服务热线: 0510-88155119
13301510675@163.com
Language

激光测量技术在(ADAS)驾驶辅助系统的应用案例(三)

日期: 2025-01-16
浏览次数: 67
发表于:
来自 泓川科技
发表于: 2025-01-16
浏览次数: 67

七、声纳传感器应用案例深析

7.1 外壳相关检测

7.1.1 外壳的外观检测

在声纳传感器的实际应用中,对外壳的外观检测是确保产品质量的关键步骤。在进行外壳外观检测时,声纳传感器并非仅依赖传统的图像明暗判断方式,而是借助先进的技术,利用 3D 形状的图像来实现精准的形状变化识别。

其工作过程如下:传感器发射特定频率和模式的声波,这些声波以特定的角度和范围向外传播,当遇到外壳表面时,会根据外壳表面的形状、材质以及纹理等特征产生不同的反射模式。反射回来的声波被传感器的接收装置高效捕捉,然后转化为电信号。系统对这些电信号进行复杂的处理和分析,通过独特的算法将其转换为详细的 3D 形状数据。在这个过程中,系统会对 3D 形状数据进行精确的分析和比对,与预先设定的标准外壳模型进行细致的匹配。一旦发现外壳的形状与标准模型存在差异,系统会立即识别出这些变化,从而确定外壳是否存在缺陷或不符合规格的情况。

激光测量技术在(ADAS)驾驶辅助系统的应用案例(三)

这种利用 3D 形状图像进行外观检测的方式具有诸多显著优势。它极大地提高了检测的准确性和可靠性。传统的基于图像明暗判断的方法,容易受到环境光、外壳表面光泽度以及颜色等多种因素的干扰,导致检测结果出现偏差。而 3D 形状图像检测技术能够直接获取外壳的真实形状信息,不受这些外部因素的影响,从而能够更准确地发现外壳表面的细微瑕疵,如划痕、凹陷、凸起等,以及形状上的偏差。该技术具有较强的稳定性。无论环境光如何变化,或者外壳处于何种复杂的工作环境中,它都能稳定地进行检测,确保检测结果的一致性和可靠性。这对于在不同生产环境和使用场景下保证产品质量的稳定性具有重要意义,有效避免了因检测误差而导致的次品流入市场,提高了产品的整体质量和品牌信誉 。

 

7.1.2 外壳与屏蔽壳间隙测量

在电子设备中,外壳与屏蔽壳之间的间隙大小对于设备的性能,尤其是电磁屏蔽性能、散热性能以及防护性能等方面有着至关重要的影响。如果间隙过大,可能会导致电磁干扰泄漏,影响设备的正常运行,同时也会降低设备的防护等级,使其容易受到外界环境因素的侵蚀。而间隙过小,则可能在装配过程中出现困难,甚至对设备内部的零部件造成损坏。

2D/3D 线激光测量仪在外壳与屏蔽壳间隙测量中发挥着关键作用。该测量仪搭载了 3200points/profile 的超高精细 CMOS 传感器,这一先进的传感器具备卓越的测量能力。在测量过程中,测量仪发射出线激光束,这些激光束以极细的光斑和高精度的定位,对外壳与屏蔽壳之间的间隙进行扫描。激光束在照射到间隙表面时,会根据间隙的宽窄和形状产生不同的反射和折射情况。超高精细 CMOS 传感器能够精确地捕捉到这些细微的变化,将反射光的信息转化为电信号,并传输给测量仪的控制系统。

激光测量技术在(ADAS)驾驶辅助系统的应用案例(三)

控制系统通过内置的先进算法,对这些电信号进行深入分析和处理。它能够根据激光束的发射角度、反射时间以及传感器的位置信息,精确计算出间隙各个点的位置和尺寸信息,从而构建出间隙的精确三维模型。通过对这个三维模型的分析,测量仪可以准确得出外壳与屏蔽壳之间的间隙大小,精度可达到非常高的水平,能够满足对间隙测量精度要求极高的应用场景。

这种对狭小间隙进行高精度测量的技术在实际应用中具有重要意义。在电子设备制造行业,特别是对于那些对电磁兼容性和防护性能要求严格的产品,如通信设备、航空航天电子设备等,精确控制外壳与屏蔽壳之间的间隙是确保产品性能和可靠性的关键。通过使用 2D/3D 线激光测量仪进行精确测量,生产企业能够在生产过程中及时发现间隙不符合要求的产品,采取相应的调整和改进措施,从而保证产品的质量和性能,提高生产效率,降低生产成本 。

 

7.2 部件安装相关测量

7.2.1 部件安装高度差测量

在设备的组装过程中,部件安装的高度差直接关系到整个设备的性能和稳定性。对于声纳传感器相关设备而言,部件安装高度差的精准测量尤为重要。在测量安装后的高度差时,2D/3D 线激光测量仪 LJ-X8000 系列发挥了重要作用。

