服务热线: 0510-88155119
13301510675@163.com
Language

激光测量技术在(ADAS)驾驶辅助系统的应用案例(三)

日期: 2025-01-16
浏览次数: 80
发表于:
来自 泓川科技
发表于: 2025-01-16
浏览次数: 80

七、声纳传感器应用案例深析

7.1 外壳相关检测

7.1.1 外壳的外观检测

在声纳传感器的实际应用中,对外壳的外观检测是确保产品质量的关键步骤。在进行外壳外观检测时,声纳传感器并非仅依赖传统的图像明暗判断方式,而是借助先进的技术,利用 3D 形状的图像来实现精准的形状变化识别。

其工作过程如下:传感器发射特定频率和模式的声波,这些声波以特定的角度和范围向外传播,当遇到外壳表面时,会根据外壳表面的形状、材质以及纹理等特征产生不同的反射模式。反射回来的声波被传感器的接收装置高效捕捉,然后转化为电信号。系统对这些电信号进行复杂的处理和分析,通过独特的算法将其转换为详细的 3D 形状数据。在这个过程中,系统会对 3D 形状数据进行精确的分析和比对,与预先设定的标准外壳模型进行细致的匹配。一旦发现外壳的形状与标准模型存在差异,系统会立即识别出这些变化,从而确定外壳是否存在缺陷或不符合规格的情况。

激光测量技术在(ADAS)驾驶辅助系统的应用案例(三)

这种利用 3D 形状图像进行外观检测的方式具有诸多显著优势。它极大地提高了检测的准确性和可靠性。传统的基于图像明暗判断的方法,容易受到环境光、外壳表面光泽度以及颜色等多种因素的干扰,导致检测结果出现偏差。而 3D 形状图像检测技术能够直接获取外壳的真实形状信息,不受这些外部因素的影响,从而能够更准确地发现外壳表面的细微瑕疵,如划痕、凹陷、凸起等,以及形状上的偏差。该技术具有较强的稳定性。无论环境光如何变化,或者外壳处于何种复杂的工作环境中,它都能稳定地进行检测,确保检测结果的一致性和可靠性。这对于在不同生产环境和使用场景下保证产品质量的稳定性具有重要意义,有效避免了因检测误差而导致的次品流入市场,提高了产品的整体质量和品牌信誉 。

 

7.1.2 外壳与屏蔽壳间隙测量

在电子设备中,外壳与屏蔽壳之间的间隙大小对于设备的性能,尤其是电磁屏蔽性能、散热性能以及防护性能等方面有着至关重要的影响。如果间隙过大,可能会导致电磁干扰泄漏,影响设备的正常运行,同时也会降低设备的防护等级,使其容易受到外界环境因素的侵蚀。而间隙过小,则可能在装配过程中出现困难,甚至对设备内部的零部件造成损坏。

2D/3D 线激光测量仪在外壳与屏蔽壳间隙测量中发挥着关键作用。该测量仪搭载了 3200points/profile 的超高精细 CMOS 传感器,这一先进的传感器具备卓越的测量能力。在测量过程中,测量仪发射出线激光束,这些激光束以极细的光斑和高精度的定位,对外壳与屏蔽壳之间的间隙进行扫描。激光束在照射到间隙表面时,会根据间隙的宽窄和形状产生不同的反射和折射情况。超高精细 CMOS 传感器能够精确地捕捉到这些细微的变化,将反射光的信息转化为电信号,并传输给测量仪的控制系统。

激光测量技术在(ADAS)驾驶辅助系统的应用案例(三)

控制系统通过内置的先进算法,对这些电信号进行深入分析和处理。它能够根据激光束的发射角度、反射时间以及传感器的位置信息,精确计算出间隙各个点的位置和尺寸信息,从而构建出间隙的精确三维模型。通过对这个三维模型的分析,测量仪可以准确得出外壳与屏蔽壳之间的间隙大小,精度可达到非常高的水平,能够满足对间隙测量精度要求极高的应用场景。

这种对狭小间隙进行高精度测量的技术在实际应用中具有重要意义。在电子设备制造行业,特别是对于那些对电磁兼容性和防护性能要求严格的产品,如通信设备、航空航天电子设备等,精确控制外壳与屏蔽壳之间的间隙是确保产品性能和可靠性的关键。通过使用 2D/3D 线激光测量仪进行精确测量,生产企业能够在生产过程中及时发现间隙不符合要求的产品,采取相应的调整和改进措施,从而保证产品的质量和性能,提高生产效率,降低生产成本 。

 

7.2 部件安装相关测量

7.2.1 部件安装高度差测量

在设备的组装过程中,部件安装的高度差直接关系到整个设备的性能和稳定性。对于声纳传感器相关设备而言,部件安装高度差的精准测量尤为重要。在测量安装后的高度差时,2D/3D 线激光测量仪 LJ-X8000 系列发挥了重要作用。

