服务热线: 0510-88155119
13301510675@163.com
Language
项目案例 Case
Case 激光位移

靶丸内表面轮廓的白光共焦光谱测量技术

日期: 2022-01-17
浏览次数: 86

摘要:靶丸内表面轮廓是激光核聚变靶丸的关键参数,需要精密检测。本文首先分析了基于白光共焦光谱和精密气浮轴系的靶丸内表面轮廓测量基本原理,建立了靶丸内表面轮廓的白光共焦光谱测量方法。此外,搭建了靶丸内表面轮廓测量实验装置,建立了基于靶丸光学图像的辅助调心方法,实现了靶丸内表面轮廓的精密测量,获得了准确的靶丸内表面轮廓曲线;最后,对测量结果的可靠性进行了实验验证和不确定度分析,结果表明,白光共焦光谱能实现靶丸内表面低阶轮廓的精密测量,其测量不确定度优于01μm


关键词:白光共焦光谱;内表面轮廓;靶丸;激光聚变

1     引言

在激光惯性约束聚变(ICF)实验中,靶丸内、外表面轮廓的非理想球形度偏差将会在靶丸内爆过程中造成瑞利-泰勒流体力学不稳定性的快速增长,降低压缩效率,甚至导致球壳破裂。因此,精密测量靶丸内、外表面圆周轮廓特征对理解激光核聚变靶丸内爆物理过程和改进靶丸制备工艺均有着十分重要的意义。为了检测靶丸的表面轮廓信息,国内外ICF研究机构建立了基于精密气浮轴系和原子力显微镜(AFM)的靶丸表面轮廓测量技术,实现了靶丸外表面轮廓的全表面检测,其测量不确定度可达到纳米量级。对于靶丸内表面轮廓的无损检测,目前常用的技术手段是X射线照相法。该方法利用靶丸X射线吸收强度在界面处不连续的特点,通过计算吸收强度曲线的亮度或二阶微分来确定各壳层的轮廓信息,其低阶圆周轮廓测量不确定度为03μm,不能完全满足靶物理实验对靶丸内表面圆周轮廓测量的精度需求。因此,如何实现靶丸内表面轮廓的高精度测量,目前还是一个亟待解决的技术难题。

近年来,共焦测量方法由于具有高精度的三维成像能力,已经广泛用于表面轮廓与三维精细结构的精密测量。本文通过分析白光共焦光谱的基本原理,建立了透明靶丸内表面圆周轮廓测量校准模型;同时,基于白光共焦光谱并结合精密旋转轴系,建立了靶丸内表面圆周轮廓精密测量系统和靶丸圆心精密定位方法,实现了透明靶丸内、外表面圆周轮廓的纳米级精度测量。

2     测量原理

1(a)是白光共焦光谱传感器的工作原理示意图,白光光源通过物镜组形成一系列连续的沿着光轴的单色光点像,分别对应λ1λn,每一种波长对应一个纵向位置。当待测样品置于测量范围内时,某一种特定的波长λM正好聚焦到样品表面的M点并被反射,反射光被分光镜反射后经针孔滤波,滤波后变为以λM为中心的窄带光信号(带宽为Δλ),被光谱仪接收。通过分析样品表面反射光的波长,可高精度地确定样品表面的纵向位置。将靶丸安装在精密气浮主轴前端,使白光共焦光谱传感器聚焦于靶丸赤道位置(白光共焦光谱聚焦光斑在数微米量级,靶丸表面的测量区域可近似为平面),由于靶丸内、外表面的反射,此时,反射光谱中将会出现两个峰值,根据这两个反射光谱的波长,可同时获得透明靶丸的内、外表面相对于传感器零点的高度数据。利用精密气浮轴系带动靶丸平稳旋转,同时采集靶丸各个位置的内、外表面轮廓高度数据,当气浮轴系旋转360°,即可获得靶丸的内、外表面圆周轮廓数据,对应位置内、外表面轮廓数据之差即为靶丸的壳层厚度。

当光线通过靶丸壳层时,由于光线的折射,靶丸内表面轮廓的直接测量数据不能表征其真实轮廓特征,为得到真实的内表面轮廓数据,需要对白光共焦光谱的直接测量数据进行修正。


靶丸内表面轮廓的白光共焦光谱测量技术


靶丸内表面轮廓的白光共焦光谱测量技术

1 (a)白光共焦光谱传感器的工作原理示意图和(b)透明样品下表面轮廓的测量原理

1(b)是透明样品下表面轮廓的白光共焦光谱测量原理示意图,图中,p1p2是样品上表面相对于传感器零点的位置,p3p4是样品下表面相对于传感器零点的位置。

利用白光共焦光谱测量靶丸壳层内表面轮廓数据时,其测量结果与白光共焦光谱传感器光线的入射角、靶丸壳层厚度、壳层材料折射率、靶丸内外表面轮廓的直接测量数据等因素紧密相关。

