)

8.1.2 对雷达性能的影响

天线元件的平坦度对毫米波雷达的信号发射与接收性能有着深远的影响。如果天线元件平坦度不佳,存在凹凸不平的情况,在信号发射时,毫米波将无法按照预期的方向和强度均匀地辐射出去。这会导致信号在空间中的分布不均匀,某些方向上的信号强度减弱,从而缩小雷达的有效探测范围。

在信号接收方面,不平坦的天线元件可能会使接收到的回波信号发生散射和畸变,降低信号的质量和准确性。这将严重影响雷达对目标物体的检测精度,导致对目标的距离、速度和角度测量出现偏差,甚至可能出现漏检或误检的情况。对于自动驾驶系统而言,这种不准确的检测结果可能会引发严重的安全事故。确保天线元件具有良好的平坦度,是保证毫米波雷达性能稳定、可靠的关键因素,对于提升自动驾驶的安全性和可靠性具有不可忽视的重要意义 。

 

8.2 端子相关测量

8.2.1 端子的高度与节距检测

在毫米波雷达的电路连接中,端子的高度与节距的准确性直接关系到电路的稳定性和信号传输的质量。使用 2D/3D 线激光测量仪 LJ-X8000 系列进行端子的高度与节距检测时,测量仪通过发射线激光束对端子进行扫描。

激光束在接触到端子表面后,根据端子的形状和位置产生不同的反射模式。测量仪的传感器快速捕捉这些反射光,并将其转化为详细的空间坐标数据。通过对这些空间坐标数据的深入分析,测量仪能够精确测量出端子的高度以及相邻端子之间的节距。测量仪搭载的滤波器能够在保持目标物形状的状态下,有效消除反射光偏差等导致的干扰成分,确保测量结果的准确性和稳定性 。

准确的端子高度与节距对于电路连接意义重大。如果端子高度不一致,可能会导致在与其他电路元件连接时,接触不良,从而增加电阻,影响电流的传输,甚至可能引发局部过热,损坏电路元件。节距不准确则可能导致在电路板装配过程中,端子无法与对应的插孔正确匹配,造成电路连接错误,使毫米波雷达无法正常工作。精确测量端子的高度与节距,能够确保毫米波雷达的电路连接稳定可靠,保障信号的高效传输,为雷达的正常运行提供坚实的基础 。

 

8.2.2 安装时车身角度测量

在将毫米波雷达安装到车身上时,精确测量车身角度是确保雷达能够准确感知周围环境信息的关键步骤。2D/3D 线激光测量仪 LJ-X8000 系列凭借其最大 720mm 的广泛测量范围,能够轻松检测车身等大型目标物。

测量过程中,测量仪发射线激光束对车身进行全方位扫描。激光束从多个角度照射到车身上,根据车身的形状和位置产生不同的反射路径和时间延迟。测量仪的探测器捕捉这些反射光的变化信息,并将其转化为大量的空间坐标数据。通过对这些空间坐标数据的复杂运算和分析,测量仪构建出车身的精确 3D 模型。在这个 3D 模型的基础上,通过对比车身特定部位的坐标信息与预设的标准值,测量仪能够准确计算出车身的角度 。

激光测量技术在(ADAS)驾驶辅助系统的应用案例(三)

这一测量对于毫米波雷达的安装和使用至关重要。毫米波雷达的工作原理依赖于其能够准确地发射和接收毫米波信号,以探测周围环境中的目标物体。如果车身角度测量不准确,导致雷达安装倾斜,那么雷达发射的毫米波信号将无法按照预期的方向覆盖周围区域,接收回波信号的角度也会发生偏差。这将严重影响雷达对目标物体的检测精度和可靠性,可能导致对障碍物的误判、漏判,从而给行车安全带来巨大隐患。准确测量车身角度,能够确保毫米波雷达安装在正确的位置和角度上,使其能够充分发挥性能,为车辆的安全行驶提供可靠的保障 。

