服务热线: 0510-88155119
13301510675@163.com
Language

激光测量技术在(ADAS)驾驶辅助系统的应用案例(三)

日期: 2025-01-16
浏览次数: 59
发表于:
来自 泓川科技
发表于: 2025-01-16
浏览次数: 59

七、声纳传感器应用案例深析

7.1 外壳相关检测

7.1.1 外壳的外观检测

在声纳传感器的实际应用中,对外壳的外观检测是确保产品质量的关键步骤。在进行外壳外观检测时,声纳传感器并非仅依赖传统的图像明暗判断方式,而是借助先进的技术,利用 3D 形状的图像来实现精准的形状变化识别。

其工作过程如下:传感器发射特定频率和模式的声波,这些声波以特定的角度和范围向外传播,当遇到外壳表面时,会根据外壳表面的形状、材质以及纹理等特征产生不同的反射模式。反射回来的声波被传感器的接收装置高效捕捉,然后转化为电信号。系统对这些电信号进行复杂的处理和分析,通过独特的算法将其转换为详细的 3D 形状数据。在这个过程中,系统会对 3D 形状数据进行精确的分析和比对,与预先设定的标准外壳模型进行细致的匹配。一旦发现外壳的形状与标准模型存在差异,系统会立即识别出这些变化,从而确定外壳是否存在缺陷或不符合规格的情况。

激光测量技术在(ADAS)驾驶辅助系统的应用案例(三)

这种利用 3D 形状图像进行外观检测的方式具有诸多显著优势。它极大地提高了检测的准确性和可靠性。传统的基于图像明暗判断的方法,容易受到环境光、外壳表面光泽度以及颜色等多种因素的干扰,导致检测结果出现偏差。而 3D 形状图像检测技术能够直接获取外壳的真实形状信息,不受这些外部因素的影响,从而能够更准确地发现外壳表面的细微瑕疵,如划痕、凹陷、凸起等,以及形状上的偏差。该技术具有较强的稳定性。无论环境光如何变化,或者外壳处于何种复杂的工作环境中,它都能稳定地进行检测,确保检测结果的一致性和可靠性。这对于在不同生产环境和使用场景下保证产品质量的稳定性具有重要意义,有效避免了因检测误差而导致的次品流入市场,提高了产品的整体质量和品牌信誉 。

 

7.1.2 外壳与屏蔽壳间隙测量

在电子设备中,外壳与屏蔽壳之间的间隙大小对于设备的性能,尤其是电磁屏蔽性能、散热性能以及防护性能等方面有着至关重要的影响。如果间隙过大,可能会导致电磁干扰泄漏,影响设备的正常运行,同时也会降低设备的防护等级,使其容易受到外界环境因素的侵蚀。而间隙过小,则可能在装配过程中出现困难,甚至对设备内部的零部件造成损坏。

2D/3D 线激光测量仪在外壳与屏蔽壳间隙测量中发挥着关键作用。该测量仪搭载了 3200points/profile 的超高精细 CMOS 传感器,这一先进的传感器具备卓越的测量能力。在测量过程中,测量仪发射出线激光束,这些激光束以极细的光斑和高精度的定位,对外壳与屏蔽壳之间的间隙进行扫描。激光束在照射到间隙表面时,会根据间隙的宽窄和形状产生不同的反射和折射情况。超高精细 CMOS 传感器能够精确地捕捉到这些细微的变化,将反射光的信息转化为电信号,并传输给测量仪的控制系统。

激光测量技术在(ADAS)驾驶辅助系统的应用案例(三)

控制系统通过内置的先进算法,对这些电信号进行深入分析和处理。它能够根据激光束的发射角度、反射时间以及传感器的位置信息,精确计算出间隙各个点的位置和尺寸信息,从而构建出间隙的精确三维模型。通过对这个三维模型的分析,测量仪可以准确得出外壳与屏蔽壳之间的间隙大小,精度可达到非常高的水平,能够满足对间隙测量精度要求极高的应用场景。

这种对狭小间隙进行高精度测量的技术在实际应用中具有重要意义。在电子设备制造行业,特别是对于那些对电磁兼容性和防护性能要求严格的产品,如通信设备、航空航天电子设备等,精确控制外壳与屏蔽壳之间的间隙是确保产品性能和可靠性的关键。通过使用 2D/3D 线激光测量仪进行精确测量,生产企业能够在生产过程中及时发现间隙不符合要求的产品,采取相应的调整和改进措施,从而保证产品的质量和性能,提高生产效率,降低生产成本 。

 

7.2 部件安装相关测量

7.2.1 部件安装高度差测量

在设备的组装过程中,部件安装的高度差直接关系到整个设备的性能和稳定性。对于声纳传感器相关设备而言,部件安装高度差的精准测量尤为重要。在测量安装后的高度差时,2D/3D 线激光测量仪 LJ-X8000 系列发挥了重要作用。