3     测量装置

利用精密气浮旋转轴系及白光共焦光谱传感器,搭建了透明靶丸内表面轮廓测量实验装置,该测量装置示意图如图2所示。该装置主要由精密气浮主轴、辅助轴系、白光共焦光谱仪、数据采集单元以及靶丸调心机构等几部分组成,其中,传感器采用法国STIL公司的白光共焦光谱仪,其测量范围为400μm,光斑尺寸为17μm。测量过程中,将靶丸放置于精密气浮旋转轴系上端的负压吸附吸嘴上,白光共焦光谱传感器垂直聚焦于靶丸表面赤道位置,通过控制软件使轴系旋转与光谱数据采集同步。在旋转轴系开始转动时同步采集靶丸内外表面的轮廓数据,旋转轴系旋转一周就可以得到靶丸赤道位置的圆周轮廓数据;利用辅助轴系可实现靶丸指定角度的翻转,从而实现靶丸不同位置的内表面轮廓测量。


靶丸内表面轮廓的白光共焦光谱测量技术

2 白光共焦光谱轮廓检测系统

放置于旋转轴系吸嘴上的靶丸可能出现偏心,从而导致靶丸在旋转过程中内外表面超出有效量程范围,不能实现靶丸内表面圆周轮廓的测量,因此,在测量靶丸内表面轮廓之前,需要调整靶丸中心和旋转轴系中心的相对位置,使其尽可能重合。本文采用了图像辅助调心方法,其调心原理如图3所示


靶丸内表面轮廓的白光共焦光谱测量技术

3 靶丸旋转调心原理图

通过公式,可求解靶丸旋转到某一位置时靶丸光学图像中心的位置坐标,将靶丸圆心调整到与回转中心重合;再将靶丸旋转到下一位置,调整靶丸光学图像中心与回转中心的相对位置,使二者重合;重复上述过程,若靶丸旋转一周,靶丸光学图像中心与回转中心均重合,则靶丸调心过程完成。该方法的调心精度与视频CCD的放大倍数及测量精度有关,本装置可实现小于10μm的调心精度。

4     测量结果与讨论

41靶丸内表面轮廓测量

利用上述测量方法和实验装置,对单层塑料靶丸的内、外表面轮廓进行了测量。图4是基于白光共焦光谱的靶丸外表面轮廓和校准后的内表面测量曲线,从图中可以看出,靶丸内、外表面低阶轮廓整体形状相似,局部轮廓存在一定的差异。从公式可知,靶丸内表面轮廓的校准与靶丸壳层折射率相关,而折射率可表示为入射光波长的函数,计算过程中,对于靶丸壳层,其折射率在可见光范围内的偏差较小,可取为15。此外,根据白光共焦光谱传感器的数值孔径和工作距离等参数,可计算出入射角约为28°。与外表面轮廓相比较,靶丸内表面轮廓的信噪比较差,分析认为,靶丸内表面的真实轮廓测量值与靶丸内、外表面的白光共焦光谱直接测量数据相关,其测量噪声是二者的综合效应,因此,其测量数据信噪比相对较差,这表明,利用白光共焦光谱方法,可实现靶丸低阶轮廓的测量,其高阶轮廓信息测量置信度相对较低。


靶丸内表面轮廓的白光共焦光谱测量技术

4 靶丸内外表面轮廓的白光共焦光谱测量曲线

42内表面轮廓测量数据的可靠性验证

靶丸内表面轮廓的白光共焦光谱测量技术


靶丸内表面轮廓的白光共焦光谱测量技术

5 靶丸外表面轮廓(a)及其功率谱曲线(b)