 

九、结论与展望

9.1 研究总结

本报告深入剖析了 ADAS 相关工具在汽车制造及相关领域的丰富应用案例。车载相机凭借 3D 图像检测技术,在底部填充胶涂抹高度测量、镜片高度及缝隙测量等方面,实现了高精度检测,显著提升了产品质量与可靠性 。2D/3D 线激光测量仪在粘合剂体积测量、部件高度与位置检测等多个环节发挥关键作用,其配备的超高灵敏度 CMOS 及先进算法,使其能够适应复杂的测量环境,准确获取各类数据,为生产过程中的质量控制提供了有力支持 。

彩色激光同轴位移计和干涉式同轴 3D 位移测量仪在镜面测量、相机模块测量等方面展现出独特优势,前者基于同轴测量和彩色共焦方式,能够精准检测镜面的倾斜及运动状态;后者利用白光干涉原理,实现了对镜面平坦度和密封材料高度的高精度测量,满足了相关行业对高精度测量的严格要求 。

超高速 / 高精度 CMOS 激光位移传感器在压电元件振动和平面度测量中表现卓越,其超高速采样周期和先进的测量方式,能够准确捕捉压电元件的细微变化,为电子设备的性能优化提供了重要数据 。声纳传感器在外壳外观检测、间隙测量以及部件安装高度差和车身角度测量等方面,通过采用 3D 形状图像识别等技术,提高了检测的准确性和稳定性,保障了设备的装配质量和性能 。毫米波雷达相关的天线元件平坦度测量和端子测量等应用,确保了毫米波雷达的信号发射与接收性能,以及电路连接的稳定性,对于提升自动驾驶的安全性和可靠性至关重要 。

这些 ADAS 相关工具的应用,极大地推动了汽车制造行业的发展。它们提高了生产过程中的检测精度和效率,有效减少了次品率,降低了生产成本。通过精确测量和严格质量控制,提升了汽车及相关零部件的性能和可靠性,为 ADAS 系统的稳定运行提供了坚实基础,进而推动了整个汽车行业向智能化、安全化方向迈进 。

 

9.2 未来发展趋势展望

基于当前的应用案例,ADAS 相关工具未来将朝着更高精度、更智能化以及多功能集成的方向发展。在精度提升方面,随着科技的不断进步,传感器的分辨率和测量精度将进一步提高。例如,激光测量技术可能会实现更高的测量频率和更细微的精度控制,能够检测到更小的尺寸变化和更微弱的物理量变化,从而满足汽车制造等行业对产品质量日益严苛的要求 。

智能化发展趋势也将愈发明显。ADAS 相关工具将具备更强的数据分析和处理能力,能够自动识别和诊断测量数据中的异常情况,并根据预设的规则和算法进行智能决策。例如,在生产线上,测量工具可以实时分析测量数据,一旦发现产品参数超出允许范围,立即自动发出警报,并提供相应的调整建议,实现生产过程的自动化和智能化控制 。

多功能集成是未来的另一个重要发展方向。不同类型的测量工具可能会集成在一起,形成综合性的测量系统。例如,将车载相机、激光测量仪和声纳传感器等集成到一个设备中,使其能够同时完成多种测量任务,不仅可以减少设备的占用空间,还能提高测量效率和数据的关联性。这种多功能集成的测量系统将更好地适应复杂的生产环境和多样化的测量需求,为汽车制造及相关行业的发展提供更全面、更便捷的解决方案 。

随着 ADAS 技术在智能交通领域的应用不断拓展,相关工具的应用场景也将更加广泛。除了汽车制造领域,这些工具还可能在智能交通基础设施建设、物流运输车辆监控等方面发挥重要作用,为构建更加智能、安全、高效的交通系统提供技术支持 。

 