该测量仪通过扫描目标物并将其识别为 3D 形状,实现了一次检测多个位置测量点的功能。具体操作过程如下:测量仪发射出线激光束,这些激光束以特定的角度和密度覆盖目标部件的表面。当激光束照射到部件表面时,会根据部件表面的高度差异产生不同的反射路径和时间延迟。测量仪的探测器能够快速、准确地捕捉到这些反射光的变化信息,并将其转化为大量的空间坐标数据。通过对这些海量的空间坐标数据进行复杂的算法处理和分析,测量仪构建出部件的精确 3D 模型。

在这个 3D 模型中,每个测量点的高度信息都被准确记录。通过对不同部件上对应测量点的高度数据进行对比和计算,测量仪可以精确得出部件安装后的高度差。这种测量方法具有高效、准确的特点。相较于传统的逐个测量点进行测量的方式,它能够一次性获取多个测量点的信息,大大提高了测量效率,减少了测量时间和工作量。其测量精度非常高,能够检测到极其微小的高度差,为设备的精确装配提供了可靠的数据支持。

部件安装高度差的精准测量对装配质量有着深远的影响。如果部件安装高度差不符合设计要求,可能会导致设备在运行过程中出现一系列问题。例如,在机械传动部件的安装中,高度差可能会导致部件之间的配合不良,增加摩擦和磨损,降低设备的使用寿命,甚至可能引发设备故障,影响生产的正常进行。在电子设备中,部件安装高度差可能会影响电路连接的稳定性,导致信号传输不畅、短路等问题,严重影响设备的电气性能。通过精确测量部件安装高度差,装配人员可以及时发现并调整安装过程中的偏差,确保每个部件都安装在正确的位置,从而提高装配质量,保障设备的正常运行,提升产品的可靠性和稳定性 。

 

7.2.2 安装传感器时车身角度测量

在车身安装声纳传感器时,准确测量车身位置及角度是确保传感器能够正常工作并发挥最佳性能的关键环节。2D/3D 线激光测量仪 LJ-X8000 系列在这一测量任务中展现出了独特的优势。

该测量仪具有最大 720mm 的广泛测量范围,这使得它能够轻松检测车身等大型目标物。在测量车身角度时,测量仪通过发射线激光束对车身进行全面扫描。激光束从不同角度照射到车身上,根据车身的形状和位置产生不同的反射模式。测量仪的传感器迅速捕捉这些反射光,并将其转化为详细的空间坐标数据。通过对这些空间坐标数据的分析,测量仪可以构建出车身的精确 3D 模型。

在这个 3D 模型的基础上,测量仪利用先进的算法,通过对比车身特定部位的坐标信息与预设的标准值,能够准确计算出车身的角度。例如,通过测量车身底部几个关键支撑点的高度差以及它们之间的相对位置关系,结合测量仪内部的几何计算模型,就可以精确得出车身的倾斜角度。

这一测量在传感器安装中具有重要的意义。声纳传感器的工作效果高度依赖于其安装角度的准确性。如果车身角度测量不准确,导致传感器安装倾斜,那么传感器发射的声波信号可能无法按照预期的方向传播和接收,从而影响对周围环境的探测精度。在汽车行驶过程中,可能会出现对障碍物的误判、漏判等情况,严重威胁行车安全。准确测量车身角度能够确保传感器安装在正确的位置和角度上,使得传感器发射的声波能够均匀、有效地覆盖周围区域,提高传感器对目标物体的检测精度和可靠性,为车辆的安全行驶提供有力保障 。

 

八、毫米波雷达相关应用案例探讨

8.1 天线元件平坦度测量

8.1.1 测量流程与要点

在毫米波雷达的制造过程中,对天线元件平坦度的测量至关重要。采用 2D/3D 线激光测量仪 LJ-X8000 系列进行测量时,首先需将测量仪安装在合适的位置,确保其发射的线激光能够全面覆盖天线元件表面。测量仪的支持宽度达最大 720mm ,可对天线元件进行大范围的扫描。

测量过程中,线激光以特定的角度和间距照射到天线元件上,由于元件表面的平坦度差异,激光的反射情况会有所不同。测量仪搭载的高灵敏度探测器迅速捕捉这些反射光的变化,并将其转化为电信号。通过对电信号的精确分析和处理,测量仪能够构建出天线元件表面的三维轮廓模型。在此模型的基础上,测量仪可以同时测量多个任意指定点的高度信息,通过对比这些点的高度数据与理想平坦状态下的标准值,就能准确计算出天线元件的平坦度偏差 。

需要重点关注的要点包括测量仪的安装精度,必须保证其发射的激光能够垂直且均匀地照射到天线元件表面,以避免因照射角度偏差导致测量误差。测量环境的稳定性也十分关键,应尽量减少环境振动、温度波动等因素的干扰,确保测量过程的稳定性。


 激光测量技术在(ADAS)驾驶辅助系统的应用案例(三)

8.1.2 对雷达性能的影响

天线元件的平坦度对毫米波雷达的信号发射与接收性能有着深远的影响。如果天线元件平坦度不佳,存在凹凸不平的情况,在信号发射时,毫米波将无法按照预期的方向和强度均匀地辐射出去。这会导致信号在空间中的分布不均匀,某些方向上的信号强度减弱,从而缩小雷达的有效探测范围。