该测量仪通过扫描目标物并将其识别为 3D 形状,实现了一次检测多个位置测量点的功能。具体操作过程如下:测量仪发射出线激光束,这些激光束以特定的角度和密度覆盖目标部件的表面。当激光束照射到部件表面时,会根据部件表面的高度差异产生不同的反射路径和时间延迟。测量仪的探测器能够快速、准确地捕捉到这些反射光的变化信息,并将其转化为大量的空间坐标数据。通过对这些海量的空间坐标数据进行复杂的算法处理和分析,测量仪构建出部件的精确 3D 模型。

在这个 3D 模型中,每个测量点的高度信息都被准确记录。通过对不同部件上对应测量点的高度数据进行对比和计算,测量仪可以精确得出部件安装后的高度差。这种测量方法具有高效、准确的特点。相较于传统的逐个测量点进行测量的方式,它能够一次性获取多个测量点的信息,大大提高了测量效率,减少了测量时间和工作量。其测量精度非常高,能够检测到极其微小的高度差,为设备的精确装配提供了可靠的数据支持。

部件安装高度差的精准测量对装配质量有着深远的影响。如果部件安装高度差不符合设计要求,可能会导致设备在运行过程中出现一系列问题。例如,在机械传动部件的安装中,高度差可能会导致部件之间的配合不良,增加摩擦和磨损,降低设备的使用寿命,甚至可能引发设备故障,影响生产的正常进行。在电子设备中,部件安装高度差可能会影响电路连接的稳定性,导致信号传输不畅、短路等问题,严重影响设备的电气性能。通过精确测量部件安装高度差,装配人员可以及时发现并调整安装过程中的偏差,确保每个部件都安装在正确的位置,从而提高装配质量,保障设备的正常运行,提升产品的可靠性和稳定性 。

 

7.2.2 安装传感器时车身角度测量

在车身安装声纳传感器时,准确测量车身位置及角度是确保传感器能够正常工作并发挥最佳性能的关键环节。2D/3D 线激光测量仪 LJ-X8000 系列在这一测量任务中展现出了独特的优势。

该测量仪具有最大 720mm 的广泛测量范围,这使得它能够轻松检测车身等大型目标物。在测量车身角度时,测量仪通过发射线激光束对车身进行全面扫描。激光束从不同角度照射到车身上,根据车身的形状和位置产生不同的反射模式。测量仪的传感器迅速捕捉这些反射光,并将其转化为详细的空间坐标数据。通过对这些空间坐标数据的分析,测量仪可以构建出车身的精确 3D 模型。

在这个 3D 模型的基础上,测量仪利用先进的算法,通过对比车身特定部位的坐标信息与预设的标准值,能够准确计算出车身的角度。例如,通过测量车身底部几个关键支撑点的高度差以及它们之间的相对位置关系,结合测量仪内部的几何计算模型,就可以精确得出车身的倾斜角度。

这一测量在传感器安装中具有重要的意义。声纳传感器的工作效果高度依赖于其安装角度的准确性。如果车身角度测量不准确,导致传感器安装倾斜,那么传感器发射的声波信号可能无法按照预期的方向传播和接收,从而影响对周围环境的探测精度。在汽车行驶过程中,可能会出现对障碍物的误判、漏判等情况,严重威胁行车安全。准确测量车身角度能够确保传感器安装在正确的位置和角度上,使得传感器发射的声波能够均匀、有效地覆盖周围区域,提高传感器对目标物体的检测精度和可靠性,为车辆的安全行驶提供有力保障 。

 

八、毫米波雷达相关应用案例探讨

8.1 天线元件平坦度测量

8.1.1 测量流程与要点

在毫米波雷达的制造过程中,对天线元件平坦度的测量至关重要。采用 2D/3D 线激光测量仪 LJ-X8000 系列进行测量时,首先需将测量仪安装在合适的位置,确保其发射的线激光能够全面覆盖天线元件表面。测量仪的支持宽度达最大 720mm ,可对天线元件进行大范围的扫描。

测量过程中,线激光以特定的角度和间距照射到天线元件上,由于元件表面的平坦度差异,激光的反射情况会有所不同。测量仪搭载的高灵敏度探测器迅速捕捉这些反射光的变化,并将其转化为电信号。通过对电信号的精确分析和处理,测量仪能够构建出天线元件表面的三维轮廓模型。在此模型的基础上,测量仪可以同时测量多个任意指定点的高度信息,通过对比这些点的高度数据与理想平坦状态下的标准值,就能准确计算出天线元件的平坦度偏差 。

需要重点关注的要点包括测量仪的安装精度,必须保证其发射的激光能够垂直且均匀地照射到天线元件表面,以避免因照射角度偏差导致测量误差。测量环境的稳定性也十分关键,应尽量减少环境振动、温度波动等因素的干扰,确保测量过程的稳定性。


 激光测量技术在(ADAS)驾驶辅助系统的应用案例(三)