该测量仪通过扫描目标物并将其识别为 3D 形状,实现了一次检测多个位置测量点的功能。具体操作过程如下:测量仪发射出线激光束,这些激光束以特定的角度和密度覆盖目标部件的表面。当激光束照射到部件表面时,会根据部件表面的高度差异产生不同的反射路径和时间延迟。测量仪的探测器能够快速、准确地捕捉到这些反射光的变化信息,并将其转化为大量的空间坐标数据。通过对这些海量的空间坐标数据进行复杂的算法处理和分析,测量仪构建出部件的精确 3D 模型。

在这个 3D 模型中,每个测量点的高度信息都被准确记录。通过对不同部件上对应测量点的高度数据进行对比和计算,测量仪可以精确得出部件安装后的高度差。这种测量方法具有高效、准确的特点。相较于传统的逐个测量点进行测量的方式,它能够一次性获取多个测量点的信息,大大提高了测量效率,减少了测量时间和工作量。其测量精度非常高,能够检测到极其微小的高度差,为设备的精确装配提供了可靠的数据支持。

部件安装高度差的精准测量对装配质量有着深远的影响。如果部件安装高度差不符合设计要求,可能会导致设备在运行过程中出现一系列问题。例如,在机械传动部件的安装中,高度差可能会导致部件之间的配合不良,增加摩擦和磨损,降低设备的使用寿命,甚至可能引发设备故障,影响生产的正常进行。在电子设备中,部件安装高度差可能会影响电路连接的稳定性,导致信号传输不畅、短路等问题,严重影响设备的电气性能。通过精确测量部件安装高度差,装配人员可以及时发现并调整安装过程中的偏差,确保每个部件都安装在正确的位置,从而提高装配质量,保障设备的正常运行,提升产品的可靠性和稳定性 。

 

7.2.2 安装传感器时车身角度测量

在车身安装声纳传感器时,准确测量车身位置及角度是确保传感器能够正常工作并发挥最佳性能的关键环节。2D/3D 线激光测量仪 LJ-X8000 系列在这一测量任务中展现出了独特的优势。

该测量仪具有最大 720mm 的广泛测量范围,这使得它能够轻松检测车身等大型目标物。在测量车身角度时,测量仪通过发射线激光束对车身进行全面扫描。激光束从不同角度照射到车身上,根据车身的形状和位置产生不同的反射模式。测量仪的传感器迅速捕捉这些反射光,并将其转化为详细的空间坐标数据。通过对这些空间坐标数据的分析,测量仪可以构建出车身的精确 3D 模型。

在这个 3D 模型的基础上,测量仪利用先进的算法,通过对比车身特定部位的坐标信息与预设的标准值,能够准确计算出车身的角度。例如,通过测量车身底部几个关键支撑点的高度差以及它们之间的相对位置关系,结合测量仪内部的几何计算模型,就可以精确得出车身的倾斜角度。

这一测量在传感器安装中具有重要的意义。声纳传感器的工作效果高度依赖于其安装角度的准确性。如果车身角度测量不准确,导致传感器安装倾斜,那么传感器发射的声波信号可能无法按照预期的方向传播和接收,从而影响对周围环境的探测精度。在汽车行驶过程中,可能会出现对障碍物的误判、漏判等情况,严重威胁行车安全。准确测量车身角度能够确保传感器安装在正确的位置和角度上,使得传感器发射的声波能够均匀、有效地覆盖周围区域,提高传感器对目标物体的检测精度和可靠性,为车辆的安全行驶提供有力保障 。

 

八、毫米波雷达相关应用案例探讨

8.1 天线元件平坦度测量

8.1.1 测量流程与要点

在毫米波雷达的制造过程中,对天线元件平坦度的测量至关重要。采用 2D/3D 线激光测量仪 LJ-X8000 系列进行测量时,首先需将测量仪安装在合适的位置,确保其发射的线激光能够全面覆盖天线元件表面。测量仪的支持宽度达最大 720mm ,可对天线元件进行大范围的扫描。

测量过程中,线激光以特定的角度和间距照射到天线元件上,由于元件表面的平坦度差异,激光的反射情况会有所不同。测量仪搭载的高灵敏度探测器迅速捕捉这些反射光的变化,并将其转化为电信号。通过对电信号的精确分析和处理,测量仪能够构建出天线元件表面的三维轮廓模型。在此模型的基础上,测量仪可以同时测量多个任意指定点的高度信息,通过对比这些点的高度数据与理想平坦状态下的标准值,就能准确计算出天线元件的平坦度偏差 。

需要重点关注的要点包括测量仪的安装精度,必须保证其发射的激光能够垂直且均匀地照射到天线元件表面,以避免因照射角度偏差导致测量误差。测量环境的稳定性也十分关键,应尽量减少环境振动、温度波动等因素的干扰,确保测量过程的稳定性。


 激光测量技术在(ADAS)驾驶辅助系统的应用案例(三)

8.1.2 对雷达性能的影响

天线元件的平坦度对毫米波雷达的信号发射与接收性能有着深远的影响。如果天线元件平坦度不佳,存在凹凸不平的情况,在信号发射时,毫米波将无法按照预期的方向和强度均匀地辐射出去。这会导致信号在空间中的分布不均匀,某些方向上的信号强度减弱,从而缩小雷达的有效探测范围。

