服务热线: 0510-88155119
13301510675@163.com
Language
项目案例 Case
Case 激光位移传感器案例

基于光谱共焦位移传感器的非接触式回转误差测量系统

日期: 2022-03-15
浏览次数: 77

摘要:为了实现50nm左右回转误差测量,设计了一种新型非接触式测量系统,该系统采用光谱共焦位移传感器,通过反向法获得回转轴系径向回转误差、标准球圆度误差。标准球圆度误差测量值与标称值的最大差值为5nm,表明该测量系统的测量精度能够满足设计要求。


关键词:回转误差;光谱共焦位移传感器;反向法;非接触式;超精密回转轴系


0   引言

空气静压主轴在超精密机床中有着越来越广泛的应用,是超精密机床的关键功能部件之一,其回转误差对机床加工质量有着重要影响,机床的精度越高,工件圆度误差中由主轴回转误差所造成的比例越大。通过回转误差的测量,获取主轴径向回转误差形貌,有助于优化空气静压主轴的加工、研磨和装配工艺,对提高主轴回转精度具有重要意义。


回转误差测量技术,按照传感器类型,可分为接触式和非接触式。接触式传感器主要应用于精度低、转速低的回转轴系,非接触式传感器主要应用于超精密回转轴系。空气静压主轴的回转精度通常可达到50nm以下,接触式传感器的接触力会随机改变回转误差形貌,测量重复性差,应采用非接触式传感器测量。常见的非接触式测量传感器有电容位移传感器、电涡流位移传感器、激光位移传感器、CCD传感器、扫描隧道显微镜、原子力显微镜、激光干涉仪等。电容位移传感器、电涡流位移传感器需要一定面积(电容极板、电涡流片)去测量与距离呈相应关系的电容/电感值,反映了面与面的间隙,间距小于面宽的测量点将被均化;这两类传感器还需要采取严格的电磁干扰屏蔽措施,才能获得nm级分辨率。


激光位移传感器的精度较低,难以满足50nm以下回转误差测试。激光干涉仪需要增加额外的光路,光学镜组调节较难,受环境和人为影响大。基于CCD传感器的测量法需要进行图像处理,且受限于CCD分辨率,无法用于50nm以下回转误差测量。扫描隧道显微镜、原子力显微镜的分辨率小于01nm,但价格昂贵;而且这两类仪器的采样率一般在100Hz以下,只能实现低速测量,为了保护价格昂贵的扫描头,往往需要将转速限制到1r/min以下。为构建一套转速在300r/min以下、回转误差在50nm以下的主轴回转误差测量系统,采用非接触式光谱共焦位移传感器作为高度测量,非接触式圆光栅作为角度测量,通过标准球反向法,分离出回转误差。


1     测量原理

11标准球反向法测量原理

如图1所示,标准球轮廓中心O1绕回转中心参考点O旋转,参考点O相对传感器是不变的,距离为常量C,标准球轮廓为R(θ),轴系回转误差为ε(θ),传感器反向前测量值为H1(θ),反向后测量值为H2(θ),相对起始点A的回转轴变化角度为θB点旋转180°后位于C点。

基于光谱共焦位移传感器的非接触式回转误差测量系统


H1(θ)+(θ)+ε(θ)C          (1)

将标准球、传感器反向后,O点与传感器的相对距离发生改变,增量记为ΔC。回转轴不动,故角度θ不变。

H2(θ)+(θ)+ε(θ)=C+ΔC     (2)

由式(1)(2)可得,

(θ)=1/2(2C+ΔCH1(θ)H2(θ))       (3)

ε(θ)=1/2(H2(θ)H1(θ)ΔC)            (4)

标准球圆度误差记为Δ(θ),测量起始点A的轮廓尺寸为R(0)

(θ)=(θ)-R(0)                  (5)

ΔR(θ)=1/2(H1(0)+H2(0)H1(θ)H2(θ))   (6)


1.    2光谱共焦位移传感器(CCS)测量原理

如图2所示,当挡板小孔与光源相对半透镜成镜面对称关系时,白光点光源经平面镜照射到透镜上,形成汇聚点。折射率的差异,导致汇聚点沿光轴方向的距离不同。只有恰好汇聚到样品表面的单色光可原路返回,经平面镜反射,穿过挡板小孔处,到达频谱仪,由频谱仪测量出单色光对应的波长λ