8.1.2 对雷达性能的影响

天线元件的平坦度对毫米波雷达的信号发射与接收性能有着深远的影响。如果天线元件平坦度不佳,存在凹凸不平的情况,在信号发射时,毫米波将无法按照预期的方向和强度均匀地辐射出去。这会导致信号在空间中的分布不均匀,某些方向上的信号强度减弱,从而缩小雷达的有效探测范围。

在信号接收方面,不平坦的天线元件可能会使接收到的回波信号发生散射和畸变,降低信号的质量和准确性。这将严重影响雷达对目标物体的检测精度,导致对目标的距离、速度和角度测量出现偏差,甚至可能出现漏检或误检的情况。对于自动驾驶系统而言,这种不准确的检测结果可能会引发严重的安全事故。确保天线元件具有良好的平坦度,是保证毫米波雷达性能稳定、可靠的关键因素,对于提升自动驾驶的安全性和可靠性具有不可忽视的重要意义 。

 

8.2 端子相关测量

8.2.1 端子的高度与节距检测

在毫米波雷达的电路连接中,端子的高度与节距的准确性直接关系到电路的稳定性和信号传输的质量。使用 2D/3D 线激光测量仪 LJ-X8000 系列进行端子的高度与节距检测时,测量仪通过发射线激光束对端子进行扫描。

激光束在接触到端子表面后,根据端子的形状和位置产生不同的反射模式。测量仪的传感器快速捕捉这些反射光,并将其转化为详细的空间坐标数据。通过对这些空间坐标数据的深入分析,测量仪能够精确测量出端子的高度以及相邻端子之间的节距。测量仪搭载的滤波器能够在保持目标物形状的状态下,有效消除反射光偏差等导致的干扰成分,确保测量结果的准确性和稳定性 。

准确的端子高度与节距对于电路连接意义重大。如果端子高度不一致,可能会导致在与其他电路元件连接时,接触不良,从而增加电阻,影响电流的传输,甚至可能引发局部过热,损坏电路元件。节距不准确则可能导致在电路板装配过程中,端子无法与对应的插孔正确匹配,造成电路连接错误,使毫米波雷达无法正常工作。精确测量端子的高度与节距,能够确保毫米波雷达的电路连接稳定可靠,保障信号的高效传输,为雷达的正常运行提供坚实的基础 。

 

8.2.2 安装时车身角度测量

在将毫米波雷达安装到车身上时,精确测量车身角度是确保雷达能够准确感知周围环境信息的关键步骤。2D/3D 线激光测量仪 LJ-X8000 系列凭借其最大 720mm 的广泛测量范围,能够轻松检测车身等大型目标物。

测量过程中,测量仪发射线激光束对车身进行全方位扫描。激光束从多个角度照射到车身上,根据车身的形状和位置产生不同的反射路径和时间延迟。测量仪的探测器捕捉这些反射光的变化信息,并将其转化为大量的空间坐标数据。通过对这些空间坐标数据的复杂运算和分析,测量仪构建出车身的精确 3D 模型。在这个 3D 模型的基础上,通过对比车身特定部位的坐标信息与预设的标准值,测量仪能够准确计算出车身的角度 。

激光测量技术在(ADAS)驾驶辅助系统的应用案例(三)

这一测量对于毫米波雷达的安装和使用至关重要。毫米波雷达的工作原理依赖于其能够准确地发射和接收毫米波信号,以探测周围环境中的目标物体。如果车身角度测量不准确,导致雷达安装倾斜,那么雷达发射的毫米波信号将无法按照预期的方向覆盖周围区域,接收回波信号的角度也会发生偏差。这将严重影响雷达对目标物体的检测精度和可靠性,可能导致对障碍物的误判、漏判,从而给行车安全带来巨大隐患。准确测量车身角度,能够确保毫米波雷达安装在正确的位置和角度上,使其能够充分发挥性能,为车辆的安全行驶提供可靠的保障 。

 

九、结论与展望

9.1 研究总结

本报告深入剖析了 ADAS 相关工具在汽车制造及相关领域的丰富应用案例。车载相机凭借 3D 图像检测技术,在底部填充胶涂抹高度测量、镜片高度及缝隙测量等方面,实现了高精度检测,显著提升了产品质量与可靠性 。2D/3D 线激光测量仪在粘合剂体积测量、部件高度与位置检测等多个环节发挥关键作用,其配备的超高灵敏度 CMOS 及先进算法,使其能够适应复杂的测量环境,准确获取各类数据,为生产过程中的质量控制提供了有力支持 。

彩色激光同轴位移计和干涉式同轴 3D 位移测量仪在镜面测量、相机模块测量等方面展现出独特优势,前者基于同轴测量和彩色共焦方式,能够精准检测镜面的倾斜及运动状态;后者利用白光干涉原理,实现了对镜面平坦度和密封材料高度的高精度测量,满足了相关行业对高精度测量的严格要求 。