在信号接收方面,不平坦的天线元件可能会使接收到的回波信号发生散射和畸变,降低信号的质量和准确性。这将严重影响雷达对目标物体的检测精度,导致对目标的距离、速度和角度测量出现偏差,甚至可能出现漏检或误检的情况。对于自动驾驶系统而言,这种不准确的检测结果可能会引发严重的安全事故。确保天线元件具有良好的平坦度,是保证毫米波雷达性能稳定、可靠的关键因素,对于提升自动驾驶的安全性和可靠性具有不可忽视的重要意义 。

 

8.2 端子相关测量

8.2.1 端子的高度与节距检测

在毫米波雷达的电路连接中,端子的高度与节距的准确性直接关系到电路的稳定性和信号传输的质量。使用 2D/3D 线激光测量仪 LJ-X8000 系列进行端子的高度与节距检测时,测量仪通过发射线激光束对端子进行扫描。

激光束在接触到端子表面后,根据端子的形状和位置产生不同的反射模式。测量仪的传感器快速捕捉这些反射光,并将其转化为详细的空间坐标数据。通过对这些空间坐标数据的深入分析,测量仪能够精确测量出端子的高度以及相邻端子之间的节距。测量仪搭载的滤波器能够在保持目标物形状的状态下,有效消除反射光偏差等导致的干扰成分,确保测量结果的准确性和稳定性 。

准确的端子高度与节距对于电路连接意义重大。如果端子高度不一致,可能会导致在与其他电路元件连接时,接触不良,从而增加电阻,影响电流的传输,甚至可能引发局部过热,损坏电路元件。节距不准确则可能导致在电路板装配过程中,端子无法与对应的插孔正确匹配,造成电路连接错误,使毫米波雷达无法正常工作。精确测量端子的高度与节距,能够确保毫米波雷达的电路连接稳定可靠,保障信号的高效传输,为雷达的正常运行提供坚实的基础 。

 

8.2.2 安装时车身角度测量

在将毫米波雷达安装到车身上时,精确测量车身角度是确保雷达能够准确感知周围环境信息的关键步骤。2D/3D 线激光测量仪 LJ-X8000 系列凭借其最大 720mm 的广泛测量范围,能够轻松检测车身等大型目标物。

测量过程中,测量仪发射线激光束对车身进行全方位扫描。激光束从多个角度照射到车身上,根据车身的形状和位置产生不同的反射路径和时间延迟。测量仪的探测器捕捉这些反射光的变化信息,并将其转化为大量的空间坐标数据。通过对这些空间坐标数据的复杂运算和分析,测量仪构建出车身的精确 3D 模型。在这个 3D 模型的基础上,通过对比车身特定部位的坐标信息与预设的标准值,测量仪能够准确计算出车身的角度 。

激光测量技术在(ADAS)驾驶辅助系统的应用案例(三)

这一测量对于毫米波雷达的安装和使用至关重要。毫米波雷达的工作原理依赖于其能够准确地发射和接收毫米波信号,以探测周围环境中的目标物体。如果车身角度测量不准确,导致雷达安装倾斜,那么雷达发射的毫米波信号将无法按照预期的方向覆盖周围区域,接收回波信号的角度也会发生偏差。这将严重影响雷达对目标物体的检测精度和可靠性,可能导致对障碍物的误判、漏判,从而给行车安全带来巨大隐患。准确测量车身角度,能够确保毫米波雷达安装在正确的位置和角度上,使其能够充分发挥性能,为车辆的安全行驶提供可靠的保障 。

 

九、结论与展望

9.1 研究总结

本报告深入剖析了 ADAS 相关工具在汽车制造及相关领域的丰富应用案例。车载相机凭借 3D 图像检测技术,在底部填充胶涂抹高度测量、镜片高度及缝隙测量等方面,实现了高精度检测,显著提升了产品质量与可靠性 。2D/3D 线激光测量仪在粘合剂体积测量、部件高度与位置检测等多个环节发挥关键作用,其配备的超高灵敏度 CMOS 及先进算法,使其能够适应复杂的测量环境,准确获取各类数据,为生产过程中的质量控制提供了有力支持 。

彩色激光同轴位移计和干涉式同轴 3D 位移测量仪在镜面测量、相机模块测量等方面展现出独特优势,前者基于同轴测量和彩色共焦方式,能够精准检测镜面的倾斜及运动状态;后者利用白光干涉原理,实现了对镜面平坦度和密封材料高度的高精度测量,满足了相关行业对高精度测量的严格要求 。

超高速 / 高精度 CMOS 激光位移传感器在压电元件振动和平面度测量中表现卓越,其超高速采样周期和先进的测量方式,能够准确捕捉压电元件的细微变化,为电子设备的性能优化提供了重要数据 。声纳传感器在外壳外观检测、间隙测量以及部件安装高度差和车身角度测量等方面,通过采用 3D 形状图像识别等技术,提高了检测的准确性和稳定性,保障了设备的装配质量和性能 。毫米波雷达相关的天线元件平坦度测量和端子测量等应用,确保了毫米波雷达的信号发射与接收性能,以及电路连接的稳定性,对于提升自动驾驶的安全性和可靠性至关重要 。