基于光谱共焦位移传感器的非接触式回转误差测量系统


对于理想小孔(孔径无限小),样品表面测量点位于高度H(a)处,单色光λa(单线标示)能穿过小孔;测量点位于高度H(b)处,单色光λb(双线标示)能穿过小孔;测量点位于高度H(c)处,单色光λc(三线标示)能穿过小孔。Hλ呈一一对应关系。通过纳米光栅尺或者标准纳米台阶样件校准即可得到相应的函数关系。实际小孔的孔径有大小误差Δr,测量时从频谱仪上可以看到一定宽度Δλ的复色光λ+Δλ)


当小孔与光源相对平面镜不呈镜面对称关系时,只有成像点在样品前或后的某个位置的单色光才能通过小孔,原路返回的单色光反而不能通过小孔。能通过小孔的单色光,在样品表面无法汇聚成一点,若其宽度过大,有可能形成非理想反射,部分光线将偏离理想路径,Δλ变大,导致测量误差变大。


2     测量系统

2.    1测量系统组成

根据标准球反向法和CCS控制器特性,构建非接触式测量系统。系统由工控机、驱动、角度测量、高度测量、夹持工装调整单元组成,如图3所示。

基于光谱共焦位移传感器的非接触式回转误差测量系统


工控机单元实现Z轴、C轴运动控制、参数设置、数据采集、结果显示等功能。工控机单元配有PCI轴控制卡,可控制电动机运动。驱动单元由C轴驱动器、Z轴驱动器组成。角度测量单元由回转轴、增量式图光栅组成。回转轴C轴采用皮带驱动方式,电动机选用伺服电动机。高度测量单元由CCS控制器和CCS传感器组成。CCS控制器将圆光栅的原点信号作为CCS数据采集的启动信号,保证每次测量起始点都在圆光栅原点处。CCS控制器通过USB口或RS232接口将采集的角度、高度数据传输给工控机,由工控机上位软件进行数据处理。Z轴实现CCS传感器Z(竖向)粗调心,夹持工装的XYZ向精调心采用手动调节机构实现。主轴回转误差测量系统实物见图4

基于光谱共焦位移传感器的非接触式回转误差测量系统


2.    2同步方式实现信号采集

采用反向法最关键的难点是角度值和高度值的同步,要保证同步误差导致的相位差小于0。同步实现信号采集既可采用软件方式,也可采用硬件方式。当采用软件方式实现时,可采用绝对式圆光栅采集角度信号,由Windows操作系统的高精度定时(1ms或者1μs)中断触发角度、高度采集,由于Win-dows操作系统不是实时操作系统,在测量300r/min的回转误差时,定时中断必须小于55μs,才能保证同步误差在可接收范围内。当采用硬件方式实现时,CCS控制器直接采集圆光栅的正交信号,角度与高度之间的同步触发由CCS控制器内部采样电路实现如图5所示。与软件同步方式相比,硬件同步方式既减小了上位机操作系统同步时钟误差,又减小了CCS控制器通过USB通讯线缆传送高度数据产生的延迟误差,还克服了上位机无法按照严格的等时间隔访问CCS控制器内部采样寄存器数据的缺点,大大减小角度、高度的采样时间差,对于中低速回转误差测量具有非常重要的意义。

基于光谱共焦位移传感器的非接触式回转误差测量系统


由于CCS接收角度信号采用单端接法实现,只用到A+B+Z+信号,信号电缆应采取良好的屏蔽措施。电动机动力线缆与CCS采集信号线缆之间相隔在100mm以上,走向呈正交位置关系。


3     测量软件

3.    1测量流程

启动测量后,连续采集25圈数据(5圈作为一组数据进行处理),生成TXT数据文档,反转标准球和传感器,再连续采集25圈数据(5圈作为一组数据进行处理),生成TXT数据文档。对两组数据进行滤波,由式(4)(6)计算出回转误差ε(θ)、标准球圆度误差Δ(θ)。测量流程,如图6所示。

基于光谱共焦位移传感器的非接触式回转误差测量系统


32测量界面

测量软件后台处理测量流程,测量软件界面(7)显示采集参数设置、测量方法选择、测量数据所生成的图像、测量结果。测量参数设置区可设置电动机转速、单次采集圈数、采样频率。测量方法选择区可选择3种测量方法:单点法、反向法和三点法。图像显示区以笛卡尔坐标显示反向前、后消偏心的高度值曲线,分别以笛卡尔坐标、极坐标显示分离出的主轴回转误差曲线、标准球圆度误差曲线。结果显示区显示5组主轴回转误差值、标准球圆度误差值。