News / 推荐阅读 +More
2025 - 04 - 14
点击次数: 22
在工业自动化领域,激光位移传感器凭借高精度、非接触测量的优势,广泛应用于精密定位、尺寸检测等场景。本文针对泓川科技 HC26 系列与奥泰斯 OPTEX CD33-30 系列(含模拟量通讯版本)进行多维度技术对比,从安装尺寸、通讯格式、模拟量信号、精度、成本等关键指标分析两者的可替代性,为用户选型提供参考。 一、结构设计与安装兼容性:尺寸与适配性对比泓川 HC26 系列外形尺寸为 60×50×22mm,重量约 120g(含线缆),采用紧凑式设计,支持螺丝安装,适配通用工业设备安装孔位(如文档 3 中提到的 2×4.4mm 贯穿孔)。防护等级为 IP67,可在粉尘、潮湿环境中稳定工作,环境温度范围 -10~50℃,适应性更强。奥泰斯 CD33-30 系列文档未明确标注具体尺寸,但从重量推测(约 65g,不含电缆),体积略小于 HC2...
2025 - 04 - 13
点击次数: 26
在工业自动化领域,精密测量是保障产品质量与生产效率的核心环节。泓川科技 HC8-050 与松下 HG-C1050 作为两款主流的中短距离激光位移传感器,在电子制造、精密加工、自动化检测等领域应用广泛。本文将从技术参数、核心性能、应用场景等维度展开深度对比,揭示 HC8-050 在特定场景下的显著优势及高性价比。一、基础技术参数:精准定位性能差异参数HC8-050HG-C1050差异分析测量范围50±15mm(35-65mm)50±15mm(35-65mm)两者一致,覆盖中短距离精密测量场景。重复精度15μm30μmHC8-050 的重复精度比 HG-C1050 提升 50%,适用于对微小位移敏感的精密检测(如芯片封装、精密轴承测量)。光点直径70μm约 70μm光斑尺寸相同,但 HC8-050 通过光学优化,在低反射率表面的光斑识别能力更强。线性度±0.1%F...
2025 - 04 - 12
点击次数: 16
在工业自动化领域,激光位移传感器的性能直接影响测量精度和系统稳定性。本文针对泓川科技 LTM2-800W 与美国邦纳 BANNER LE550 系列传感器,从技术参数、性能指标、应用场景等维度进行深度对比,探讨 LTM2-800W 替代 LE550 系列的可行性,尤其突出其更高的测量精度和更快的采样频率优势。一、核心技术参数对比参数LTM2-800WBANNER LE550 系列对比结论测量原理激光三角测量法激光三角测量法原理相同,均通过激光光斑在感光元件上的位置变化计算距离。参考距离800mm100-1000mm(LE550)LTM2-800W 以 800mm 为中心,覆盖更广的远距离测量场景,适合大尺寸物体检测。测量范围±500mm(300-1300mm)100-1000mmLTM2-800W 测量范围更宽,尤其在 800mm 以上远距离仍能保持高精度,而 LE550 在...
2025 - 04 - 12
点击次数: 7
在工业自动化领域,激光位移传感器作为精密测量的核心部件,其性能直接影响生产精度与效率。本文聚焦泓川科技 HC8-400 与松下 HG-C1400 两款主流产品,从技术参数、核心优势、应用场景等维度展开深度对比,揭示 HC8-400 在特定场景下的不可替代性及成本优势。一、技术参数对比:细节见真章1. 基础性能指标参数HC8-400HG-C1400差异分析测量范围400±200mm(200-600mm)400±200mm(200-600mm)两者一致,覆盖中长距离测量场景。重复精度200-400mm:150μm 400-600mm:400μm200-400mm:300μm 400-600mm:800μmHC8-400 在全量程精度表现更优,尤其在 400-600mm 远距段,重复精度提升 50%,适合对稳定性要求高的精密测量。线性度200-400mm:±...