在信号接收方面,不平坦的天线元件可能会使接收到的回波信号发生散射和畸变,降低信号的质量和准确性。这将严重影响雷达对目标物体的检测精度,导致对目标的距离、速度和角度测量出现偏差,甚至可能出现漏检或误检的情况。对于自动驾驶系统而言,这种不准确的检测结果可能会引发严重的安全事故。确保天线元件具有良好的平坦度,是保证毫米波雷达性能稳定、可靠的关键因素,对于提升自动驾驶的安全性和可靠性具有不可忽视的重要意义 。

 

8.2 端子相关测量

8.2.1 端子的高度与节距检测

在毫米波雷达的电路连接中,端子的高度与节距的准确性直接关系到电路的稳定性和信号传输的质量。使用 2D/3D 线激光测量仪 LJ-X8000 系列进行端子的高度与节距检测时,测量仪通过发射线激光束对端子进行扫描。

激光束在接触到端子表面后,根据端子的形状和位置产生不同的反射模式。测量仪的传感器快速捕捉这些反射光,并将其转化为详细的空间坐标数据。通过对这些空间坐标数据的深入分析,测量仪能够精确测量出端子的高度以及相邻端子之间的节距。测量仪搭载的滤波器能够在保持目标物形状的状态下,有效消除反射光偏差等导致的干扰成分,确保测量结果的准确性和稳定性 。

准确的端子高度与节距对于电路连接意义重大。如果端子高度不一致,可能会导致在与其他电路元件连接时,接触不良,从而增加电阻,影响电流的传输,甚至可能引发局部过热,损坏电路元件。节距不准确则可能导致在电路板装配过程中,端子无法与对应的插孔正确匹配,造成电路连接错误,使毫米波雷达无法正常工作。精确测量端子的高度与节距,能够确保毫米波雷达的电路连接稳定可靠,保障信号的高效传输,为雷达的正常运行提供坚实的基础 。

 

8.2.2 安装时车身角度测量

在将毫米波雷达安装到车身上时,精确测量车身角度是确保雷达能够准确感知周围环境信息的关键步骤。2D/3D 线激光测量仪 LJ-X8000 系列凭借其最大 720mm 的广泛测量范围,能够轻松检测车身等大型目标物。

测量过程中,测量仪发射线激光束对车身进行全方位扫描。激光束从多个角度照射到车身上,根据车身的形状和位置产生不同的反射路径和时间延迟。测量仪的探测器捕捉这些反射光的变化信息,并将其转化为大量的空间坐标数据。通过对这些空间坐标数据的复杂运算和分析,测量仪构建出车身的精确 3D 模型。在这个 3D 模型的基础上,通过对比车身特定部位的坐标信息与预设的标准值,测量仪能够准确计算出车身的角度 。

激光测量技术在(ADAS)驾驶辅助系统的应用案例(三)

这一测量对于毫米波雷达的安装和使用至关重要。毫米波雷达的工作原理依赖于其能够准确地发射和接收毫米波信号,以探测周围环境中的目标物体。如果车身角度测量不准确,导致雷达安装倾斜,那么雷达发射的毫米波信号将无法按照预期的方向覆盖周围区域,接收回波信号的角度也会发生偏差。这将严重影响雷达对目标物体的检测精度和可靠性,可能导致对障碍物的误判、漏判,从而给行车安全带来巨大隐患。准确测量车身角度,能够确保毫米波雷达安装在正确的位置和角度上,使其能够充分发挥性能,为车辆的安全行驶提供可靠的保障 。

 

九、结论与展望

9.1 研究总结

本报告深入剖析了 ADAS 相关工具在汽车制造及相关领域的丰富应用案例。车载相机凭借 3D 图像检测技术,在底部填充胶涂抹高度测量、镜片高度及缝隙测量等方面,实现了高精度检测,显著提升了产品质量与可靠性 。2D/3D 线激光测量仪在粘合剂体积测量、部件高度与位置检测等多个环节发挥关键作用,其配备的超高灵敏度 CMOS 及先进算法,使其能够适应复杂的测量环境,准确获取各类数据,为生产过程中的质量控制提供了有力支持 。

彩色激光同轴位移计和干涉式同轴 3D 位移测量仪在镜面测量、相机模块测量等方面展现出独特优势,前者基于同轴测量和彩色共焦方式,能够精准检测镜面的倾斜及运动状态;后者利用白光干涉原理,实现了对镜面平坦度和密封材料高度的高精度测量,满足了相关行业对高精度测量的严格要求 。

超高速 / 高精度 CMOS 激光位移传感器在压电元件振动和平面度测量中表现卓越,其超高速采样周期和先进的测量方式,能够准确捕捉压电元件的细微变化,为电子设备的性能优化提供了重要数据 。声纳传感器在外壳外观检测、间隙测量以及部件安装高度差和车身角度测量等方面,通过采用 3D 形状图像识别等技术,提高了检测的准确性和稳定性,保障了设备的装配质量和性能 。毫米波雷达相关的天线元件平坦度测量和端子测量等应用,确保了毫米波雷达的信号发射与接收性能,以及电路连接的稳定性,对于提升自动驾驶的安全性和可靠性至关重要 。