采用对比测试方法,首先对基于白光共焦光谱技术的靶丸外表面轮廓测量精度进行了考核,图5(a)是靶丸外表面轮廓的原子力显微镜轮廓仪和白光共焦光谱轮廓仪的测量曲线。为了便于比较,将原子力显微镜轮廓仪的测量数据进行了偏移。从图中可以看出,二者的低阶轮廓整体相似,局部的轮廓信息存在一定的偏差,原因在于二者在靶丸赤道附近的精确测量圆周轮廓结果不一致;此外,白光共焦光谱的信噪比较原子力低,这表明白光共焦光谱适用于靶丸表面低阶的轮廓误差的测量。图5(b)是靶丸外表面轮廓原子力显微镜轮廓仪测量数据和白光共焦光谱轮廓仪测量数据的功率谱曲线,从图中可以看出,在模数低于100的功率谱范围内,两种方法的测量结果一致性较好,当模数大于100时,白光共焦光谱的测量数据大于原子力显微镜的测量数据,这也反应了白光共焦光谱仪在高频段测量数据信噪比相对较差的特点。由于光谱传感器Z向分辨率比原子力低一个量级,同时,受环境振动、光谱仪采样率及样品表面散射光等因素的影响,共焦光谱检测数据高频随机噪声可达100nm左右。对于ICF靶丸,模数大于100的表面粗糙度信息一般在数纳米至数十纳米量级,靶丸表面真实高频轮廓数据全部淹没在白光共焦光谱系统的随机噪声之中,故白光共焦光谱仪难以获得靶丸表面轮廓的高频信息。

为进一步验证内表面轮廓测量数据的可靠性,对单面具有正弦调制结构的薄膜样品进行了测试,该薄膜样品基底厚度约为10μm,正弦调制振幅约为05μm,波长约为50μm。图6(a)是正弦调制结构向上时利用白光共焦光谱对调制样品上表面轮廓的测量数据和拟合数据,从图中可以看出,测量数据与拟合数据一致性较好,其正弦调制振幅为434nm,波长为482μm;6(b)是正弦调制薄膜(正弦调制结构向上)上表面轮廓曲线和校准前后的下表面轮廓曲线,从图中可以看出,由于受上表面的影响,校准前下表面轮廓曲线呈现周期性的调制特征,其振幅分布与上表面相反,利用公式(3)进行校准后,下表面轮廓曲线可近似为一条直线。图7(a)是正弦调制薄膜(正弦调制结构向下)上表面轮廓曲线和校准前后的下表面轮廓曲线,从图中可以看出,上表面轮廓近似为一条直线,这与图6(b)中调制薄膜校准后的轮廓曲线是一致的,此外,由于受调制薄膜折射率的影响,图7(a)中调制薄膜下表面校准前后轮廓曲线的振幅明显不同;7(b)是调制薄膜下表面轮廓曲线(校准后)的测量数据和拟合数据,相对于图6(a)的测量结果,该测量数据与拟合数据的离散性相对增大,通过正弦拟合方法所获得的正弦调制振幅为439nm,波长为482μm。当调制样品分别向上、向下放置时,白光共焦光谱的测量结果波形整体一致性较好,二者波长一致,拟合振幅偏差为5nm。该测量结果表明,利用白光共焦光谱技术可实现样品内表面低阶轮廓的精确测量。

靶丸内表面轮廓的白光共焦光谱测量技术


靶丸内表面轮廓的白光共焦光谱测量技术

6 正弦调制样品向上时的上表面轮廓测量数据(a)和校准前后的下表面轮廓数据(b)

靶丸内表面轮廓的白光共焦光谱测量技术


靶丸内表面轮廓的白光共焦光谱测量技术

7 正弦调制样品向下时的上表面轮廓测量数据(a)和校准前后的下表面轮廓数据(b)

43测量不确定度分析

利用白光共焦光谱传感器测量靶丸内表面轮廓,其测量不确定度来源主要有靶丸内、外表面的白光共焦光谱仪直接测量误差、轴系的回转误差、装置的重复性测量误差以及校准模型的误差等。上述不确定度分量中,白光共焦光谱传感器的直接测量误差主要来源于光谱传感器的分辨率和线性误差,测量结果表明,本装置所采用的光谱传感器直接测量误差最大为39nm。气浮主轴系回转精度是保证整个系统测量精度的关键因素之一,其回转误差直接叠加到测量结果中。通过测试直径为2mm的标准Cr(BallTech公司,标称球形度偏差为76nm)的圆周轮廓,对模数大于100的圆周轮廓进行滤波并计算其最小二乘圆度,由于最小二乘圆度包括了标准球的圆度误差和轴系的回转误差,可通过和方根公式计算轴系回转精度的大小。实验结果表明,标准球的最小二乘圆度为88nm,由此可得本装置主轴的回转误差约为44nm。对靶丸内表面轮廓进行多次测量,由各测量值最小二乘圆度重复性评价系统的重复测量误差。10次测量结果的最小二乘圆度为:7.1587.1767.2437.1547.0967.1437.1037.1777.1337.155μm,计算可得该测量列的标准偏差,即系统重复性误差为41nm。校准模型的误差主要来源于折射率的近似和光线入射角的近似,数值计算结果表明,折射率近似导致的最大误差约为16nm,光线入射角近似导致的最大误差约为50nm,根据和方根计算公式,可得到校准模型的测量误差为52nm