2025 - 04 - 08
点击次数: 17
在高温工业环境中,精密测量设备的稳定性与精度始终是行业难题。传统传感器在高温下易出现信号漂移、材料老化等问题,导致测量数据失真,甚至设备故障。作为工业测量领域的创新者,泓川科技推出的 LTC 光谱共焦传感器系列,突破性实现全型号 200℃耐高温定制,以 “精度不妥协、性能无衰减” 的核心优势,为高温场景测量树立新标杆,成为替代基恩士等进口品牌高温版本的理想之选。一、全系列耐高温定制:200℃环境下精度如初,打破行业局限区别于市场上仅部分型号支持高温的传感器,泓川科技 LTC 系列全系产品均可定制 200℃耐高温版本,涵盖 LTC100B、LTC400、LTC2000、LTCR 系列等数十款型号,满足从微米级精密测量到超大范围检测的多样化需求。通过材料升级与结构优化:核心部件耐高温设计:采用航空级耐高温光学元件及特殊封装工艺,确保光源发射、光谱接收模块在 200℃长期运行下无热漂移,重复精度...
About Us
关于泓川科技
专业从事激光位移传感器,激光焊缝跟踪系统研发及销售的科技公司
中国 · 无锡 · 总部地址:无锡新吴区天山路6号
销售热线:0510-88155119 
图文传真:0510-88152650
Working Time
我们的工作时间
周一至周五:8:00-18:00
周六至周日:9:00-15:00
Shown 企业秀 More
  • 1
    2023 - 03 - 07
    本次应用报告旨在介绍超声波测距传感器在锂电池生产过程中测量卷绕直径的应用情况。首先,本文将介绍超声波测距传感器的基本工作原理和特点,然后详细介绍其在锂电池生产中的应用情况,并对其应用效果进行评估和总结。一、超声波测距传感器的基本工作原理和特点超声波测距传感器是一种通过超声波测量距离的传感器,其测量原理非常简单,就是利用超声波在空气中的传播速度快,而且与环境中的温度、湿度等因素无关的特点。具体来说,超声波测距传感器通过发射超声波信号,当这些信号遇到物体时就会反射回来,传感器通过感受这些反射信号的到达时间,从而计算出物体与传感器之间的距离。超声波测距传感器具有响应速度快、距离测量范围广、测量精度高和使用方便等特点。因此,在工业自动化、机器人、汽车和航空等领域已经广泛应用。二、超声波测距传感器在锂电池生产中的应用锂电池的核心部件是电芯,而电芯的生产过程中就需要进行锂电池卷绕。卷绕的直径大小对于电芯的性能有很大的影响。因此,测量卷绕直径是电芯生产过程中非常重要的环节。传统的测量方法是利用拉尺、卡尺等工具进行物理测量,但是由于电芯内部结构复杂、精度要求高、测量效率低等因素,往往会出现误差较大的情况。超声波测距传感器可以很好地解决这个问题。具体来说,在电芯卷绕时,只需要将超声波测距传感器置于卷绕机上方,然后通过发射超声波信号测量卷绕轴的直径大小即可。由于超声波的反射信号可以穿透物体,因此不会对...
  • 2
    2025 - 01 - 14