这些 ADAS 相关工具的应用,极大地推动了汽车制造行业的发展。它们提高了生产过程中的检测精度和效率,有效减少了次品率,降低了生产成本。通过精确测量和严格质量控制,提升了汽车及相关零部件的性能和可靠性,为 ADAS 系统的稳定运行提供了坚实基础,进而推动了整个汽车行业向智能化、安全化方向迈进 。

 

9.2 未来发展趋势展望

基于当前的应用案例,ADAS 相关工具未来将朝着更高精度、更智能化以及多功能集成的方向发展。在精度提升方面,随着科技的不断进步,传感器的分辨率和测量精度将进一步提高。例如,激光测量技术可能会实现更高的测量频率和更细微的精度控制,能够检测到更小的尺寸变化和更微弱的物理量变化,从而满足汽车制造等行业对产品质量日益严苛的要求 。

智能化发展趋势也将愈发明显。ADAS 相关工具将具备更强的数据分析和处理能力,能够自动识别和诊断测量数据中的异常情况,并根据预设的规则和算法进行智能决策。例如,在生产线上,测量工具可以实时分析测量数据,一旦发现产品参数超出允许范围,立即自动发出警报,并提供相应的调整建议,实现生产过程的自动化和智能化控制 。

多功能集成是未来的另一个重要发展方向。不同类型的测量工具可能会集成在一起,形成综合性的测量系统。例如,将车载相机、激光测量仪和声纳传感器等集成到一个设备中,使其能够同时完成多种测量任务,不仅可以减少设备的占用空间,还能提高测量效率和数据的关联性。这种多功能集成的测量系统将更好地适应复杂的生产环境和多样化的测量需求,为汽车制造及相关行业的发展提供更全面、更便捷的解决方案 。

随着 ADAS 技术在智能交通领域的应用不断拓展,相关工具的应用场景也将更加广泛。除了汽车制造领域,这些工具还可能在智能交通基础设施建设、物流运输车辆监控等方面发挥重要作用,为构建更加智能、安全、高效的交通系统提供技术支持 。

 