1是基于白光共焦光谱的靶丸内表面轮廓测量不确定度分量表,根据和方根计算公式可得,白光共焦光谱测量靶丸内表面低阶轮廓(模数<100)的不确定度约为89nm

1 测量不确定度分量表

靶丸内表面轮廓的白光共焦光谱测量技术


5     结论

本文通过分析光线经过靶丸壳层后的传播途径,建立了靶丸内表面轮廓的白光共焦光谱测量校准模型;搭建了基于白光共焦光谱和精密气浮轴系的靶丸内表面轮廓测量实验装置,获得了靶丸内、外表面轮廓曲线。与原子力显微镜比对测试结果表明,白光共焦光谱技术可实现靶丸模数小于100的低阶轮廓的准确测量;不确定度分析结果表明,白光共焦光谱测量靶丸内表面轮廓的不确定度约为90nm。白光共焦光谱技术不仅是精密检测靶丸内表面轮廓的可行技术手段,还可广泛应用于各类透明薄膜材料和器件内表面及厚度的精密测量领域。

论文题目:靶丸内表面轮廓的白光共焦光谱测量技术

作者:唐兴,王琦,马小军,高党忠,王宗伟,孟婕(中国工程物理研究院-激光聚变研究中心)


Case / 相关推荐
2025 - 06 - 23
点击次数: 5
LTP450W 激光位移传感器在自动打磨设备中的应用方案一、方案背景与需求痛点在铸造工件的自动化打磨场景中,粗糙的表面形貌(如毛边、凹凸不平的铸造纹理)对检测传感器提出了特殊要求:传统点光斑传感器易受表面缺陷干扰导致测量偏差,而大距离检测需求又需兼顾精度与实时性。LTP450W 激光位移传感器凭借宽光斑设计、大测量范围及高精度特性,成为适配自动打磨设备的核心检测元件,可实现从表面位置检测到打磨程度...
2025 - 05 - 28
点击次数: 15
一、行业背景:智能手机摄影技术升级催生精密检测需求随着智能手机摄影技术向高像素、超广角、长焦等多元化方向发展,摄像头模组的微型化与精密化程度显著提升。作为摄像头光学元件的核心承载结构,摄像头支架的平面度精度直接影响镜头光轴对准、感光元件贴合等关键工艺,进而决定成像质量的稳定性。传统人工目视检测或接触式测量方法因主观性强、效率低、易损伤工件等缺陷,已难以满足微米级精度检测需求。如何实现非接触式、高精...
2025 - 05 - 14
点击次数: 10
一、引言在锂电池生产中,电极厚度是影响电池性能的关键参数。基片涂覆活性物质后形成的粗糙表面,使用传统点光斑传感器测量时易受表面微观形貌影响,导致数据波动大、测量精度不足。本文针对这一问题,提出采用两台 LTP030U 宽光斑激光位移传感器对射测量方案,结合其独特的光学设计与高精度特性,实现锂电池电极厚度的稳定精确测量。二、应用挑战与传感器选型依据(一)测量难点分析锂电池电极基片涂粉后,表面粗糙度可...
2025 - 05 - 06
点击次数: 18
一、PCB 生产痛点:超薄板叠片检测难在电子制造中,PCB 板厚度仅 0.1-1.6mm,高速传输时极易出现多层重叠,传统检测手段却力不从心:接触式测量:机械探针易压弯薄板,且每秒仅测百次,跟不上产线速度;视觉检测:依赖稳定光源,机台振动(±50μm 级)让图像模糊,漏检率高达 5%。这些问题导致 3%-5% 的废料率,更可能让不良品流入下工序,引发焊接短路等连锁故障,成为产线效率和质量...
2025 - 03 - 22
点击次数: 27
一、传感器选型与技术优势对比颠覆性成本结构传统激光多普勒测振仪价格区间:¥150,000~¥500,000LTP080系列成本:¥11,000~¥15,000(视配置),降低设备投入90%以上维护成本对比:无光学镜片损耗,寿命>50,000小时,年维护费用低于¥500性能参数解析指标LTP080参数传统测振仪典型值采样频率50kHz(全量程)/160kHz(20%量程)1MHz~10MHz线性度&...
2025 - 03 - 19
点击次数: 28
一、项目背景与需求随着智慧交通和道路养护数字化的发展,对路面病害(如裂缝、车辙、坑槽)的高效检测需求日益迫切。传统人工巡检效率低、主观性强,而车载激光雷达方案成本高昂(单套设备超百万元)。因此,某省级公路养护中心采用泓川科技LTP系列传感器,构建低成本、高精度的路面扫描系统,目标如下:全幅覆盖:单次扫描覆盖3.5m标准车道,横向分辨率≤5mm,纵向分辨率≤2mm(车速60km/h时)。抗干扰能力:...
About Us