    一、引言:解锁工业测量新 “视” 界在工业测量的广袤天地里,精度与可靠性犹如基石,支撑着生产的每一个环节。今天,我们将为您揭开 HC26 系列激光位移传感器的神秘面纱,它宛如一位精准的 “测量大师”,正悄然改变着工业测量的格局。从精密制造到智能检测,HC26 系列凭借其卓越性能,成为众多行业的得力助手。想知道它是如何做到的吗?让我们一同深入探寻。二、HC26 系列:性能优势大揭秘(一)超高集成,小巧灵活HC26 系列采用一体式机身设计,展现出令人惊叹的超高集成度 。其身形小巧玲珑,宛如工业领域的 “灵动精灵”,能够轻松适配各种复杂环境。无论是狭窄的机械内部空间,还是对安装空间要求苛刻的自动化生产线,它都能巧妙融入,为测量工作提供便利。这种紧凑的设计不仅节省了宝贵的安装空间,还简化了安装流程,大大提高了工作效率。(二)智能调光,精准测量光亮自动调节功能是 HC26 系列的一大亮点。它如同一位敏锐的观察者,能够实时感测被测表面的情况,并将激光强度精准控制到最佳状态。在面对不同材质、颜色和粗糙度的被测物体时,该功能确保了激光始终以最适宜的强度照射,从而实现稳定且精准的测量。这一特性不仅提升了测量精度,还拓宽了传感器的应用范围,使其在各种复杂工况下都能应对自如。(三)防护卓越,适应严苛具备 IP67 防护等级的 HC26 系列,犹如一位身披坚固铠甲的勇士,无惧恶劣环境的挑战。在潮湿的环境中...
  • 3
    2023 - 09 - 25
    由于半导体生产工艺的复杂性和精密性,对晶圆切割的技术要求极高,传统的机械切割方式已经无法满足现代电子行业的需求。在这种情况下,光谱共焦位移传感器配合激光隐切技术(激光隐形切割)在晶圆切割中发挥了重要作用。以下将详细介绍这种新型高效切割技术的应用案例及其优势。原理:利用小功率的激光被光谱共焦位移传感器设定的预定路径所导,聚焦在直径只有100多纳米的光斑上,形成巨大的局部能量,然后根据这个能量将晶圆切割开。光谱共焦位移传感器在切割过程中实时检测切口深度和位置,确保切口的深广和位置的精确性。激光隐切与光谱共焦位移传感器结合的应用案例:以某种先进的半导体制程为例,晶圆经过深刻蚀、清洗、扩散等步骤后,需要进行精确切割。在这个过程中,首先,工程师根据需要的切割图案在软件上设定好切割路径,然后切割机通过光谱共焦位移传感器引导激光按照预定的路径且此过程工程师可以实时观察和测量切口深度和位置。优点:这种技术最大的优势就是它能够实现超微细切割,避免了大功率激光对芯片可能会带来的影响。另外,因为切割的深度和位置可以实时调控,这 法也非常具有灵活性。同时,由于使用光谱共焦位移传感器精确控制切割的深度和位置,所以切割出来的晶圆表面平整,质量更好。总的来看,光谱共焦位移传感器配合激光隐切在晶圆切割中的应用,不仅提升了生产效率,减少了废品率,而且大幅度提升了产品质量,对于当前和未来的半导体行业都将是一个革新的技...
  • 4
    2024 - 03 - 05
    非接触式激光位移传感器在生产线上的应用具有多方面的优势,下面将从精度、速度、可靠性、灵活性和安全性等方面进行逐一分析,并通过具体的应用场景来说明其应用价值。同时,还会与传统的接触式传感器进行比较,以突显非接触式激光位移传感器的独特优势。精度:非接触式激光位移传感器采用激光三角测量法,具有极高的测量精度。例如,在半导体制造过程中,需要精确控制薄膜的厚度,非接触式激光位移传感器可以实现微米级的测量精度,从而确保产品质量。相比之下,传统接触式传感器可能会因为接触力度的不同而影响测量精度。速度:非接触式激光位移传感器具有快速响应的特点,可以在生产线上实现高速测量。例如,在包装机械中,需要实时监测包装材料的位置和速度,非接触式激光位移传感器可以迅速捕捉到这些变化,从而确保包装过程的顺利进行。而传统接触式传感器可能会因为接触摩擦等因素而影响测量速度。可靠性:非接触式激光位移传感器无需与目标物体直接接触,因此可以避免因摩擦、磨损等因素导致的传感器损坏。此外,非接触式传感器还具有较好的抗干扰能力,可以在恶劣的生产环境中稳定工作。相比之下,传统接触式传感器更容易受到环境因素的影响而出现故障。灵活性:非接触式激光位移传感器可以适应不同的测量需求,通过调整激光发射角度、接收透镜焦距等参数,可以实现不同距离、不同角度的测量。此外,非接触式传感器还可以与计算机、PLC等设备进行连接,实现自动化控制和数据处理...