News / 推荐阅读 +More
2025 - 09 - 05
点击次数: 12
高精度测量传感器全系列:赋能精密制造,适配多元检测需求聚焦半导体、光学膜、机械加工等领域的精密检测核心痛点,我们推出全系列高性能测量传感器,覆盖 “测厚、对焦、位移” 三大核心应用场景,以 “高精准、高速度、高适配” 为设计核心,为您的工艺控制与质量检测提供可靠技术支撑。以下为各产品系列的详细介绍:1.LTS-IR 红外干涉测厚传感器:半导体材料测厚专属核心用途:专为硅、碳化硅、砷化镓等半导体材料设计,精准实现晶圆等器件的厚度测量。性能优点:精度卓越:±0.1μm 线性精度 + 2nm 重复精度,确保测量数据稳定可靠;量程适配:覆盖 10μm2mm 测厚范围,满足多数半导体材料检测需求;高效高速:40kHz 采样速度,快速捕捉厚度数据,适配在线检测节奏;灵活适配:宽范围工作距离设计,可灵活匹配不同规格的检测设备与场景。2. 分体式对焦传感器:半导体 / 面板缺陷检测的 “高速对焦...
2025 - 09 - 02
点击次数: 30
泓川科技激光位移传感器产品技术报告尊敬的客户: 感谢您对泓川科技激光位移传感器产品的关注与信任。为帮助您全面了解我司产品,现将激光位移传感器相关技术信息从参数指标、设计原理、结构设计等八大核心维度进行详细说明,为您的选型、使用及维护提供专业参考。一、参数指标我司激光位移传感器涵盖 LTP400 系列与 LTP450 系列,各型号核心参数经纳米级高精度激光干涉仪标定验证,确保数据精准可靠,具体参数如下表所示:表 1:LTP400EA参数表参数类别具体参数LTP400EA备注基础测量参数测量中心距离400mm以量程中心位置计算(*1)量程200mm-重复精度(静态)3μm测量标准白色陶瓷样件,50kHz 无平均,取 65536 组数据均方根偏差(*2)线性度±0.03%F.S.(F.S.=200mm)采用纳米级激光干涉仪标定(*3)光源与光斑光源类型-激光功率可定制,部分型号提供 4...
2025 - 08 - 30
点击次数: 14
泓川科技发布 LT-CP 系列 ETHERCAT 总线高光谱共焦控制器,32KHz 高速采样引领工业高精度测量革新近日,工业高精度测量领域迎来技术突破 —— 泓川科技正式推出LT-CP 系列 ETHERCAT 总线高光谱共焦传感器控制器(含单通道 LT-CPS、双通道 LT-CPD、四通道 LT-CPF 三款型号,含普通光源与高亮激光光源版本)。该系列产品以 “32KHz 高速采样” 与 “ETHERCAT 工业总线” 为核心亮点,填补了行业内 “高频响应 + 实时协同” 兼具的技术空白,为新能源、半导体、汽车制造等高端领域的动态高精度测量需求提供了全新解决方案。一、核心突破:32KHz 高速采样,破解 “多通道降速” 行业痛点光谱共焦技术的核心竞争力在于 “高精度” 与 “响应速度” 的平衡,而 LT-CP 系列在速度维度实现了关键突破 ——单通道模式下最高采样频率达 32KHz,意味着...
2025 - 08 - 12
点击次数: 32
在半导体芯片制造、精密电子组装等高端工业场景中,一个棘手的矛盾始终存在:一方面,设备内部空间日益紧凑,毫米级的安装高度都可能成为 “禁区”;另一方面,随着产品结构复杂化,对测量量程的需求不断提升,5mm 以上的大量程检测已成为常态。如何在狭小空间内实现大量程精密测量?无锡泓川科技给出了突破性答案 ——光学转折镜,以创新设计让光谱共焦传感器的测量方向 “直角转向”,既节省安装空间,又兼容大量程需求,重新定义精密测量的空间可能性。传统方案的痛点:空间与量程难以两全在精密测量领域,侧出光传感器曾是狭小空间的 “救星”。泓川科技旗下 LTCR 系列作为 90° 侧向出光型号,凭借紧凑设计广泛应用于深孔、内壁等特征测量。但受限于结构设计,其量程多集中在 2.5mm 以内(如 LTCR4000 量程为 ±2mm),难以满足半导体晶圆厚度、大型精密构件高度差等大量程场景的需求。若选择...
2025 - 06 - 22
点击次数: 92
一、国产化背景与战略意义在全球供应链竞争加剧的背景下,激光位移传感器作为工业自动化核心测量部件,其国产化生产对打破技术垄断、保障产业链安全具有重要战略意义。泓川科技 LTP 系列依托国内完整的光学、电子、机械产业链体系,实现了从核心零部件到整机制造的全流程国产化,彻底解决了接口卡脖子问题,产品精度与稳定性达到国际先进水平,同时具备更强的成本竞争力与定制化服务能力。二、核心部件全国产化组成体系(一)光学系统组件激光发射单元激光二极管:采用深圳镭尔特光电 655nm 红光 PLD650 系列(功率 0.5-4.9mW)及埃赛力达 905nm 红外三腔脉冲激光二极管,支持准直快轴压缩技术,波长稳定性 ±0.1nm,满足工业级高稳定性需求。准直透镜:选用杭州秋籁科技 KEWLAB CL-UV 系列,表面粗糙度 光学滤光片:深圳激埃特光电定制窄带滤光片,红外截止率 99.9%,有效消除环...
About Us
关于泓川科技
专业从事激光位移传感器,激光焊缝跟踪系统研发及销售的科技公司
中国 · 无锡 · 总部地址:无锡新吴区天山路6号
销售热线:0510-88155119 
图文传真:0510-88152650
Working Time
我们的工作时间
周一至周五:8:00-18:00
周六至周日:9:00-15:00
Shown 企业秀 More
  • 1
    2023 - 03 - 09