关于泓川科技
专业从事激光位移传感器,激光焊缝跟踪系统研发及销售的科技公司
中国 · 无锡 · 总部地址:无锡新吴区天山路6号
销售热线:0510-88155119 
图文传真:0510-88152650
Working Time
我们的工作时间
周一至周五:8:00-18:00
周六至周日:9:00-15:00
Shown 企业秀 More
  • 1
    2023 - 03 - 07
    本次应用报告旨在介绍超声波测距传感器在锂电池生产过程中测量卷绕直径的应用情况。首先,本文将介绍超声波测距传感器的基本工作原理和特点,然后详细介绍其在锂电池生产中的应用情况,并对其应用效果进行评估和总结。一、超声波测距传感器的基本工作原理和特点超声波测距传感器是一种通过超声波测量距离的传感器,其测量原理非常简单,就是利用超声波在空气中的传播速度快,而且与环境中的温度、湿度等因素无关的特点。具体来说,超声波测距传感器通过发射超声波信号,当这些信号遇到物体时就会反射回来,传感器通过感受这些反射信号的到达时间,从而计算出物体与传感器之间的距离。超声波测距传感器具有响应速度快、距离测量范围广、测量精度高和使用方便等特点。因此,在工业自动化、机器人、汽车和航空等领域已经广泛应用。二、超声波测距传感器在锂电池生产中的应用锂电池的核心部件是电芯,而电芯的生产过程中就需要进行锂电池卷绕。卷绕的直径大小对于电芯的性能有很大的影响。因此,测量卷绕直径是电芯生产过程中非常重要的环节。传统的测量方法是利用拉尺、卡尺等工具进行物理测量,但是由于电芯内部结构复杂、精度要求高、测量效率低等因素,往往会出现误差较大的情况。超声波测距传感器可以很好地解决这个问题。具体来说,在电芯卷绕时,只需要将超声波测距传感器置于卷绕机上方,然后通过发射超声波信号测量卷绕轴的直径大小即可。由于超声波的反射信号可以穿透物体,因此不会对...
  • 2
    2025 - 01 - 14
    一、引言:解锁工业测量新 “视” 界在工业测量的广袤天地里,精度与可靠性犹如基石,支撑着生产的每一个环节。今天,我们将为您揭开 HC26 系列激光位移传感器的神秘面纱,它宛如一位精准的 “测量大师”,正悄然改变着工业测量的格局。从精密制造到智能检测,HC26 系列凭借其卓越性能,成为众多行业的得力助手。想知道它是如何做到的吗?让我们一同深入探寻。二、HC26 系列:性能优势大揭秘(一)超高集成,小巧灵活HC26 系列采用一体式机身设计,展现出令人惊叹的超高集成度 。其身形小巧玲珑,宛如工业领域的 “灵动精灵”,能够轻松适配各种复杂环境。无论是狭窄的机械内部空间,还是对安装空间要求苛刻的自动化生产线,它都能巧妙融入,为测量工作提供便利。这种紧凑的设计不仅节省了宝贵的安装空间,还简化了安装流程,大大提高了工作效率。(二)智能调光,精准测量光亮自动调节功能是 HC26 系列的一大亮点。它如同一位敏锐的观察者,能够实时感测被测表面的情况,并将激光强度精准控制到最佳状态。在面对不同材质、颜色和粗糙度的被测物体时,该功能确保了激光始终以最适宜的强度照射,从而实现稳定且精准的测量。这一特性不仅提升了测量精度,还拓宽了传感器的应用范围,使其在各种复杂工况下都能应对自如。(三)防护卓越,适应严苛具备 IP67 防护等级的 HC26 系列,犹如一位身披坚固铠甲的勇士,无惧恶劣环境的挑战。在潮湿的环境中...
  • 3
    2020 - 09 - 14
    现如今在很多的行业里面都离不开激光位移传感器的应用,因为这种特殊激光位移传感器特点‍是能够对长度以及方位等来进行高精度的准确测量,而且用起来简便且很耐用所以受到了无数用户们的认可。而面对市场上众多的激光位移传感器品牌用户们究竟该怎么去选择呢?一、根据需要测量的目标结构与材质进行选择激光位移传感器虽然有着强大的测量功能,但是对于测量的目标结构与材质也是有着相应的需求的,因为激光位移传感器的测量过程是需要一个完整三角光路的,如果被测量目标的表面凹入不平就会造成三角光路无法形成,这样的话自然也就无法顺利的得到测量数据了。如果被测量目标的表面吸光这样也是无法形成完整三角光路进而无法完成测量工作的,因此用户们在选择激光位移传感器产品之时应着重考虑到这些问题才行。二、根据参数指标的实际要求进行选择激光位移传感器如今在制造业内有着很多的应用特别是对电子行业更是如此,而在选择这种产品时也应当根据具体所需的参数指标的来进行针对性选择才行。事实上这里所说的参数及指包含的面比较广比如说分辨率还有测量的速率等,因为对零部件生产的要求越是精密那么对它的要求也自然要更高也只有这样才能生产制造出真正的好产品。虽然激光位移传感器功能众多在生产过程当中的重要性是很明显的,但是在选择激光位移传感器的时候还是不能盲目应当遵循着上述这两个方面的原则,只有这样才能在众多的激光位移传感器品牌当中顺利地找到更能够满足自身实际需...