基于光谱共焦位移传感器的非接触式回转误差测量系统


4     测量结果

CCS控制器采样率1kHz,标准球圆度误差出厂值36nm。整套测量系统位于精密空气弹簧隔振台上,隔振台位于精密测量用隔振地基上,测量系统置于封闭外罩内。分别对三套轴(A、轴B、轴C)进行了测量,测量结果如表1、图810所示。

基于光谱共焦位移传感器的非接触式回转误差测量系统

基于光谱共焦位移传感器的非接触式回转误差测量系统

基于光谱共焦位移传感器的非接触式回转误差测量系统

基于光谱共焦位移传感器的非接触式回转误差测量系统

基于光谱共焦位移传感器的非接触式回转误差测量系统

基于光谱共焦位移传感器的非接触式回转误差测量系统



基于光谱共焦位移传感器的非接触式回转误差测量系统



如表1,对每组的连续5圈数据进行均值化处理后,不同轴系分离出的标准球圆度误差平均值分别为003500410037μm,与出厂标称值(36nm)最大差值为5nm。表明该测量系统具有非常高的测量精度和重复性。


5     结语

基于光谱共焦位移传感器的非接触式测量系统,是一种结构简单、测量精度非常高的测量系统。该系统通过反向法获得回转轴径向回转误差、标准球圆度误差。经滤波掉系统性误差(主要为偏心)并进行均值化处理后,不同轴系的回转误差最大差值为8nm,表明该测量系统具有非常高的精度和重复性,可用于回转轴系50nm左右径向回转误差测量。


在不同回转轴系下,分离出的标准球圆度误差平均值相对出厂值的最大差值仅为5nm。该测量系统还可用于50nm以下标准球赤道附近的小范围圆度误差测量。当标准球测量点的纬度较高时,受CCS传感器和标准球轮廓尺寸限制,为了获得最佳的反射效果,需要传感器轴线处于被测纬度的法线上,因此,若要测量标准球完整纬度的圆度误差,还需要增加CCS传感器轴线转轴。