  • 5
    2025 - 03 - 27
    1. 引言在工业自动化领域,激光位移传感器是实现高精度非接触测量的核心器件。基恩士 IL-S025 作为市场主流产品,以其 1μm 重复精度和稳定性能著称。然而,随着国产传感器技术的突破,泓川科技 LTM3-030/LTM3-030W 型号凭借更高的性能参数和经济性,为用户提供了新的选择。本文将从技术参数、性能表现、应用场景等方面,深入对比分析两者的替代可行性。 2. 核心技术参数对比参数基恩士 IL-S025泓川科技 LTM3-030/LTM3-030W对比结论重复精度1μm0.25μm(LTM3-030)/ 0.25μm(LTM3-030W)LTM3 系列更优(4 倍精度提升)线性误差±0.075% F.S.(±5mm 范围)LTM3-030W 更优(接近 IL-S025)测量范围±5mm(参考距离 25mm)±5mm(参考距离 30mm)等效采样频率3kHz(采样周期 0.33ms)10kHzLTM3 系列更优(3倍速度提升)光斑尺寸25×1200μm(线性光斑)Φ35μm(M3-030)/ Φ35×400μm(M3-030W)LTM3 系列光斑更小(点光斑更聚焦)光源类型660nm 激光(Class 2)655nm 激光(Class 2)等效接口配置需外接放大器单元(支持 EtherNet/IP 等)...
  • 6
    2025 - 01 - 16
    七、声纳传感器应用案例深析7.1 外壳相关检测7.1.1 外壳的外观检测在声纳传感器的实际应用中,对外壳的外观检测是确保产品质量的关键步骤。在进行外壳外观检测时,声纳传感器并非仅依赖传统的图像明暗判断方式,而是借助先进的技术,利用 3D 形状的图像来实现精准的形状变化识别。其工作过程如下:传感器发射特定频率和模式的声波,这些声波以特定的角度和范围向外传播,当遇到外壳表面时,会根据外壳表面的形状、材质以及纹理等特征产生不同的反射模式。反射回来的声波被传感器的接收装置高效捕捉,然后转化为电信号。系统对这些电信号进行复杂的处理和分析,通过独特的算法将其转换为详细的 3D 形状数据。在这个过程中,系统会对 3D 形状数据进行精确的分析和比对,与预先设定的标准外壳模型进行细致的匹配。一旦发现外壳的形状与标准模型存在差异,系统会立即识别出这些变化,从而确定外壳是否存在缺陷或不符合规格的情况。这种利用 3D 形状图像进行外观检测的方式具有诸多显著优势。它极大地提高了检测的准确性和可靠性。传统的基于图像明暗判断的方法,容易受到环境光、外壳表面光泽度以及颜色等多种因素的干扰,导致检测结果出现偏差。而 3D 形状图像检测技术能够直接获取外壳的真实形状信息,不受这些外部因素的影响,从而能够更准确地发现外壳表面的细微瑕疵,如划痕、凹陷、凸起等,以及形状上的偏差。该技术具有较强的稳定性。无论环境光如何变化,...
  • 7
    2023 - 03 - 08