  • 4
    2023 - 08 - 21
    摘要:本报告提出了一种利用高精度激光位移传感器测量物体振动的方案。通过测量被测物的位移量,并确定振动的时间点,可以计算出振动频率和振动模式。相比多普勒测振仪,激光位移传感器具有更低的成本,在低频范围内(1000Hz以下)可以进行振动测量。本方案详细介绍了方案设计、设备选择、实验验证以及成本核算,并通过实验数据和算法验证了方案的可行性和准确性。引言物体振动是许多领域的重要研究对象,包括机械、汽车、航空航天等。传统的多普勒测振仪可以用于高频振动测量,但其成本较高,对于低频振动测量(1000Hz以下)不适用。因此,本方案提出了一种利用高精度激光位移传感器测量物体振动的方案,以满足低频振动测量的需求。方案设计利用高精度激光位移传感器测量物体振动的方案设计如下:2.1 设备选择选择一台高精度激光位移传感器,具备以下特点:高测量精度:具备亚微米级的测量精度,满足振动测量的要求。高响应频率:能够以高速响应的方式进行位移测量,捕捉到物体振动的细微变化。宽测量范围:具备较大的测量范围,适应不同物体振动的需求。2.2 传感器布置与测量原理将激光位移传感器布置在被测物体附近,并对其进行校准和调试。在物体振动过程中,传感器测量物体的位移量。传感器工作原理基于激光光束照射到物体表面,测量光斑的位置随时间的变化,从而获得物体的位移信息。2.3 数据处理与振动频率计算根据传感器测得的位移量数据,通过数据处理和信...
  • 5
    2024 - 01 - 21
    在制造业、航空航天、光学制造等行业中,准确地测量工件表面的平整度和倾斜度对于产品质量、设备性能和工程安全至关重要。为了适应这一需求,本文将详细介绍运用高精度激光位移传感器进行非接触测量工件倾斜度的具体操作步骤、应用领域以及如何通过实例演示其测量原理和效果。首先,测量设备的配置环节。需要准备3到5个高精度激光位移传感器,并配合用于数据分析处理的微机软件。在开始测量之前,传感器需要先行进行标定,以一个已知的标准平面作为参照进行校准,并让所有传感器的数值归零。这一步骤保证了测量过程的准确性,也为后续的数据分析奠定了基础。进行实测时,将待测工件放置在需要测量的表面上。根据物体表面的倾斜情况,每个传感器所显示的数值会出现差距。后续,我们可以通过微机软件读取这些二次数据,进行处理,从而精确地得出倾斜度和平整度等参数。值得注意的是,我们选择3-5个传感器进行测量的原因是,三个传感器可以保证确定一个平面的最少需求。在成本允许的情况下,增加到五个传感器进行多点测量,可以有效提高测量的准确性和稳定性。另外,在使用过程中,对传感器的同步性有很高的要求,尤其是采样速度。最好达到5k以上,以便实时调整待测表面,使得调整结果更精准,并且满足实时性的需求。当然,高精度激光位移传感器的应用领域非常广泛。在制造业,尤其是汽车制造业和机械加工行业中,通过测量工件表面的倾斜度和平整度,可以有效进行质量控制和生产过程优化...
  • 6
    2025 - 03 - 14
    泓川科技LTP系列激光位移传感器全面匹配您的技术需求尊敬的客户: 感谢您对泓川科技产品的关注!针对您提出的高精度激光位移传感器需求,我司LTP系列产品凭借卓越性能与灵活定制能力,可完全满足您的技术要求,具体对应如下:一、核心参数精准匹配需求项LTP400(200mm)LTP450(500mm)量程200mm(±100mm)500mm(±250mm)线性度±0.03%F.S.(优于要求)±0.05%F.S.(达标)重复精度(静态)±0.03%F.S.±0.05%F.S.