这些 ADAS 相关工具的应用,极大地推动了汽车制造行业的发展。它们提高了生产过程中的检测精度和效率,有效减少了次品率,降低了生产成本。通过精确测量和严格质量控制,提升了汽车及相关零部件的性能和可靠性,为 ADAS 系统的稳定运行提供了坚实基础,进而推动了整个汽车行业向智能化、安全化方向迈进 。

 

9.2 未来发展趋势展望

基于当前的应用案例,ADAS 相关工具未来将朝着更高精度、更智能化以及多功能集成的方向发展。在精度提升方面,随着科技的不断进步,传感器的分辨率和测量精度将进一步提高。例如,激光测量技术可能会实现更高的测量频率和更细微的精度控制,能够检测到更小的尺寸变化和更微弱的物理量变化,从而满足汽车制造等行业对产品质量日益严苛的要求 。

智能化发展趋势也将愈发明显。ADAS 相关工具将具备更强的数据分析和处理能力,能够自动识别和诊断测量数据中的异常情况,并根据预设的规则和算法进行智能决策。例如,在生产线上,测量工具可以实时分析测量数据,一旦发现产品参数超出允许范围,立即自动发出警报,并提供相应的调整建议,实现生产过程的自动化和智能化控制 。

多功能集成是未来的另一个重要发展方向。不同类型的测量工具可能会集成在一起,形成综合性的测量系统。例如,将车载相机、激光测量仪和声纳传感器等集成到一个设备中,使其能够同时完成多种测量任务,不仅可以减少设备的占用空间,还能提高测量效率和数据的关联性。这种多功能集成的测量系统将更好地适应复杂的生产环境和多样化的测量需求,为汽车制造及相关行业的发展提供更全面、更便捷的解决方案 。

随着 ADAS 技术在智能交通领域的应用不断拓展,相关工具的应用场景也将更加广泛。除了汽车制造领域,这些工具还可能在智能交通基础设施建设、物流运输车辆监控等方面发挥重要作用,为构建更加智能、安全、高效的交通系统提供技术支持 。

 