Case / 相关推荐
2024 - 03 - 03
点击次数: 23
激光位移传感器在多种工业和科学应用中发挥着重要作用,其测量精度直接影响到产品的质量和科研数据的可靠性。激光波长作为激光位移传感器的核心参数之一,对测量精度有着显著的影响。以下是从波长与测量分辨率、精度误差、测量范围等多个角度对激光波长如何影响测量精度进行的详细分析,以及相应的解决方案或建议。波长与测量分辨率:激光波长对测量分辨率有直接影响。波长越短,激光光束的聚焦能力越强,理论上能够实现的测量分辨...
2024 - 03 - 03
点击次数: 4
绿色LED在激光位移传感器中的优势与应用随着科技的不断发展,激光位移传感器在工业自动化、质量控制、科研实验等领域的应用越来越广泛。在这些应用中,激光位移传感器需要具有高速度、高精度、长寿命等特点。而绿色LED在激光位移传感器中的使用,正是为了满足这些需求。绿色LED在激光位移传感器中的优势主要体现在以下几个方面:高亮度:绿色LED具有较高的发光效率,能够产生高亮度的绿光。这使得激光位移传感器在测量...
2024 - 01 - 21
点击次数: 17
摘要:随着制造业的发展,对于产品的溯源和质量追溯要求越来越高。本研究提出了一种基于高精度激光位移传感器的压铸件一维码扫描与数据获取方案。采用压铸成形和激光扫描技术相结合的方式,可以快速、准确地读取压铸件上的一维码信息,提高工作效率和溯源可靠性。本文详细介绍了该方案的原理、解决方案和应用案例,以及与传统方法相比的优势。1. 引言随着制造业的快速发展,对于产品的溯源和质量追溯要求越来越高,特别是在汽车...
2024 - 01 - 21
点击次数: 22
在使用激光位移传感器进行测量时,当激光光点横跨目标物的边缘时,可能会对测量精度产生一定影响。下面将详细探讨这种影响以及解决方法。首先,当激光光点移动到目标物的不同反射率区域时,如果目标物的边缘反射率较高,激光光点横跨其边缘时,光量会发生波动。这种光量的变化可能会导致激光位移传感器的读数变化,从而影响测量精度。为了稳定测量,在激光位移传感器中通常会配备光量控制范围调整功能。通过调整光量控制范围,即使...
2024 - 01 - 21
点击次数: 14
激光位移传感器是一种用于测量目标物距离的设备。它通过发射激光束并接收目标物反射的光线来计算距离。然而,目标物的反射率可能会因颜色、反光性能以及表面状况(如粗糙度和倾斜度)等因素而发生变化,从而影响传感器的测量精度。为了应对目标物反射率变化带来的影响,激光位移传感器采取了功率和时间的调整策略。具体而言,传感器根据目标物的反射率调整激光的功率和发射时间,以确保测量的准确性和稳定性。当目标物的反射率较高...
2024 - 01 - 21
点击次数: 24
随着现代工业生产的自动化和智能化程度不断提升,各种传感器的应用也愈发广泛。其中,激光测距传感器上下对射的技术在生产线中的应用尤为显著。本文就将详细介绍一种由两台激光测距传感器组成的系统如何对橡胶带生产线中的接缝位置进行检测和计数。首先,我们需要明白,在橡胶带的生产过程中,接缝是一个非常关键的部分。接缝的存在会使橡胶带的厚度发生变化,导致运输路程和时间有所误差。而接缝的产生,是由两段橡胶带重叠、粘合...
About Us
关于泓川科技
专业从事激光位移传感器,激光焊缝跟踪系统研发及销售的科技公司
中国 · 无锡 · 总部地址:无锡新吴区天山路6号
销售热线:0510-88155119 
图文传真:0510-88152650
Working Time
我们的工作时间
周一至周五:8:00-18:00
周六至周日:9:00-15:00
Shown 企业秀 More
  • 1
    2023 - 03 - 07
    本次应用报告旨在介绍超声波测距传感器在锂电池生产过程中测量卷绕直径的应用情况。首先,本文将介绍超声波测距传感器的基本工作原理和特点,然后详细介绍其在锂电池生产中的应用情况,并对其应用效果进行评估和总结。一、超声波测距传感器的基本工作原理和特点超声波测距传感器是一种通过超声波测量距离的传感器,其测量原理非常简单,就是利用超声波在空气中的传播速度快,而且与环境中的温度、湿度等因素无关的特点。具体来说,超声波测距传感器通过发射超声波信号,当这些信号遇到物体时就会反射回来,传感器通过感受这些反射信号的到达时间,从而计算出物体与传感器之间的距离。超声波测距传感器具有响应速度快、距离测量范围广、测量精度高和使用方便等特点。因此,在工业自动化、机器人、汽车和航空等领域已经广泛应用。二、超声波测距传感器在锂电池生产中的应用锂电池的核心部件是电芯,而电芯的生产过程中就需要进行锂电池卷绕。卷绕的直径大小对于电芯的性能有很大的影响。因此,测量卷绕直径是电芯生产过程中非常重要的环节。传统的测量方法是利用拉尺、卡尺等工具进行物理测量,但是由于电芯内部结构复杂、精度要求高、测量效率低等因素,往往会出现误差较大的情况。超声波测距传感器可以很好地解决这个问题。具体来说,在电芯卷绕时,只需要将超声波测距传感器置于卷绕机上方,然后通过发射超声波信号测量卷绕轴的直径大小即可。由于超声波的反射信号可以穿透物体,因此不会对...