采样频率50kHz全量程(达标)50kHz全量程(达标)输出信号-10V~10V(选配模块)-10V~10V(选配模块)技术优势说明:超高采样频率:LTP400/LTP450全量程下支持50kHz采样(48kHz),且可缩短量程至20%时提升至160kHz,满足高速动态测量需求(如振动检测、高速产线)。响应时间最低6.25μs(通过参数表*6可选配置),确保实时数据捕获能力。纳米级标定精度:基于纳米级激光干涉仪标定技术(参数表*3),线性度与重复性指标通过严格验证,确保长期稳定性。多输出模式兼容:支持**-10V~10V模拟输出**(需选配模块)、4~20mA电流输出、RS485及TCP/IP通讯,适配各类工业控制系统。48kHz、±0.05%线性度...
  • 7
    2025 - 01 - 14
    四、与其他品牌光谱共焦传感器对比4.1 性能差异对比4.1.1 精度、稳定性等核心指标对比在精度方面,基恩士光谱共焦传感器展现出卓越的性能。以其超高精度型CL - L(P)015为例,直线性误差可达±0.49µm,这一精度在众多测量任务中都能实现极为精确的测量。相比之下,德国某知名品牌的同类型传感器,其精度虽也能达到较高水平,但在一些对精度要求极高的应用场景中,仍稍逊于基恩士。在测量高精度光学镜片的曲率时,基恩士传感器能够更精确地测量出镜片的微小曲率变化,确保镜片的光学性能符合严格标准。在稳定性上,基恩士光谱共焦传感器同样表现出色。其采用了先进的光学设计和稳定的机械结构,能够有效减少因环境因素和机械振动对测量结果的影响。即使在生产车间等振动较大的环境中,也能保持稳定的测量输出。而法国某品牌的传感器,在稳定性方面则存在一定的不足。在受到轻微振动时,测量结果可能会出现波动,影响测量的准确性和可靠性。在精密机械加工过程中,法国品牌的传感器可能会因为机床的振动而导致测量数据不稳定,需要频繁进行校准和调整,而基恩士传感器则能保持稳定的测量,为生产过程提供可靠的数据支持。响应速度也是衡量光谱共焦传感器性能的重要指标。基恩士光谱共焦传感器在这方面具备快速响应的优势,能够快速捕捉被测物体的位置变化。在对高速运动的物体进行测量时,能够及时反馈物体的位置信息,确保测量的实时性。相比...
  • 8
    2023 - 03 - 08
    一、概述随着现代工业的不断发展和进步,精度对于工业生产过程中所需要的各种测试测量技术要求也越来越高。而激光测量技术则是在这种背景下得以应用的,这是利用激光作为工具进行测量分析的一种方法。激光测量可以分为非接触式和接触式两种方式。二、非接触激光测量非接触激光测量技术是指激光束在不与被测物体表面发生接触的情况下,对被测物体进行测量操作。它主要利用激光的高亮度、高单色性、高方向性等特点,将测量对象和激光之间的无线电辐射或光辐射联系起来,通过对测量信号的处理,来获得被测物体的相关参数。可以广泛应用于自动化制造、工业检测、生命科学、质量控制检测等领域。2.1 非接触式测量优点(1)不会对被测物体造成损伤。激光测量技术是无损伤性的,测量过程中不会对被测物体造成任何损伤,也不会影响被测物体的结构、形状和性能。(2)精度高。非接触激光测量技术具有高精密性、高灵敏性和高分辨力,能够以亚微米级的精度获得被测物体的相关参数,减小了人为误差和测量结果的不确定性。(3)高速度。非接触激光测量技术具有快速高效的特点,对于一些需要进行即时在线检测或高频率的质检要求,非接触激光测量技术具有独特的优势。(4)测量安全。由于非接触激光测量技术可以在安全距离的范围内进行,因此保障了测量人员的身体健康和安全。2.2 非接触式测量缺点(1)不适用于暗面测量。非接触激光测量技术无法对于有光线被挡住的部位进行测量,因此适用于透...
Message 最新动态