News / 推荐阅读 +More
2025 - 06 - 09
点击次数: 20
在工业精密测量领域,无锡泓川科技的HC26系列激光位移传感器凭借出色的性能参数与显著的成本优势,成为替代奥泰斯CD33系列的高竞争力选择。以下从核心性能、特殊应用适配性及成本三方面进行对比分析:一、核心性能参数对标(HC26 vs CD33)参数泓川HC26系列奥泰斯CD33 (行业标准)HC26优势重复精度2μm (30mm款) → 50μm (195mm款)通常1~3μm (高端款)接近主流精度线性度±0.1%F.S.±0.05%~0.1%F.S.达到同级水平响应时间最快333μs (多档可调)通常500μs~1ms速度更快输出接口RS485(Modbus RTU)+模拟量(4-20mA/0-10V)类似接口组合同等兼容性防护等级IP67 (防尘防水)IP67/IP65同等工业防护温度特性0.05%F.S/℃0.03~0.05%F.S/℃稳定性接...
2025 - 06 - 09
点击次数: 9
一、核心参数深度对比维度泓川科技 HC16 系列奥泰斯 CD22 系列差异影响分析型号覆盖15/35/100/150mm(4 款)15/35/100mm(3 款)HC16 新增150mm 基准距离型号(HC16-150),测量范围 ±100mm,填补 CD22 无远距离型号空白。重复精度(静态)15mm:1μm;35mm:6μm;100mm:20μm;150mm:60μm15mm:1μm;35mm:6μm;100mm:20μmHC16-150 精度较低(60μm),适合远距离低精度场景(如放卷料余量粗测),CD22 无对应型号需搭配中继。通讯扩展性支持 EtherCAT 模块(文档提及)、RS485、模拟量仅 RS485、模拟量HC16 对 ** 工业总线系统(如 PLC 集成)** 兼容性更强,可减少额外通讯模块成本。电源适应性全系列 DC12-24V 统一输入模拟量电压型需 ...
2025 - 05 - 26
点击次数: 28
一、引言在工业自动化领域,激光位移传感器作为精密测量的核心部件,其性能与成本直接影响设备的竞争力。本文聚焦泓川科技 LTM3 系列与米铱 ILD1750 系列,从技术参数、应用场景及成本等维度展开深度对比,揭示 LTM3 系列如何以卓越性能和显著成本优势成为更具性价比的选择。二、核心参数对比指标泓川科技 LTM3 系列米铱 ILD1750 系列测量频率最高 10kHz,适用于高速动态测量场景最高 7.5kHz,满足常规工业速度需求重复性精度0.25μm 起(如 LTM3 - 030),达到亚微米级精度0.1μm 起,精度表现优异线性误差低至 0.06% FSO 起,基于百分比的误差控制防护等级IP67,可抵御粉尘、液体喷射及短时浸水IP65,防护性能良好但略逊于 LTM3外形尺寸605020.4mm,体积小巧,适配狭窄空间未明确标注,但工业通用设计体积较大重量约 150g,轻便易安装未明确...
2025 - 05 - 13
点击次数: 49
一、破局万元壁垒:3000-4000 元网口传感器开启普惠智能时代在工业传感器领域,具备以太网(网口)输出功能的激光位移传感器长期被海外品牌以万元价格垄断,成为自动化升级的 “卡脖子” 环节。无锡泓川科技携LTM3(10kHz 采样)与 LTM5(31.25kHz 超高速采样)系列强势破局,以3000-4000 元核心定价,将高精度网口测量设备从 “奢侈品” 变为 “工业标配”,让中小企业也能畅享高速通讯与智能测控的双重红利。二、网口通讯革命:重新定义工业数据交互的 “速度与智慧”1. 百兆级极速传输:毫秒级捕捉动态世界LTM3/LTM5 搭载的以太网接口支持 TCP/IP 协议,数据传输速率达 100Mbps,较传统 485 串口(115.2kbps)快 800 倍,比模拟信号(易受干扰、刷新率低)更实现质的飞跃: 高频动态测量:LTM5-050 在锂电池极片涂布生产...
2025 - 04 - 14
点击次数: 83
在工业自动化领域,激光位移传感器凭借高精度、非接触测量的优势,广泛应用于精密定位、尺寸检测等场景。本文针对泓川科技 HC26 系列与奥泰斯 OPTEX CD33-30 系列(含模拟量通讯版本)进行多维度技术对比,从安装尺寸、通讯格式、模拟量信号、精度、成本等关键指标分析两者的可替代性,为用户选型提供参考。 一、结构设计与安装兼容性:尺寸与适配性对比泓川 HC26 系列外形尺寸为 60×50×22mm,重量约 120g(含线缆),采用紧凑式设计,支持螺丝安装,适配通用工业设备安装孔位(如文档 3 中提到的 2×4.4mm 贯穿孔)。防护等级为 IP67,可在粉尘、潮湿环境中稳定工作,环境温度范围 -10~50℃,适应性更强。奥泰斯 CD33-30 系列文档未明确标注具体尺寸,但从重量推测(约 65g,不含电缆),体积略小于 HC2...
About Us
关于泓川科技
专业从事激光位移传感器,激光焊缝跟踪系统研发及销售的科技公司
中国 · 无锡 · 总部地址:无锡新吴区天山路6号
销售热线:0510-88155119 
图文传真:0510-88152650
Working Time
我们的工作时间
周一至周五:8:00-18:00
周六至周日:9:00-15:00
Shown 企业秀 More
  • 1
    2024 - 11 - 20