    一、概述随着现代工业的不断发展和进步,精度对于工业生产过程中所需要的各种测试测量技术要求也越来越高。而激光测量技术则是在这种背景下得以应用的,这是利用激光作为工具进行测量分析的一种方法。激光测量可以分为非接触式和接触式两种方式。二、非接触激光测量非接触激光测量技术是指激光束在不与被测物体表面发生接触的情况下,对被测物体进行测量操作。它主要利用激光的高亮度、高单色性、高方向性等特点,将测量对象和激光之间的无线电辐射或光辐射联系起来,通过对测量信号的处理,来获得被测物体的相关参数。可以广泛应用于自动化制造、工业检测、生命科学、质量控制检测等领域。2.1 非接触式测量优点(1)不会对被测物体造成损伤。激光测量技术是无损伤性的,测量过程中不会对被测物体造成任何损伤,也不会影响被测物体的结构、形状和性能。(2)精度高。非接触激光测量技术具有高精密性、高灵敏性和高分辨力,能够以亚微米级的精度获得被测物体的相关参数,减小了人为误差和测量结果的不确定性。(3)高速度。非接触激光测量技术具有快速高效的特点,对于一些需要进行即时在线检测或高频率的质检要求,非接触激光测量技术具有独特的优势。(4)测量安全。由于非接触激光测量技术可以在安全距离的范围内进行,因此保障了测量人员的身体健康和安全。2.2 非接触式测量缺点(1)不适用于暗面测量。非接触激光测量技术无法对于有光线被挡住的部位进行测量,因此适用于透...
  • 8
    2025 - 01 - 14
    一、引言1.1 研究背景与意义在现代工业的广阔版图中,薄膜涂布生产工艺宛如一颗璀璨的明星,闪耀于包装、电子、光学等诸多关键领域。从日常生活中轻盈便捷的食品包装,到电子产品里精细入微的电子元件,再到光学仪器中不可或缺的光学镜片,薄膜涂布工艺的身影无处不在,它以独特的方式赋予产品卓越的性能与品质。在包装领域,经过精心涂布的薄膜,能够摇身一变成为食品的忠诚守护者,有效阻挡氧气、水汽等外界因素的侵袭,极大地延长食品的保鲜期,确保其新鲜美味。在电子领域,薄膜涂布工艺如同神奇的魔法,为电子元件披上一层特殊的 “外衣”,显著提升其绝缘性、导电性等关键性能,为电子产品的高效稳定运行奠定坚实基础。而在光学领域,它更是大展身手,通过精确控制涂布的厚度与均匀度,制造出具有高透光率、低反射率等优异光学性能的薄膜,让我们的视野更加清晰,成像更加精准。然而,传统的薄膜涂布生产工艺在发展过程中逐渐遭遇瓶颈。涂布厚度的均匀性难以精准把控,这就如同在一幅精美的画卷上出现了瑕疵,不仅会影响产品的性能,还可能导致产品的废品率居高不下。同时,生产过程中的实时监测与调控也面临诸多挑战,就像在茫茫大海中航行的船只,难以准确把握前进的方向。而光学传感器的横空出世,宛如一道曙光,为薄膜涂布生产工艺带来了全新的变革契机。凭借其高精度、非接触、响应速度快等一系列卓越特性,光学传感器能够像敏锐的探测器一样,实时、精准地监测涂布过程中的...
Message 最新动态
泓川科技 HC26-30 与奥泰斯 OPTEX CD33-30 系列激光位移传感器对比分析:技术性能... 2025 - 04 - 14 在工业自动化领域,激光位移传感器凭借高精度、非接触测量的优势,广泛应用于精密定位、尺寸检测等场景。本文针对泓川科技 HC26 系列与奥泰斯 OPTEX CD33-30 系列(含模拟量通讯版本)进行多维度技术对比,从安装尺寸、通讯格式、模拟量信号、精度、成本等关键指标分析两者的可替代性,为用户选型提供参考。 一、结构设计与安装兼容性:尺寸与适配性对比泓川 HC26 系列外形尺寸为 60×50×22mm,重量约 120g(含线缆),采用紧凑式设计,支持螺丝安装,适配通用工业设备安装孔位(如文档 3 中提到的 2×4.4mm 贯穿孔)。防护等级为 IP67,可在粉尘、潮湿环境中稳定工作,环境温度范围 -10~50℃,适应性更强。奥泰斯 CD33-30 系列文档未明确标注具体尺寸,但从重量推测(约 65g,不含电缆),体积略小于 HC26,同样支持 M12 8 引脚接插式安装,防护等级 IP67,环境温度 -10~45℃。对比结论:两者安装方式均为工业标准,HC26 稍大但兼容性良好,适合对空间要求不苛刻的场景;CD33-30 系列体积更小巧,但 HC26 在温度适应性上略优。   二、通讯与信号输出:灵活性与通用性差异通讯格式HC26:支持 RS485 Modbus RTU 协议,波特率...