泓川科技 LTP 系列激光位移传感器全国产化制造流程细节全披露 2025 - 06 - 22 一、国产化背景与战略意义在全球供应链竞争加剧的背景下,激光位移传感器作为工业自动化核心测量部件,其国产化生产对打破技术垄断、保障产业链安全具有重要战略意义。泓川科技 LTP 系列依托国内完整的光学、电子、机械产业链体系,实现了从核心零部件到整机制造的全流程国产化,彻底解决了接口卡脖子问题,产品精度与稳定性达到国际先进水平,同时具备更强的成本竞争力与定制化服务能力。二、核心部件全国产化组成体系(一)光学系统组件激光发射单元激光二极管:采用深圳镭尔特光电 655nm 红光 PLD650 系列(功率 0.5-4.9mW)及埃赛力达 905nm 红外三腔脉冲激光二极管,支持准直快轴压缩技术,波长稳定性 ±0.1nm,满足工业级高稳定性需求。准直透镜:选用杭州秋籁科技 KEWLAB CL-UV 系列,表面粗糙度 光学滤光片:深圳激埃特光电定制窄带滤光片,红外截止率 99.9%,有效消除环境光干扰。激光接收单元光电探测器:上海欧光电子代理 OTRON 品牌 PSD 位置敏感探测器,分辨率达 0.03μm(如 LTPD08 型号),北京中教金源量子点探测器正在实现自主替代。聚焦透镜组:福州合创光电高精度分光棱镜,偏振消光比 1000:1,配合广州明毅电子阳极氧化支架,确保光路同轴度≤5μm。(二)电子电路组件信号处理模块微处理器:龙芯中科 3A5000 工业级芯片,支持 - 40℃...
有没有量程1米,测量精度误差1mm的国产激光位移传感器,频率5Khz以上? 2025 - 06 - 19 有!LTM 系列三款国产激光位移传感器满足需求在工业检测领域,量程 1 米、精度误差 1mm、频率 5KHz 以上的激光位移传感器是高端测量的刚需,而国产传感器常因精度或频率不足被进口品牌垄断。无锡泓川科技的 LTM2-800W、LTM3-800W、LTM5-800W 三款产品,不仅全面覆盖上述指标,更以进口品牌一半的成本优势,成为国产替代的优选方案。以下从性能参数、优劣分析、场景适配及成本对比展开详细介绍。一、核心性能参数对比型号LTM2-800WLTM3-800WLTM5-800W参考距离800mm800mm800mm测量范围±500mm(总量程 1000mm)±500mm(总量程 1000mm)±500mm(总量程 1000mm)光斑尺寸450×6000μm450×6000μm450×6000μm重复精度45μm45μm45μm线性误差采样频率5KHz10KHz31.25KHz工业接口485 串口 / 模拟信号(二选一)以太网 / 485 串口 / 模拟信号以太网 / 485 串口 / 模拟信号光源660nm,Max.50mW660nm,Max.50mW660nm,Max.50mW防护等级IP67IP67IP67工作温度0~+50℃0~+50℃0~+50℃功耗约 2.0W约 2.0W约 2.0W二、产品优势分析(一)...
泓川科技HC26激光位移传感器:高性价国产比替代奥泰斯CD33的优选方案 2025 - 06 - 09 在工业精密测量领域,无锡泓川科技的HC26系列激光位移传感器凭借出色的性能参数与显著的成本优势,成为替代奥泰斯CD33系列的高竞争力选择。以下从核心性能、特殊应用适配性及成本三方面进行对比分析:一、核心性能参数对标(HC26 vs CD33)参数泓川HC26系列奥泰斯CD33 (行业标准)HC26优势重复精度2μm (30mm款) → 50μm (195mm款)通常1~3μm (高端款)接近主流精度线性度±0.1%F.S.±0.05%~0.1%F.S.达到同级水平响应时间最快333μs (多档可调)通常500μs~1ms速度更快输出接口RS485(Modbus RTU)+模拟量(4-20mA/0-10V)类似接口组合同等兼容性防护等级IP67 (防尘防水)IP67/IP65同等工业防护温度特性0.05%F.S/℃0.03~0.05%F.S/℃稳定性接近注:HC26提供4种基准距离型号(30/50/85/195mm),覆盖小量程高精度(±4mm@30mm)至大量程(±99.98mm@195mm)场景,满足CD33主流应用范围。二、核心替代优势:全系支持正反射安装HC26系列所有型号均内置正反射光路设计,解决CD33在特殊材质检测中的痛点:镜面材料:通过正反射接收强光信号,避免漫反射信号微弱导致的测量失效。透明材质(如玻璃、薄...
Copyright ©2005 - 2013 无锡泓川科技有限公司

1

犀牛云提供企业云服务
Our Link
X
3

SKYPE 设置

4

阿里旺旺设置

等待加载动态数据...

等待加载动态数据...

5

电话号码管理

  • 0510-88155119
6

二维码管理

等待加载动态数据...

等待加载动态数据...

展开