超高速 / 高精度 CMOS 激光位移传感器在压电元件振动和平面度测量中表现卓越,其超高速采样周期和先进的测量方式,能够准确捕捉压电元件的细微变化,为电子设备的性能优化提供了重要数据 。声纳传感器在外壳外观检测、间隙测量以及部件安装高度差和车身角度测量等方面,通过采用 3D 形状图像识别等技术,提高了检测的准确性和稳定性,保障了设备的装配质量和性能 。毫米波雷达相关的天线元件平坦度测量和端子测量等应用,确保了毫米波雷达的信号发射与接收性能,以及电路连接的稳定性,对于提升自动驾驶的安全性和可靠性至关重要 。

这些 ADAS 相关工具的应用,极大地推动了汽车制造行业的发展。它们提高了生产过程中的检测精度和效率,有效减少了次品率,降低了生产成本。通过精确测量和严格质量控制,提升了汽车及相关零部件的性能和可靠性,为 ADAS 系统的稳定运行提供了坚实基础,进而推动了整个汽车行业向智能化、安全化方向迈进 。

 

9.2 未来发展趋势展望

基于当前的应用案例,ADAS 相关工具未来将朝着更高精度、更智能化以及多功能集成的方向发展。在精度提升方面,随着科技的不断进步,传感器的分辨率和测量精度将进一步提高。例如,激光测量技术可能会实现更高的测量频率和更细微的精度控制,能够检测到更小的尺寸变化和更微弱的物理量变化,从而满足汽车制造等行业对产品质量日益严苛的要求 。

智能化发展趋势也将愈发明显。ADAS 相关工具将具备更强的数据分析和处理能力,能够自动识别和诊断测量数据中的异常情况,并根据预设的规则和算法进行智能决策。例如,在生产线上,测量工具可以实时分析测量数据,一旦发现产品参数超出允许范围,立即自动发出警报,并提供相应的调整建议,实现生产过程的自动化和智能化控制 。

多功能集成是未来的另一个重要发展方向。不同类型的测量工具可能会集成在一起,形成综合性的测量系统。例如,将车载相机、激光测量仪和声纳传感器等集成到一个设备中,使其能够同时完成多种测量任务,不仅可以减少设备的占用空间,还能提高测量效率和数据的关联性。这种多功能集成的测量系统将更好地适应复杂的生产环境和多样化的测量需求,为汽车制造及相关行业的发展提供更全面、更便捷的解决方案 。

随着 ADAS 技术在智能交通领域的应用不断拓展,相关工具的应用场景也将更加广泛。除了汽车制造领域,这些工具还可能在智能交通基础设施建设、物流运输车辆监控等方面发挥重要作用,为构建更加智能、安全、高效的交通系统提供技术支持 。

 