国产替代深度解析:泓川科技 HC8-050 与松下 HG-C1050 激光位移传感器的技术对比与应用... 2025 - 04 - 13 在工业自动化领域,精密测量是保障产品质量与生产效率的核心环节。泓川科技 HC8-050 与松下 HG-C1050 作为两款主流的中短距离激光位移传感器,在电子制造、精密加工、自动化检测等领域应用广泛。本文将从技术参数、核心性能、应用场景等维度展开深度对比,揭示 HC8-050 在特定场景下的显著优势及高性价比。一、基础技术参数:精准定位性能差异参数HC8-050HG-C1050差异分析测量范围50±15mm(35-65mm)50±15mm(35-65mm)两者一致,覆盖中短距离精密测量场景。重复精度15μm30μmHC8-050 的重复精度比 HG-C1050 提升 50%,适用于对微小位移敏感的精密检测(如芯片封装、精密轴承测量)。光点直径70μm约 70μm光斑尺寸相同,但 HC8-050 通过光学优化,在低反射率表面的光斑识别能力更强。线性度±0.1%F.S.±0.1%F.S.线性度一致,满足工业级测量精度要求。温度特性±0.05%F.S/℃±0.03%F.S/℃HG-C1050 理论温漂略优,但 HC8-050 通过硬件散热与软件温补算法,实际在高温环境(如 80℃)下稳定性更优。工作温度-10~50℃(支持 80℃长期使用)-10~45℃HC8-050 突破行业常规,通过特殊设计可在 80℃高温环境稳定运行,而 ...
泓川科技 LTM2-800W 替代美国邦纳 BANNER LE550 系列的可行性对比分析 2025 - 04 - 12 在工业自动化领域,激光位移传感器的性能直接影响测量精度和系统稳定性。本文针对泓川科技 LTM2-800W 与美国邦纳 BANNER LE550 系列传感器,从技术参数、性能指标、应用场景等维度进行深度对比,探讨 LTM2-800W 替代 LE550 系列的可行性,尤其突出其更高的测量精度和更快的采样频率优势。一、核心技术参数对比参数LTM2-800WBANNER LE550 系列对比结论测量原理激光三角测量法激光三角测量法原理相同,均通过激光光斑在感光元件上的位置变化计算距离。参考距离800mm100-1000mm(LE550)LTM2-800W 以 800mm 为中心,覆盖更广的远距离测量场景,适合大尺寸物体检测。测量范围±500mm(300-1300mm)100-1000mmLTM2-800W 测量范围更宽,尤其在 800mm 以上远距离仍能保持高精度,而 LE550 在 1000mm 处精度下降。重复精度45μm±0.5-8mm(随距离变化,1000mm 处约 ±8mm)LTM2-800W 优势显著,重复精度达 45μm(0.045mm),较 LE550 的毫米级精度提升两个数量级,适合精密测量场景。线性误差±4.5mm(0.5%FS)LTM2-800W 线性误差仅为 LE550 的 1/4.5,测量线性度更优,数据一致...
Copyright ©2005 - 2013 无锡泓川科技有限公司

1

犀牛云提供企业云服务
Our Link
X
3

SKYPE 设置

4

阿里旺旺设置

等待加载动态数据...

等待加载动态数据...

5

电话号码管理

  • 0510-88155119
6

二维码管理

等待加载动态数据...

等待加载动态数据...

展开