  • 2
    2023 - 09 - 30
    一、介绍在许多须要进行精确检查的工业生产领域,视觉系统的高度定位已成为一项关键技术。尤其在物料变化情况复杂或需要精确测量的应用场景中,如何通过视觉系统稳定地执行Z轴方向定位是个重要议题。而在这方面,高精度激光测距传感器无疑可以提供解决方法。二、解决方案1、测量初始化首先提供一个安全并且可控的环境以保证传感器的测量工作。将目标工件放在固定的位置上,并确保其稳固不动来为测量过程提供准确的基础。2、高精度激光测距传感器启动测量启动高精度激光测距传感器对目标进行测量。传感器会发出一束红外激光,该激光会瞄准工件并反射回传感器,创建出一个明确的测量路径。传感器具有强大的抗干扰能力,即使目标工件材质变化,也能够维持稳定的测量结果。3、数据处理与分析接下来进入数据处理阶段。传感器会捕捉反射回来的激光,然后利用内部的光学组件和测量算法进行数据分析,计算出其对应的Z轴坐标值。4、结果反馈与定位最后,我们将测量结果(即Z轴的坐标值)传递给工业相机,一旦接收到数据,相机就能在Z轴上进行精确的位置定位。在这个过程中,即使工件移动或者改变位置,我们的系统也能实时根据新的测量结果进行调整,保证视觉系统始终在正确的位置对工件进行检测。5、持续追踪与更新系统会持续监测工件的位置,并根据需要实时更新Z轴的高度信息。这样,在整个生产过程中,无论工件如何变化或移动,我们的视觉系统都能进行稳定、准确的检测。三、行业应用1....
  • 3
    2023 - 03 - 08
    一、概述随着现代工业的不断发展和进步,精度对于工业生产过程中所需要的各种测试测量技术要求也越来越高。而激光测量技术则是在这种背景下得以应用的,这是利用激光作为工具进行测量分析的一种方法。激光测量可以分为非接触式和接触式两种方式。二、非接触激光测量非接触激光测量技术是指激光束在不与被测物体表面发生接触的情况下,对被测物体进行测量操作。它主要利用激光的高亮度、高单色性、高方向性等特点,将测量对象和激光之间的无线电辐射或光辐射联系起来,通过对测量信号的处理,来获得被测物体的相关参数。可以广泛应用于自动化制造、工业检测、生命科学、质量控制检测等领域。2.1 非接触式测量优点(1)不会对被测物体造成损伤。激光测量技术是无损伤性的,测量过程中不会对被测物体造成任何损伤,也不会影响被测物体的结构、形状和性能。(2)精度高。非接触激光测量技术具有高精密性、高灵敏性和高分辨力,能够以亚微米级的精度获得被测物体的相关参数,减小了人为误差和测量结果的不确定性。(3)高速度。非接触激光测量技术具有快速高效的特点,对于一些需要进行即时在线检测或高频率的质检要求,非接触激光测量技术具有独特的优势。(4)测量安全。由于非接触激光测量技术可以在安全距离的范围内进行,因此保障了测量人员的身体健康和安全。2.2 非接触式测量缺点(1)不适用于暗面测量。非接触激光测量技术无法对于有光线被挡住的部位进行测量,因此适用于透...
  • 4
    2023 - 09 - 30
    1. 引言:随着科技的迅猛发展和市场需求的不断提升,对建材板的厚度与宽度尺寸精确测量变得越来越关键。因此,选用高精度激光位移传感器来实现,既可以提高产量,又能保证质量。2. 技术原理:激光位移传用光干涉测量技术,发出红外激光束并接收反射回仪器的光阴影,通过光敏元件将其转换成电信号,经过放大处理后输出相应的标准信号来实现位移的测量。其中,红外激光束可以达到丝级别的精度,准确度极高。3. 技术方案:- 挤出流程结束后,立即利用激光位移传感器进行厚度和宽度的测量,效率高;厚度调整功能的使用,可以显著缩短安装和产品更换所需的工时。- 高精度激光位移传感器设置于生产线上,根据实际产品的厚度和宽度需要,选定合适的光束焦距和安装位置。传感器投射出激光束,反射回传感器的发射率会随着测量对象的位移变化而变动。- 传感器内部的电路系统将接收到的电信号进行处理,根据预设的参数,输出标准信号。- 通过对数据的实时监测和分析,可以找出生产中存在的问题并及时进行调整,以确保建材板的质量。4. 应用行业:因为对射的高精度激光位移传感器具有精度和效率高、可靠性强等优点,被广泛用于建材、塑料制品、金属材料、石材加工、生物医疗、微电子等范围。特别是在板材生产等领域,可以有效提高产品质量与生产效率,满足市场对精密制造的需求。结论:利用激光位移传感器在建材板的厚度和宽度测量中,可以实现精准测量,促进生产效率,同时保证产品...