    在当今精密制造与检测领域,对微小尺寸变化的精确测量需求日益增长。特别是在半导体制造、微纳加工、光学元件检测等高端应用中,对测量误差的严格要求往往达到纳米级。面对这一挑战,国内自主研发的LTC100光谱共焦位移传感器以其卓越的性能脱颖而出,不仅实现了30nm以下的测量误差,还保证了光斑直径小于2μm,为高精度测量领域树立了新的国产标杆。技术亮点:超高精度测量:LTC100采用先进的光谱共焦技术,通过精确控制光源发射的多波长光束与被测物体表面反射光之间的干涉现象,实现位移的高精度测量。其核心算法通过复杂的光谱分析与相位解调技术,有效消除了环境干扰和系统误差,确保测量误差稳定控制在30nm以下。微小光斑设计:传感器内置的精密光学系统采用高数值孔径物镜,结合优化的光束整形技术,实现了小于2μm的光斑直径,使得在微小结构或特征上的测量成为可能,显著提高了测量的空间分辨率。测试数据与算法公式:LTC100的性能验证基于严格的实验室测试与现场应用反馈。以下为其关键测试数据:线性度:在0-10mm测量范围内,线性偏差小于±5nm,确保测量的稳定性和可靠性。重复性:连续测量同一位置100次,标准差小于10nm,证明其高重复性和一致性。分辨率:理论上可达0.1nm,实际测量中受环境因素影响,但依旧保持在1nm左右,远超行业平均水平。核心算法公式简述如下:d=2λ0⋅2πΔϕ其中,d为被测位移...
  • 2
    2023 - 11 - 22
    标题:光谱共焦位移传感器:实现非接触测量的无影响性能摘要:光谱共焦位移传感器是一种先进的测量设备,利用共焦技术和光谱分析相结合,能够实现对被测物体的非接触测量,并且不受被测物体材质、颜色、透明度、反光度等因素的影响。本文将详细介绍光谱共焦位移传感器的原理和优越性,展示它在各个领域的广泛应用前景。引言:传统的非接触测量方法往往会受到被测物体材质、颜色、透明度、反光度等因素的干扰,导致测量结果的准确性下降。光谱共焦位移传感器作为一种新型的测量设备,成功解决了这一难题。它基于共焦技术和光谱分析原理,具有高精度、高灵敏度和多参数同时测量等优势,被广泛应用于工业、生命科学、环境监测等领域。一、光谱共焦位移传感器的原理光谱共焦位移传感器利用共焦技术,通过快速成像和光谱分析的方法,实现对被测物体的位移测量。传感器通过发送一束激光到被测物体上,并收集反射回来的光信号。然后,利用光谱分析技术将这些光信号解析成不同波长的频谱图像。根据频谱图像的变化,可以计算出被测物体的位移信息。二、光谱共焦位移传感器的优越性1. 无受材质影响:光谱共焦位移传感器采用光谱分析技术,可以将不同波长的光信号进行解析,不受被测物体的材质影响。无论是金属、塑料、液体还是透明物体,传感器都能够准确测量其位移信息。2. 无受颜色影响:传统的传感器常常受到被测物体颜色的影响,导致测量结果的误差增加。而光谱共焦位移传感器通过分析光信号...
  • 3
    2025 - 02 - 27
    一、引言1.1 研究背景与目的在工业自动化和智能制造快速发展的时代,激光位移传感器作为关键的测量设备,其重要性日益凸显。激光位移传感器凭借高精度、非接触测量、响应速度快等优势,广泛应用于汽车制造、电子、航空航天、机械加工等众多领域,为工业生产的高精度、高效率和智能化提供了有力支持。随着市场需求的不断增长和技术的持续进步,激光位移传感器行业呈现出蓬勃发展的态势。市场规模持续扩大,据相关数据显示,2023 年全球激光位移传感器市场规模大约为 15.13 亿美元,预计 2030 年将达到 25.09 亿美元,2024-2030 期间年复合增长率(CAGR)为 7.4%。在技术方面,传感器的精度、速度、稳定性等性能指标不断提升,新的技术和应用不断涌现,以满足不同行业日益多样化和严苛的测量需求。基恩士作为传感器领域的知名品牌,其推出的 LK-G5000 系列(LK-H 系列)高端高精度高速激光位移传感器在市场上备受关注。该系列产品凭借卓越的性能和先进的技术,在众多应用场景中展现出独特的优势,成为行业内的标杆产品之一。深入研究基恩士 LK-G5000 系列激光位移传感器,有助于我们全面了解激光位移传感器行业的最新技术趋势和产品发展方向,为相关企业的产品研发、市场竞争策略制定提供参考依据,同时也能为用户在选择和使用激光位移传感器时提供有价值的指导。1.2 研究方法与数据来源本研究主要采用了以下几...
  • 4
    2025 - 01 - 14
    一、引言1.1 研究背景与意义玻璃,作为一种用途极为广泛的材料,凭借其透明、坚硬且易于加工的特性,在建筑、汽车、电子、光学仪器等众多行业中占据着举足轻重的地位。在建筑领域,玻璃不仅被广泛应用于建筑物的窗户、幕墙,以实现采光与美观的效果,还能通过巧妙设计,增强建筑的整体通透感与现代感;在汽车行业,从挡风玻璃到车窗,玻璃的质量与性能直接关系到驾乘人员的安全与视野;在电子行业,显示屏、触摸屏等关键部件更是离不开玻璃,其质量和精度对电子产品的性能和用户体验有着深远影响。在玻璃的生产、加工以及应用过程中,对其进行精确测量显得至关重要。以玻璃基板为例,这一液晶显示器件的基本部件,主要厚度为 0.7mm 及 0.5mm,且未来制程将向更薄(如 0.4mm)迈进。如此薄的厚度,却要求严格的尺寸管控,一般公差在 0.01mm。玻璃厚度的均匀性、平整度以及表面的微观形貌等参数,直接决定了玻璃在各应用场景中的性能表现。例如,汽车挡风玻璃若厚度不均匀,可能导致光线折射异常,影响驾驶员视线;电子显示屏的玻璃基板若存在平整度问题,会影响显示效果,出现亮点、暗点或色彩不均等现象。传统的玻璃测量方法,如千分尺测量、激光三角法等,虽在一定程度上能满足部分生产需求,但在精度、效率以及适用范围等方面存在诸多局限。千分尺测量属于接触式测量,容易受到人工操作的影响,导致测量误差较大,且可能对玻璃表面造成损伤;激光三角法对透...