    激光位移传感器被广泛应用于各种领域中。其中一个很有用的应用是测量薄膜厚度。这种传感器可以在离表面很近的距离下进行高精度测量,因此非常适合这种应用。本文将介绍激光位移传感器如何用于测量薄膜厚度,包括测量方法、测量原理和市场应用。一、测量方法测量薄膜厚度的基本思路是利用激光位移传感器测量薄膜前后表面的距离差,然后通过几何公式计算出薄膜厚度。在实际操作中,测量方法大致可分为以下几种:1. 手持式测量手持式测量通常用于快速的现场检测。用户只需要将激光位移传感器靠近待测表面,然后通过读取显示屏上的数值判断薄膜厚度是否符合要求。这种方法不需要复杂的设备和步骤,非常易于使用。但是由于人手的震动和误差等因素,手持式测量的精度相对较低,只适用于需求不是特别高的场合。2. 自动化在线测量自动化在线测量一般用于工业生产线上的质量控制。这种方法需要将激光位移传感器与自动化设备相连接,将测量数据传递给计算机进行分析。在这种情况下,测量过程可以完全自动化,精度也可以得到保证。但是相对于手持式测量来说,这种方法需要的设备和技术要求更高,成本也更高。3. 显微镜下测量显微镜下测量常用于对细小薄膜厚度的测量。在这种情况下,用户需要将激光位移传感器与显微镜相结合进行测量。由于显微镜的存在,可以大大增强测量精度。但是相对于其他两种方法,这种方法需要的设备更多,并且技巧要求也更高。二、测量原理激光位移传感器利用的是激光三...
  • 2
    2025 - 01 - 14
    四、光学传感器应用对薄膜涂布生产的影响4.1 提升生产效率4.1.1 实时监测与反馈在薄膜涂布生产的复杂乐章中,光学传感器实时监测与反馈机制宛如精准的指挥棒,引领着生产的节奏。凭借其卓越的高速数据采集能力,光学传感器能够如同闪电般迅速捕捉涂布过程中的关键参数变化。在高速涂布生产线以每分钟数百米的速度运行时,传感器能够在瞬间采集到薄膜厚度、涂布速度、位置偏差等数据,为生产过程的实时监控提供了坚实的数据基础。这些采集到的数据如同及时的情报,被迅速传输至控制系统。控制系统则如同智慧的大脑,对这些数据进行深入分析。一旦发现参数偏离预设的理想范围,控制系统会立即发出指令,如同指挥官下达作战命令,对涂布设备的相关参数进行精准调整。当检测到薄膜厚度略微超出标准时,控制系统会迅速调整涂布头的压力,使涂布量精确减少,确保薄膜厚度回归正常范围。这种实时监测与反馈机制的存在,使得生产过程能够始终保持在最佳状态。它避免了因参数失控而导致的生产中断和产品质量问题,如同为生产线安装了一个智能的 “稳定器”。与传统的生产方式相比,生产调整的时间大幅缩短,从过去的数小时甚至数天,缩短至现在的几分钟甚至几秒钟,极大地提高了生产效率。4.1.2 减少停机时间在薄膜涂布生产的漫长旅程中,设备故障和产品质量问题如同隐藏在道路上的绊脚石,可能导致停机时间的增加,严重影响生产效率。而光学传感器的实时监测功能,就像一位警惕的卫...
  • 3
    2023 - 08 - 21
    摘要:基膜厚度是许多工业领域中重要的参数,特别是在薄膜涂覆和半导体制造等领域。本报告提出了一种基于高精度光谱感测的基膜厚度测量方案,该方案采用非接触测量技术,具有高重复性精度要求和不损伤产品表面的优势。通过详细的方案设计、设备选择和实验验证,展示了如何实现基膜厚度的准确测量,并最终提高生产效率。引言基膜厚度的精确测量对于许多行业来说至关重要。传统测量方法中的接触式测量存在损伤产品表面和对射测量不准确的问题。相比之下,高精度光谱感测技术具有非接触、高重复性和高精度的优势,因此成为了基膜厚度测量的理想方案。方案设计基于高精度光谱感测的基膜厚度测量方案设计如下:2.1 设备选择选择一台高精度光谱感测仪器,具备以下特点:微米级或亚微米级分辨率:满足对基膜厚度的高精度要求。宽波长范围:覆盖整个感兴趣的波长范围。快速采集速度:能够快速获取数据,提高生产效率。稳定性和重复性好:确保测量结果的准确性和可靠性。2.2 光谱感测技术采用反射式光谱感测技术,原理如下:在感测仪器中,发射一个宽光谱的光源,照射到待测样品表面。根据不同厚度的基膜对光的反射率不同,形成一个光谱反射率图像。通过对反射率图像的分析和处理,可以确定基膜的厚度。2.3 实验设计设计实验验证基膜厚度测量方案的准确性和重复性。选择一系列已知厚度的基膜作为标准样品。使用高精度光谱感测仪器对标准样品进行测量,并记录测量结果。重复多次测量,并计...
  • 4
    2023 - 12 - 23
    摘要:圆筒内壁的检测在工业生产中具有重要意义,传统方法存在诸多问题。本文介绍了一种新型的检测系统,该系统结合了改进的激光三角测距法和机器视觉技术,旨在解决传统方法的不足。新方法可以在高温环境下工作,对小径圆筒进行测量,且测量精度高、速度快。通过实验验证,该系统能够实现圆筒内壁的高质量、高速度的在线检测,为现代工业生产提供了有力支持。关键词:圆筒内壁检测;机器视觉;激光三角测距法;在线检测引言圆筒内壁检测是工业生产中的重要环节,其质量直接关系到产品的性能和使用寿命。传统的检测方法存在诸多问题,如检测精度不高、速度慢、无法在线检测等。为了解决这些问题,本文提出了一种新型的检测系统,该系统结合了改进的激光三角测距法和机器视觉技术,旨在实现圆筒内壁的高质量、高速度的在线检测。工作原理本系统采用激光三角测距法作为主要测量手段。激光三角测距法是一种非接触式测量方法,通过激光投射到被测物体表面并反射回来,再通过传感器接收,经过处理后可以得到被测物体的距离和尺寸信息。本系统对传统的激光三角测距法进行了改进,使其能够在高温环境下工作,并对小径圆筒进行测量。同时,本系统还采用了机器视觉技术进行辅助测量和判断。机器视觉技术是通过计算机模拟人类的视觉功能,实现对图像的采集、处理和分析。本系统利用机器视觉技术对圆筒内壁表面进行图像采集和处理,通过算法识别和判断内壁表面的缺陷和尺寸信息。通过将激光三角测距法和...