News / 推荐阅读 +More
2025 - 06 - 22
点击次数: 25
一、国产化背景与战略意义在全球供应链竞争加剧的背景下,激光位移传感器作为工业自动化核心测量部件,其国产化生产对打破技术垄断、保障产业链安全具有重要战略意义。泓川科技 LTP 系列依托国内完整的光学、电子、机械产业链体系,实现了从核心零部件到整机制造的全流程国产化,彻底解决了接口卡脖子问题,产品精度与稳定性达到国际先进水平,同时具备更强的成本竞争力与定制化服务能力。二、核心部件全国产化组成体系(一)光学系统组件激光发射单元激光二极管:采用深圳镭尔特光电 655nm 红光 PLD650 系列(功率 0.5-4.9mW)及埃赛力达 905nm 红外三腔脉冲激光二极管,支持准直快轴压缩技术,波长稳定性 ±0.1nm,满足工业级高稳定性需求。准直透镜:选用杭州秋籁科技 KEWLAB CL-UV 系列,表面粗糙度 光学滤光片:深圳激埃特光电定制窄带滤光片,红外截止率 99.9%,有效消除环...
2025 - 06 - 19
点击次数: 17
有!LTM 系列三款国产激光位移传感器满足需求在工业检测领域,量程 1 米、精度误差 1mm、频率 5KHz 以上的激光位移传感器是高端测量的刚需,而国产传感器常因精度或频率不足被进口品牌垄断。无锡泓川科技的 LTM2-800W、LTM3-800W、LTM5-800W 三款产品,不仅全面覆盖上述指标,更以进口品牌一半的成本优势,成为国产替代的优选方案。以下从性能参数、优劣分析、场景适配及成本对比展开详细介绍。一、核心性能参数对比型号LTM2-800WLTM3-800WLTM5-800W参考距离800mm800mm800mm测量范围±500mm(总量程 1000mm)±500mm(总量程 1000mm)±500mm(总量程 1000mm)光斑尺寸450×6000μm450×6000μm450×6000μm重复精度45μm45μm45...
2025 - 06 - 09
点击次数: 76
在工业精密测量领域,无锡泓川科技的HC26系列激光位移传感器凭借出色的性能参数与显著的成本优势,成为替代奥泰斯CD33系列的高竞争力选择。以下从核心性能、特殊应用适配性及成本三方面进行对比分析:一、核心性能参数对标(HC26 vs CD33)参数泓川HC26系列奥泰斯CD33 (行业标准)HC26优势重复精度2μm (30mm款) → 50μm (195mm款)通常1~3μm (高端款)接近主流精度线性度±0.1%F.S.±0.05%~0.1%F.S.达到同级水平响应时间最快333μs (多档可调)通常500μs~1ms速度更快输出接口RS485(Modbus RTU)+模拟量(4-20mA/0-10V)类似接口组合同等兼容性防护等级IP67 (防尘防水)IP67/IP65同等工业防护温度特性0.05%F.S/℃0.03~0.05%F.S/℃稳定性接...
2025 - 06 - 09
点击次数: 38
一、核心参数深度对比维度泓川科技 HC16 系列奥泰斯 CD22 系列差异影响分析型号覆盖15/35/100/150mm(4 款)15/35/100mm(3 款)HC16 新增150mm 基准距离型号(HC16-150),测量范围 ±100mm,填补 CD22 无远距离型号空白。重复精度(静态)15mm:1μm;35mm:6μm;100mm:20μm;150mm:60μm15mm:1μm;35mm:6μm;100mm:20μmHC16-150 精度较低(60μm),适合远距离低精度场景(如放卷料余量粗测),CD22 无对应型号需搭配中继。通讯扩展性支持 EtherCAT 模块(文档提及)、RS485、模拟量仅 RS485、模拟量HC16 对 ** 工业总线系统(如 PLC 集成)** 兼容性更强,可减少额外通讯模块成本。电源适应性全系列 DC12-24V 统一输入模拟量电压型需 ...
2025 - 05 - 26
点击次数: 33
一、引言在工业自动化领域,激光位移传感器作为精密测量的核心部件,其性能与成本直接影响设备的竞争力。本文聚焦泓川科技 LTM3 系列与米铱 ILD1750 系列,从技术参数、应用场景及成本等维度展开深度对比,揭示 LTM3 系列如何以卓越性能和显著成本优势成为更具性价比的选择。二、核心参数对比指标泓川科技 LTM3 系列米铱 ILD1750 系列测量频率最高 10kHz,适用于高速动态测量场景最高 7.5kHz,满足常规工业速度需求重复性精度0.25μm 起(如 LTM3 - 030),达到亚微米级精度0.1μm 起,精度表现优异线性误差低至 0.06% FSO 起,基于百分比的误差控制防护等级IP67,可抵御粉尘、液体喷射及短时浸水IP65,防护性能良好但略逊于 LTM3外形尺寸605020.4mm,体积小巧,适配狭窄空间未明确标注,但工业通用设计体积较大重量约 150g,轻便易安装未明确...
About Us
关于泓川科技
专业从事激光位移传感器,激光焊缝跟踪系统研发及销售的科技公司
中国 · 无锡 · 总部地址:无锡新吴区天山路6号