  • 5
    2025 - 02 - 09
    1. 性能参数对比参数LTP400基恩士 LK-G400米铱 ILD1420-200测量范围±100 mm漫反射 ±100 mm200 mm(具体范围依型号)采样频率160 kHz(最高)50 kHz(对应 20 μs)8 kHz(可调)静态噪声1.5 μm(平均后)2 μm(再现性)8 μm(重复性)线性误差±0.05% F.S.(±100 μm)±160 μm光斑直径Φ300 μm(W型号更宽)ø290 μm750 x 1100 μm(末端)接口类型以太网、485、模拟输出未明确(可能基础)RS422、PROFINET、EtherCAT防护等级IP67IP67IP67重量438 g380 g(含线缆)145 g(带电缆)可定制性激光功率、蓝光版本、模拟模块无提及ASC(动态表面补偿)、多种工业接口2. LTP400 的核心优势超高采样频率(160 kHz)远超 LK-G400(50 kHz)和 ILD1420-200(8 kHz),适用于高速动态测量场景(如振动监测、快速产线检测)。优异的静态噪声与线性精度平均后静态噪声仅 1.5 μm,优于 LK-G400(2 μm)和 ILD1420-200(8 μm)。线性误差 ,显著优于 LK-G400(±100 μm)和 ILD1420-200(...
  • 6
    2023 - 02 - 20
    1、激光位移传感器在轮胎转速测量中有重要作用。通常,一台汽车的轮胎都包含有激光位移传感器,它可以准确地测量出车轮的输出速度。该传感器利用轮胎上绕着水平或垂直线的激光点来测量轮胎行驶距离和变速器输出转速,从而确定变速比。此外,它还能准确地测量车轮上的前后运动,特别是对于汽车行驶的直线行驶和转弯的控制都有着重要的作用。2、激光位移传感器在防撞技术中也得到了广泛应用。它通常会被安装在前脸和侧面,通过测量前脸物体和周围物体的距离来调整外防撞车身和限速 门控驾驶,从而有效地防止汽车发生碰撞,保护汽车行驶的安全。 3、激光位移传感器在停车技术中也得到了广泛应用。它不仅可以测量汽车行驶距离、角度和速度,还可以准确地记录汽车在停车时的位置,并在遇到障 害的情况下立即触发保护电路或自动脱离,从而避免发生碰撞事故。 4、激光位移传感器也被广泛用于汽车行驶辅助系统中,它可以准确地测量出汽车行驶距离、方向及车速, 为汽车驾驶员提供实时信息,以增加驾驶操控质量,帮助驾驶员进行准确的行驶安排和调整。 5、激光位移传感器也在汽车悬挂系统中得到应用,它可以测量每个车轮的距离及方向,并建立一个三维的实时图像 。这种三维的实时图像可以非常准确地反映出汽车悬挂系统的表现,从而使汽车行驶的平稳性和操控性都大大提高。6、激光位移传感器还可用于汽车智能辅助驾驶系统中, 这种系统结合了导航、安全显...
  • 7
    2024 - 11 - 24
    样品检查报告书添加图片注释,不超过 140 字(可选)□ 全部可检出 □ 全部可检出(存在过度判定) ■ 部分可检出(6个孔中有2个可检出) □ 不可检出 □ 需要追加检查检查结果】由于未收到客户对于本次检查对象孔洞的判定结果,我们已通过⽬视确认将可⻅的划痕作为缺陷进⾏了检测。在6个被检孔洞中,有2个孔洞通过⽬视检测到了可⻅的划痕。剩余的4个孔洞,⽆论是通过⽬视还是数据分析,均未发现划痕或其他缺陷,因此未检出。(请参考第5⻚及之后的成像数据)【制造商意⻅】请客户也确认本次检测出的缺陷部位是否符合缺陷规格,即这些是否确实为应检出的缺陷。另外,在检测出缺陷的第②和第⑤个⼯作件中,还存在对⾮缺陷部位的误检。如果是在清洗前的状态下进⾏检查,由于污垢的附着,可能会导致难以捕捉到真正的缺陷部位,或者像本次⼀样,将污垢误判为缺陷。因此,如果考虑引⼊系统进⾏检测,请考虑将其安排在清洗后的⼯序中进⾏。此外,关于④A和④B两个孔洞,由于本次提供了切割⼯作件作为样本,因此能够进⾏拍摄。但在正规产品中,可能会因为探头⽀架等部件的接触⽽⽆法进⾏全⻓度的检查。考虑到实际的检查环境,我们认为有必要评估在产品状态下进⾏检查的可⾏性。(详情请参阅第3⻚)【后续推进⽅案】基于本次结果,如果您考虑引⼊内孔瑕疵检测系统,我们⾸先建议在图纸上评估④A和④B部位在产品状态下是否可以进⾏检查,并随后进⾏n次追加验证(有偿)。在...
  • 8
    2023 - 12 - 08
    随着科技的不断发展和进步,传感器技术得到了广泛的应用,尤其是在音响设备的振动频率测量方面。为了解决传统多普勒激光振动测量仪在成本上的投入问题,我们引入了一种低成本且高精度的解决方案--我们的高精度高速激光位移传感器LTP080系列。LTP080系列是一款卓越的激光位移传感器,它具有最高160K赫兹的采样频率,可以轻松处理100赫兹以下的低频振动测量。这使得它非常适合在音响设备的振动频率测量中使用。首先,必须将激光位移传感器准确地定位在音响设备的振动部分。然后,启动传感器进行数据采集。传感器将会收集音响设备振动的位移数据,这些数据通过微积分运算计算得出速度信息。然后,再对速度数据进行二次微积分运算,便可获取加速度信息。这样,我们便可以通过经济的方式获得音响设备的振动速度和加速度信息,无需购买昂贵的多普勒激光振动测量仪。值得注意的是,这种测量方式并不完美。它需要通过数学运算将位移数据转换为速度和加速度信息,并且对于高频振动测量可能存在局限性。然而,正是这种方法的低成本和高精度特性,使其在音响设备振动频率测量方面发挥了非凡的作用。此外,激光位移传感器还有其他一些优点,例如强大的抗干扰能力,可以适应各种环境条件,包括高温、低温、湿热等环境,以及不受照射材料、颜色及表面粗糙度的影响等。总的来说,LTP080系列高速激光位移传感器在音响设备的振动频率测量中的应用,提供了一种经济实惠且准确的解决...