  • 5
    2025 - 03 - 05
    在工业自动化领域,激光位移传感器是精密测量的核心器件。本文以国产泓川科技的LTP150与基恩士的LK-G150为对比对象,从核心技术参数、功能设计及性价比等维度,解析国产传感器的创新突破与本土化优势。一、核心参数对比:性能旗鼓相当,国产线性度更优精度与稳定性LTP150的线性度为±0.02%F.S.,优于LK-G150的±0.05%F.S.,表明其全量程范围内的测量一致性更佳。重复精度方面,LK-G150(0.5μm)略高于LTP150(1.2μm),但需注意LK-G150数据基于4096次平均化处理,而LTP150在无平均条件下的65536次采样仍保持1.2μm偏差,实际动态场景下稳定性更可靠。采样频率与响应速度LTP150支持50kHz全量程采样,并可扩展至160kHz(量程缩小至20%),远超LK-G150的1kHz上限。高频采样能力使其在高速生产线(如电池极片、半导体晶圆检测)中可捕捉更多细节,避免数据遗漏。环境适应性两者均具备IP67防护与抗振设计,但LTP150可选**-40°C至70°C宽温版本**,覆盖极寒或高温车间环境,而LK-G150仅支持050°C,适用场景受限。以下是 LTP150(泓川科技) 与 LK-G150(基恩士) 激光位移传感器的核心参数对比表格,重点突出国产...
  • 6
    2025 - 01 - 14
    一、引言1.1 研究背景与意义在工业制造、科研等众多领域,精密测量技术如同基石,支撑着产品质量的提升与科学研究的深入。光谱共焦传感器作为精密测量领域的关键技术,正以其独特的优势,在诸多行业中发挥着无可替代的作用。它能精确测量物体的位移、厚度、表面轮廓等参数,为生产过程的精确控制与产品质量的严格把控提供了关键数据支持。基恩士作为传感器领域的佼佼者,其推出的光谱共焦传感器在市场上备受瞩目。基恩士光谱共焦传感器凭借卓越的性能,如高精度、高稳定性、快速响应等,在精密测量领域中脱颖而出。在半导体制造过程中,芯片的生产对精度要求极高,基恩士光谱共焦传感器可精准测量芯片的厚度、线宽等关键参数,保障芯片的性能与质量。在光学元件制造领域,其能够精确测量透镜的曲率、厚度等参数,助力生产出高质量的光学元件。研究基恩士光谱共焦传感器,对于推动精密测量技术的发展具有重要意义。通过深入剖析其原理、结构、性能以及应用案例,能够为相关领域的技术创新提供参考,促进测量技术的不断进步。在实际应用中,有助于用户更合理地选择和使用该传感器,提高生产效率,降低生产成本。在汽车制造中,利用基恩士光谱共焦传感器对零部件进行精密测量,可优化生产流程,减少废品率。 1.2 研究现状在国外,光谱共焦传感器的研究起步较早,技术也相对成熟。法国的STIL公司作为光谱共焦传感器的发明者,一直处于该领域的技术前沿。其研发的光谱共焦...
  • 7
    2025 - 02 - 19
    一、测量原理与技术框架高精度激光位移传感器实现1μm以下精度的核心在于三角测量法的深度优化。如图1所示,当激光束投射到被测表面时,散射光斑经接收透镜在CMOS/CCD阵列上形成位移图像。根据几何关系:\Delta x = \frac{L \cdot \sinθ}{M \cdot \cos(α±θ)}Δx=M⋅cos(α±θ)L⋅sinθ其中L为基距,θ为接收角,M为放大倍数。要实现亚微米分辨率需突破传统三角法的三个技术瓶颈:光斑质量退化、环境噪声干扰、信号处理延迟。二、关键算法突破1. 光斑中心定位算法采用改进型高斯混合模型(GMM)结合小波变换降噪,可有效抑制散斑噪声。研究显示[1],基于Marr小波的边缘检测算法可使定位精度提升至0.12像素(对应0.05μm)。2. 动态补偿算法LTP系列采用专利技术(CN202310456789.1)中的自适应卡尔曼滤波:PYTHONclass AdaptiveKalman:    def update(self, z):        # 实时调整过程噪声协方差Q        se...
  • 8
    2023 - 03 - 20
    介绍工业光电传感器是现代制造业中最常用的检测设备之一,广泛应用于自动化生产线、机械加工、装配、物流搬运等行业。随着国民经济的不断发展,中国的工业光电传感器制造业也不断发展壮大,成为制造业的一支重要力量。本文旨在对中国产的工业光电传感器现状进行描述。发展历史20世纪80年代初期,我国的工业自动化程度比较低,大部分生产线仍采用人力操作,制造业存在高人力成本、低效率、品质难以保证等问题。为了提高制造业的效率和品质,中国开始引入外国的工业自动化设备,其中就包括工业光电传感器。80年代中后期,国内开始试水制造工业光电传感器,并逐步发展壮大。90年代初期,随着国民经济的增长和工业自动化的加速推进,中国的工业光电传感器制造业进入快速发展期。如今,中国的工业光电传感器制造业已经处于全球领先地位,成为世界闻名的光电传感器生产基地之一。产业链分析商业模式中国的工业光电传感器制造业商业模式主要是以生产销售为主,较少采用研发生产销售一体化模式。生产企业主要供应给自动化设备制造商,然后这些自动化设备制造商销售给最终用户,最终用户则使用这些设备来自动化生产线。除此之外,还有一些企业将工业光电传感器产品应用到自己的设备制造中,以提高自己产品的品质和效率,然后再将自己的产品销售给最终用户。在商业模式上,中国的工业光电传感器制造业与欧美等发达国家还存在一定的差距。技术研发中国的工业光电传感器制造业在技术研发方面逐渐...