销售热线:0510-88155119 
图文传真:0510-88152650
Working Time
我们的工作时间
周一至周五:8:00-18:00
周六至周日:9:00-15:00
Shown 企业秀 More
  • 1
    2023 - 09 - 20
    首先,让我们对TOF进行一次短暂的“速读”——它全称叫'time-of-flight',中文怎么说呢?风格洒脱地称之为“飞行时间”。你没听错,就是“飞行时间”。所有的颠覆与创新始于赤裸裸的想象,对吧?再来回过头,看看我们的主角TOF激光测距传感器。激光这东西,我想你肯定不陌生。科幻大片,医美广告里都被频繁提及。对这位明星,我们暂时按下暂停键, 我们聊一聊测距传感器——那可是能把复杂的三维世界,硬是证明成一串串精准数据的硬核工具。当然,他俩的组合,并不是偶然撞壁造成的火花。在“鹰眼”TOF的身上,激光变得更加酷炫,传感器技术也变得更为深邃。他们共舞的主线,就是光的飞行时间。想象一下,要在现实世界计算出光从物体发射出来,然后反射回传感器的时间。你愣了一秒,觉得好像进入了'黑洞'的领域。实则不然,TOF激光测距传感器就是这样“耳提面命”。它以光速旅行者的姿态,穿越空间,告诉我们物体与之间的距离。亲,你有听说过光速吗?大约每秒走30万公里哦,这个速度足够你在一秒钟内去绕地球七点五圈了!TOF激光测距传感器就是他们利用这么一个迅疾的光速,再加上高精度的时钟,来高效精确地计算出飞行时间并转化为距离数据。小编想说,TOF不仅玩科技,他更玩智谋,战胜了同类的超声波、红外线等测距设备。毕竟,被物的颜色、亮度、表面材质,或者环境的温湿度对他来说都不构成锁链。准确到“下毛...
  • 2
    2025 - 03 - 06
    背景与挑战随着电子封装技术的快速发展,直接镀铜陶瓷基板(DPC)因具备优异的导热性、机械强度及耐高温性能,被广泛应用于大功率LED、IGBT模块等领域。然而,其表面金属镀层的厚度均匀性直接影响器件的散热效率与可靠性。某客户需对一批DPC基板进行全检,要求**在正反面各选取10个金属块(含2个重复基准点)**进行高精度厚度测量,并同步获取表面轮廓与中心区高度数据,以满足严格的工艺质量控制标准。解决方案针对客户需求,我们采用LTC1200系列光谱共焦传感器(配套高精度运动平台与测控软件),设计了一套非接触式三维测厚方案:设备选型量程:±600μm(覆盖金属层典型厚度范围)重复精度:0.03μm(静态,确保基准点数据一致性)线性误差:<±0.3μm(满足亚微米级公差要求)采样频率:10kHz(高速扫描提升检测效率)选用LTC1200B型号传感器(光斑直径约19μm),兼顾测量精度与金属表面反射特性需求,其技术参数如下:搭配亚微米级定位平台,确保扫描路径精确控制。基准点设定以陶瓷基板裸露区域作为基准面,在正反面各设置2个重复测量点,通过传感器实时比对基准高度数据,消除基板翘曲或装夹误差对厚度计算的影响。实施流程数据采集:沿预设路径扫描金属块,同步记录轮廓点云与中心区高度(软件自动拟合最高点作为厚度参考值)。厚度计算:基于公式:\text{金属层厚度} = \text{金...
  • 3
    2023 - 09 - 30
    1. 引言:随着科技的迅猛发展和市场需求的不断提升,对建材板的厚度与宽度尺寸精确测量变得越来越关键。因此,选用高精度激光位移传感器来实现,既可以提高产量,又能保证质量。2. 技术原理:激光位移传用光干涉测量技术,发出红外激光束并接收反射回仪器的光阴影,通过光敏元件将其转换成电信号,经过放大处理后输出相应的标准信号来实现位移的测量。其中,红外激光束可以达到丝级别的精度,准确度极高。3. 技术方案:- 挤出流程结束后,立即利用激光位移传感器进行厚度和宽度的测量,效率高;厚度调整功能的使用,可以显著缩短安装和产品更换所需的工时。- 高精度激光位移传感器设置于生产线上,根据实际产品的厚度和宽度需要,选定合适的光束焦距和安装位置。传感器投射出激光束,反射回传感器的发射率会随着测量对象的位移变化而变动。- 传感器内部的电路系统将接收到的电信号进行处理,根据预设的参数,输出标准信号。- 通过对数据的实时监测和分析,可以找出生产中存在的问题并及时进行调整,以确保建材板的质量。4. 应用行业:因为对射的高精度激光位移传感器具有精度和效率高、可靠性强等优点,被广泛用于建材、塑料制品、金属材料、石材加工、生物医疗、微电子等范围。特别是在板材生产等领域,可以有效提高产品质量与生产效率,满足市场对精密制造的需求。结论:利用激光位移传感器在建材板的厚度和宽度测量中,可以实现精准测量,促进生产效率,同时保证产品...
  • 4
    2024 - 12 - 11