Message 最新动态
泓川科技HC26激光位移传感器:高性价国产比替代奥泰斯CD33的优选方案 2025 - 06 - 09 在工业精密测量领域,无锡泓川科技的HC26系列激光位移传感器凭借出色的性能参数与显著的成本优势,成为替代奥泰斯CD33系列的高竞争力选择。以下从核心性能、特殊应用适配性及成本三方面进行对比分析:一、核心性能参数对标(HC26 vs CD33)参数泓川HC26系列奥泰斯CD33 (行业标准)HC26优势重复精度2μm (30mm款) → 50μm (195mm款)通常1~3μm (高端款)接近主流精度线性度±0.1%F.S.±0.05%~0.1%F.S.达到同级水平响应时间最快333μs (多档可调)通常500μs~1ms速度更快输出接口RS485(Modbus RTU)+模拟量(4-20mA/0-10V)类似接口组合同等兼容性防护等级IP67 (防尘防水)IP67/IP65同等工业防护温度特性0.05%F.S/℃0.03~0.05%F.S/℃稳定性接近注:HC26提供4种基准距离型号(30/50/85/195mm),覆盖小量程高精度(±4mm@30mm)至大量程(±99.98mm@195mm)场景,满足CD33主流应用范围。二、核心替代优势:全系支持正反射安装HC26系列所有型号均内置正反射光路设计,解决CD33在特殊材质检测中的痛点:镜面材料:通过正反射接收强光信号,避免漫反射信号微弱导致的测量失效。透明材质(如玻璃、薄...
泓川科技激光位移传感器HC16系列全方位国产替代OPTEX的CD22系列 2025 - 06 - 09 一、核心参数深度对比维度泓川科技 HC16 系列奥泰斯 CD22 系列差异影响分析型号覆盖15/35/100/150mm(4 款)15/35/100mm(3 款)HC16 新增150mm 基准距离型号(HC16-150),测量范围 ±100mm,填补 CD22 无远距离型号空白。重复精度(静态)15mm:1μm;35mm:6μm;100mm:20μm;150mm:60μm15mm:1μm;35mm:6μm;100mm:20μmHC16-150 精度较低(60μm),适合远距离低精度场景(如放卷料余量粗测),CD22 无对应型号需搭配中继。通讯扩展性支持 EtherCAT 模块(文档提及)、RS485、模拟量仅 RS485、模拟量HC16 对 ** 工业总线系统(如 PLC 集成)** 兼容性更强,可减少额外通讯模块成本。电源适应性全系列 DC12-24V 统一输入模拟量电压型需 DC18-24V,电流 / 485 型 DC12-24V若用户系统电源为12-18V,HC16 电压输出型(如 HC16-15-485V)可直接替代 CD22 电压型,避免电源升级成本。功耗≤100mA(全系列)≤700mA(CD22-15A 为例)HC16 功耗仅为 CD22 的1/7,适合电池供电设备、多传感器阵列场景,降低散热和电源设计压力。体积与重量尺寸未明确标注(参考 CD22 为紧凑型...
泓川科技 LTM3 系列与米铱 ILD1750 系列激光位移传感器深度对比:高性价比之选 2025 - 05 - 26 一、引言在工业自动化领域,激光位移传感器作为精密测量的核心部件,其性能与成本直接影响设备的竞争力。本文聚焦泓川科技 LTM3 系列与米铱 ILD1750 系列,从技术参数、应用场景及成本等维度展开深度对比,揭示 LTM3 系列如何以卓越性能和显著成本优势成为更具性价比的选择。二、核心参数对比指标泓川科技 LTM3 系列米铱 ILD1750 系列测量频率最高 10kHz,适用于高速动态测量场景最高 7.5kHz,满足常规工业速度需求重复性精度0.25μm 起(如 LTM3 - 030),达到亚微米级精度0.1μm 起,精度表现优异线性误差低至 0.06% FSO 起,基于百分比的误差控制防护等级IP67,可抵御粉尘、液体喷射及短时浸水IP65,防护性能良好但略逊于 LTM3外形尺寸605020.4mm,体积小巧,适配狭窄空间未明确标注,但工业通用设计体积较大重量约 150g,轻便易安装未明确标注,推测重于 LTM3 系列输出接口以太网、485 串口、模拟信号(±10V/4 - 20mA),支持工业网络集成模拟量(U/I)、数字量(RS422),传统工业接口配置光源655nm/660nm 红光激光,稳定可靠670nm 红光激光,测量光斑控制优秀工作温度0 - 50°C,适应多数工业环境0 - 50°C,环境适应性相当三、LTM3 系列核心优势解析(一)性能...
Copyright ©2005 - 2013 无锡泓川科技有限公司

1

犀牛云提供企业云服务
Our Link
X
3

SKYPE 设置

4

阿里旺旺设置

等待加载动态数据...

等待加载动态数据...

5

电话号码管理

  • 0510-88155119
6

二维码管理

等待加载动态数据...

等待加载动态数据...

展开