Message 最新动态
泓川科技国产系列光谱共焦/激光位移传感器/白光干涉测厚产品性能一览 2025 - 09 - 05 高精度测量传感器全系列:赋能精密制造,适配多元检测需求聚焦半导体、光学膜、机械加工等领域的精密检测核心痛点,我们推出全系列高性能测量传感器,覆盖 “测厚、对焦、位移” 三大核心应用场景,以 “高精准、高速度、高适配” 为设计核心,为您的工艺控制与质量检测提供可靠技术支撑。以下为各产品系列的详细介绍:1.LTS-IR 红外干涉测厚传感器:半导体材料测厚专属核心用途:专为硅、碳化硅、砷化镓等半导体材料设计,精准实现晶圆等器件的厚度测量。性能优点:精度卓越:±0.1μm 线性精度 + 2nm 重复精度,确保测量数据稳定可靠;量程适配:覆盖 10μm2mm 测厚范围,满足多数半导体材料检测需求;高效高速:40kHz 采样速度,快速捕捉厚度数据,适配在线检测节奏;灵活适配:宽范围工作距离设计,可灵活匹配不同规格的检测设备与场景。2. 分体式对焦传感器:半导体 / 面板缺陷检测的 “高速对焦助手”核心用途:针对半导体、面板领域的高精度缺陷检测场景,提供高速实时对焦支持,尤其适配显微对焦类检测设备。性能优点:对焦速度快:50kHz 高速对焦,同步匹配缺陷检测的实时性需求;对焦精度高:0.5μm 对焦精度,保障缺陷成像清晰、检测无偏差;设计灵活:分体式结构,可根据检测设备的安装空间与布局灵活调整,降低适配难度。3. LT-R 反射膜厚仪:极薄膜厚检测的 “精密管家”核心用途:专注于极薄膜...
多方面研究泓川科技LTP系列大量程全国产激光位移传感器 2025 - 09 - 02 泓川科技激光位移传感器产品技术报告尊敬的客户: 感谢您对泓川科技激光位移传感器产品的关注与信任。为帮助您全面了解我司产品,现将激光位移传感器相关技术信息从参数指标、设计原理、结构设计等八大核心维度进行详细说明,为您的选型、使用及维护提供专业参考。一、参数指标我司激光位移传感器涵盖 LTP400 系列与 LTP450 系列,各型号核心参数经纳米级高精度激光干涉仪标定验证,确保数据精准可靠,具体参数如下表所示:表 1:LTP400EA参数表参数类别具体参数LTP400EA备注基础测量参数测量中心距离400mm以量程中心位置计算(*1)量程200mm-重复精度(静态)3μm测量标准白色陶瓷样件,50kHz 无平均,取 65536 组数据均方根偏差(*2)线性度±0.03%F.S.(F.S.=200mm)采用纳米级激光干涉仪标定(*3)光源与光斑光源类型-激光功率可定制,部分型号提供 405nm 蓝光版本(*4)光束直径聚焦点光斑 Φ300μm中心位置直径,两端相对变大(*5)电气参数电源电压DC9-36V-功耗约 2.5W-短路保护反向连接保护、过电流保护-输出与通信模拟量输出(选配)电压:0-5V/010V/-1010V;电流:420mA探头可独立提供电压、电流与 RS485 输出(*6)通讯接口RS485 串口、TCP/IP 网口可选配模拟电压 / 电流输出模块(*7)响应...
泓川科技发布 LT-CP 系列 ETHERCAT 总线高光谱共焦控制器,32KHz 高速采样引领工业... 2025 - 08 - 30 泓川科技发布 LT-CP 系列 ETHERCAT 总线高光谱共焦控制器,32KHz 高速采样引领工业高精度测量革新近日,工业高精度测量领域迎来技术突破 —— 泓川科技正式推出LT-CP 系列 ETHERCAT 总线高光谱共焦传感器控制器(含单通道 LT-CPS、双通道 LT-CPD、四通道 LT-CPF 三款型号,含普通光源与高亮激光光源版本)。该系列产品以 “32KHz 高速采样” 与 “ETHERCAT 工业总线” 为核心亮点,填补了行业内 “高频响应 + 实时协同” 兼具的技术空白,为新能源、半导体、汽车制造等高端领域的动态高精度测量需求提供了全新解决方案。一、核心突破:32KHz 高速采样,破解 “多通道降速” 行业痛点光谱共焦技术的核心竞争力在于 “高精度” 与 “响应速度” 的平衡,而 LT-CP 系列在速度维度实现了关键突破 ——单通道模式下最高采样频率达 32KHz,意味着每秒可完成 32000 次精准距离 / 厚度测量,相当于对动态移动的被测物体(如高速传输的电池极片、晶圆)实现 “无遗漏” 的高频捕捉,测量分辨率与动态响应能力远超行业常规 10-20KHz 级别控制器。更具稀缺性的是,该系列打破了 “多通道即降速” 的传统局限:即使在双通道模式(最高 16KHz)、四通道模式(最高 8KHz)下,仍保持高频响应的稳定性。以四通道 LT-CPF 为例,其每通道 8...
Copyright ©2005 - 2013 无锡泓川科技有限公司

1

犀牛云提供企业云服务
Our Link
X
3

SKYPE 设置

4

阿里旺旺设置

等待加载动态数据...

等待加载动态数据...

5

电话号码管理

  • 0510-88155119
6

二维码管理

等待加载动态数据...

等待加载动态数据...

展开