    摘要光谱共焦位移传感器是一种高精度、非接触式的光电位移传感器,广泛应用于光学镜片检测、半导体制造、医疗器械生产等多个领域。本文详细阐述了光谱共焦位移传感器的制造技术,包括生产技术细节、工艺流程以及需要注意的具体事项,为相关领域的研发和生产提供参考。引言随着精密仪器制造业的发展,对于工业生产测量的要求越来越高。光谱共焦位移传感器以其高精度、非接触式、实时无损检测等特性,成为解决这一问题的有效手段。本文旨在详细介绍光谱共焦位移传感器的制造技术,包括关键零部件的选择、生产工艺流程以及制造过程中需要注意的事项。一、光谱共焦位移传感器的基本原理光谱共焦位移传感器由光源、分光镜、光学色散镜头组、小孔以及光谱仪等部分组成。传感器通过色散镜头将位移信息转换成波长信息,再利用光谱仪进行光谱分解,反解得出被测位移。其中,色散镜头作为光学部分完成了波长和位移的一一映射,是传感器的核心部件。二、关键零部件的选择1. 光源选择白光LED作为光源,其光谱分布范围广泛,能够满足不同测量需求。同时,白光LED具有寿命长、稳定性好等优点,适合用于工业生产环境。2. 色散镜头色散镜头是光谱共焦位移传感器的关键部件,其性能直接影响传感器的测量精度和分辨率。在选择色散镜头时,需要考虑其轴向色散与波长之间的线性度、色散范围以及镜头材料等因素。3. 光谱仪光谱仪用于接收通过小孔的光信号,并确定其波长,从而实现位移分辨。在选择...
  • 5
    2025 - 04 - 13
    在工业自动化领域,精密测量是保障产品质量与生产效率的核心环节。泓川科技 HC8-050 与松下 HG-C1050 作为两款主流的中短距离激光位移传感器,在电子制造、精密加工、自动化检测等领域应用广泛。本文将从技术参数、核心性能、应用场景等维度展开深度对比,揭示 HC8-050 在特定场景下的显著优势及高性价比。一、基础技术参数:精准定位性能差异参数HC8-050HG-C1050差异分析测量范围50±15mm(35-65mm)50±15mm(35-65mm)两者一致,覆盖中短距离精密测量场景。重复精度15μm30μmHC8-050 的重复精度比 HG-C1050 提升 50%,适用于对微小位移敏感的精密检测(如芯片封装、精密轴承测量)。光点直径70μm约 70μm光斑尺寸相同,但 HC8-050 通过光学优化,在低反射率表面的光斑识别能力更强。线性度±0.1%F.S.±0.1%F.S.线性度一致,满足工业级测量精度要求。温度特性±0.05%F.S/℃±0.03%F.S/℃HG-C1050 理论温漂略优,但 HC8-050 通过硬件散热与软件温补算法,实际在高温环境(如 80℃)下稳定性更优。工作温度-10~50℃(支持 80℃长期使用)-10~45℃HC8-050 突破行业常规,通过特殊设计可在 80℃高温环境稳定运行,而 ...
  • 6
    2025 - 01 - 20
    一、引言1.1 研究背景与意义在当今数字化时代,IC 芯片作为现代电子设备的核心部件,其重要性不言而喻。从智能手机、电脑到汽车电子、工业控制,乃至新兴的人工智能、物联网等领域,IC 芯片无处不在,如同电子设备的 “大脑”,掌控着设备的运行与功能实现。其发展水平不仅是衡量一个国家科技实力的重要标志,更在全球经济竞争中占据着关键地位。近年来,IC 芯片产业呈现出蓬勃发展的态势。随着摩尔定律的持续推进,芯片的集成度不断提高,尺寸愈发微小,性能却实现了质的飞跃。与此同时,5G、人工智能、大数据等新兴技术的迅猛发展,为 IC 芯片产业注入了强大的发展动力,市场对芯片的需求呈现出爆发式增长。在 IC 芯片制造的复杂流程中,精确测量起着举足轻重的作用,如同工匠手中精准的量具,确保每一个环节都达到极高的精度标准。从芯片设计阶段的版图测量,到制造过程中的光刻、蚀刻、沉积等工艺的尺寸控制,再到封装测试阶段对芯片外形、引脚等的精确测量,每一步都离不开高精度测量技术的支撑。只有通过精确测量,才能保证芯片的性能、良率以及可靠性,满足市场对高质量芯片的严苛要求。光谱共焦传感器作为一种先进的测量技术,凭借其独特的工作原理和卓越的性能优势,在 IC 芯片测量领域展现出了巨大的潜力。它能够实现对芯片表面形貌、厚度、尺寸等参数的高精度非接触测量,为芯片制造提供了可靠的数据支持。这种高精度测量对于提高芯片制造工艺的精度...
  • 7
    2022 - 12 - 03
    激光测距传感器的功能,你了解多少呢?大家好,我是无锡宏川传感学堂的李同学。激光测距传感器的功能可分为距离测量和窗口测量。其中距离测量在测距应用中传感器可以随时投入使用。直接给出与物体之间的距离。测量值可用于系统控制或者物体的精准定位。此外还可以选择对数字量模拟,量输出进行调整。如果需要检测尺寸较小的物体。可直接进行窗口测量。通过对参照物进行自学习,传感器可直接测得与标称尺寸的偏差。在这种情况下,数字量输出也可以进行相应的参数进行。除了传感器的尺寸和测量范围。光斑的形状也尤其重要,点击光代表精准聚焦。能精确测量小尺寸的物体。线激光能可靠测量粗糙度比较大的表面积。带纹理的彩色表面。在光泽不均匀或极其粗糙的表面上也能进行稳定的测量。
  • 8
    2023 - 10 - 01
    '新吴科之匠',泓川科技有限公司全新打造的传感器新标杆,我们凝聚高端技术力量,专注于高精度、高性能的激光位移传感器LTP系列,光谱共焦传感器LTC系列,白光干涉测厚传感器,线光谱共焦传感器,以及3D结构光和3D线激光。 强大的研发能力和对细节无穷追求,让我们的产品在每个细微处都彰显出卓越品质。'新吴科之匠'不仅寓意着尖端科技的集中体现,更代表着对品质的极致追求。我们相信,只有最好,才能过硬。
Message 最新动态
泓川科技 LTP 系列激光位移传感器全国产化制造流程细节全披露 2025 - 06 - 22 一、国产化背景与战略意义在全球供应链竞争加剧的背景下,激光位移传感器作为工业自动化核心测量部件,其国产化生产对打破技术垄断、保障产业链安全具有重要战略意义。泓川科技 LTP 系列依托国内完整的光学、电子、机械产业链体系,实现了从核心零部件到整机制造的全流程国产化,彻底解决了接口卡脖子问题,产品精度与稳定性达到国际先进水平,同时具备更强的成本竞争力与定制化服务能力。二、核心部件全国产化组成体系(一)光学系统组件激光发射单元激光二极管:采用深圳镭尔特光电 655nm 红光 PLD650 系列(功率 0.5-4.9mW)及埃赛力达 905nm 红外三腔脉冲激光二极管,支持准直快轴压缩技术,波长稳定性 ±0.1nm,满足工业级高稳定性需求。准直透镜:选用杭州秋籁科技 KEWLAB CL-UV 系列,表面粗糙度 光学滤光片:深圳激埃特光电定制窄带滤光片,红外截止率 99.9%,有效消除环境光干扰。激光接收单元光电探测器:上海欧光电子代理 OTRON 品牌 PSD 位置敏感探测器,分辨率达 0.03μm(如 LTPD08 型号),北京中教金源量子点探测器正在实现自主替代。聚焦透镜组:福州合创光电高精度分光棱镜,偏振消光比 1000:1,配合广州明毅电子阳极氧化支架,确保光路同轴度≤5μm。(二)电子电路组件信号处理模块微处理器:龙芯中科 3A5000 工业级芯片,支持 - 40℃...
有没有量程1米,测量精度误差1mm的国产激光位移传感器,频率5Khz以上? 2025 - 06 - 19 有!LTM 系列三款国产激光位移传感器满足需求在工业检测领域,量程 1 米、精度误差 1mm、频率 5KHz 以上的激光位移传感器是高端测量的刚需,而国产传感器常因精度或频率不足被进口品牌垄断。无锡泓川科技的 LTM2-800W、LTM3-800W、LTM5-800W 三款产品,不仅全面覆盖上述指标,更以进口品牌一半的成本优势,成为国产替代的优选方案。以下从性能参数、优劣分析、场景适配及成本对比展开详细介绍。一、核心性能参数对比型号LTM2-800WLTM3-800WLTM5-800W参考距离800mm800mm800mm测量范围±500mm(总量程 1000mm)±500mm(总量程 1000mm)±500mm(总量程 1000mm)光斑尺寸450×6000μm450×6000μm450×6000μm重复精度45μm45μm45μm线性误差采样频率5KHz10KHz31.25KHz工业接口485 串口 / 模拟信号(二选一)以太网 / 485 串口 / 模拟信号以太网 / 485 串口 / 模拟信号光源660nm,Max.50mW660nm,Max.50mW660nm,Max.50mW防护等级IP67IP67IP67工作温度0~+50℃0~+50℃0~+50℃功耗约 2.0W约 2.0W约 2.0W二、产品优势分析(一)...
泓川科技HC26激光位移传感器:高性价国产比替代奥泰斯CD33的优选方案 2025 - 06 - 09 在工业精密测量领域,无锡泓川科技的HC26系列激光位移传感器凭借出色的性能参数与显著的成本优势,成为替代奥泰斯CD33系列的高竞争力选择。以下从核心性能、特殊应用适配性及成本三方面进行对比分析:一、核心性能参数对标(HC26 vs CD33)参数泓川HC26系列奥泰斯CD33 (行业标准)HC26优势重复精度2μm (30mm款) → 50μm (195mm款)通常1~3μm (高端款)接近主流精度线性度±0.1%F.S.±0.05%~0.1%F.S.达到同级水平响应时间最快333μs (多档可调)通常500μs~1ms速度更快输出接口RS485(Modbus RTU)+模拟量(4-20mA/0-10V)类似接口组合同等兼容性防护等级IP67 (防尘防水)IP67/IP65同等工业防护温度特性0.05%F.S/℃0.03~0.05%F.S/℃稳定性接近注:HC26提供4种基准距离型号(30/50/85/195mm),覆盖小量程高精度(±4mm@30mm)至大量程(±99.98mm@195mm)场景,满足CD33主流应用范围。二、核心替代优势:全系支持正反射安装HC26系列所有型号均内置正反射光路设计,解决CD33在特殊材质检测中的痛点:镜面材料:通过正反射接收强光信号,避免漫反射信号微弱导致的测量失效。透明材质(如玻璃、薄...
Copyright ©2005 - 2013 无锡泓川科技有限公司

1

犀牛云提供企业云服务
Our Link
X
3

SKYPE 设置

4

阿里旺旺设置

等待加载动态数据...

等待加载动态数据...

5

电话号码管理

  • 0510-88155119
6

二维码管理

等待加载动态数据...

等待加载动态数据...

展开