  • 5
    2023 - 03 - 09
    激光位移传感器被广泛应用于各种领域中。其中一个很有用的应用是测量薄膜厚度。这种传感器可以在离表面很近的距离下进行高精度测量,因此非常适合这种应用。本文将介绍激光位移传感器如何用于测量薄膜厚度,包括测量方法、测量原理和市场应用。一、测量方法测量薄膜厚度的基本思路是利用激光位移传感器测量薄膜前后表面的距离差,然后通过几何公式计算出薄膜厚度。在实际操作中,测量方法大致可分为以下几种:1. 手持式测量手持式测量通常用于快速的现场检测。用户只需要将激光位移传感器靠近待测表面,然后通过读取显示屏上的数值判断薄膜厚度是否符合要求。这种方法不需要复杂的设备和步骤,非常易于使用。但是由于人手的震动和误差等因素,手持式测量的精度相对较低,只适用于需求不是特别高的场合。2. 自动化在线测量自动化在线测量一般用于工业生产线上的质量控制。这种方法需要将激光位移传感器与自动化设备相连接,将测量数据传递给计算机进行分析。在这种情况下,测量过程可以完全自动化,精度也可以得到保证。但是相对于手持式测量来说,这种方法需要的设备和技术要求更高,成本也更高。3. 显微镜下测量显微镜下测量常用于对细小薄膜厚度的测量。在这种情况下,用户需要将激光位移传感器与显微镜相结合进行测量。由于显微镜的存在,可以大大增强测量精度。但是相对于其他两种方法,这种方法需要的设备更多,并且技巧要求也更高。二、测量原理激光位移传感器利用的是激光三...
  • 6
    2023 - 09 - 30
    引言:在搬送薄片材料时,准确辨别材料的单双张对于生产流程的顺利进行至关重要。即使材料的材质发生了变化,我们仍然可以利用非接触传感器实现稳定的检测。本文介绍了两种常用方式:激光位移传感器和超声波传感器,在机械搬运过程中通过测量材料的厚度来判断其单双张状态。主体:1. 激光位移传感器方案:(a)准备工作:安装两个激光位移传感器,使其形成对射式布置。在中间放置一张标准厚度的材料,并通过上位机软件进行校准设定。(b)测量与校准:激光位移传感器通过测量材料的厚度,获得距离总和,并与设定的固定差值进行比较。当机械搬运过程中出现误差导致厚度与之前的距离数据明显不同时,激光位移传感器将发出错误信号,指示材料为双张状态。2. 超声波传感器方案:(a)准备工作:使用对射式超声波传感器,并先安装一张标准材料来校准基准能量。(b)测量与判断:超声波传感器利用能量穿透原理,通过测量接收端收取到的能量来判断材料的状态。当材料为单张时,接收端将收到接近基准值的能量;而当材料为双张或多张时,接收端收到的能量明显小于标准值,此时超声波传感器将发出报警信号。3. 激光位移传感器方案的优势:- 高精度测量:激光位移传感器具有高精度,可以精确测量材料的厚度变化,从而能够准确判断材料的单双张状态。- 实时监测:传感器反应速度快,并可以实时检测材料的厚度变化,确保在搬运过程中能够及时发现错误信号并进行处理。- 非接触式:激光...
  • 7
    2023 - 03 - 20
    介绍工业光电传感器是现代制造业中最常用的检测设备之一,广泛应用于自动化生产线、机械加工、装配、物流搬运等行业。随着国民经济的不断发展,中国的工业光电传感器制造业也不断发展壮大,成为制造业的一支重要力量。本文旨在对中国产的工业光电传感器现状进行描述。发展历史20世纪80年代初期,我国的工业自动化程度比较低,大部分生产线仍采用人力操作,制造业存在高人力成本、低效率、品质难以保证等问题。为了提高制造业的效率和品质,中国开始引入外国的工业自动化设备,其中就包括工业光电传感器。80年代中后期,国内开始试水制造工业光电传感器,并逐步发展壮大。90年代初期,随着国民经济的增长和工业自动化的加速推进,中国的工业光电传感器制造业进入快速发展期。如今,中国的工业光电传感器制造业已经处于全球领先地位,成为世界闻名的光电传感器生产基地之一。产业链分析商业模式中国的工业光电传感器制造业商业模式主要是以生产销售为主,较少采用研发生产销售一体化模式。生产企业主要供应给自动化设备制造商,然后这些自动化设备制造商销售给最终用户,最终用户则使用这些设备来自动化生产线。除此之外,还有一些企业将工业光电传感器产品应用到自己的设备制造中,以提高自己产品的品质和效率,然后再将自己的产品销售给最终用户。在商业模式上,中国的工业光电传感器制造业与欧美等发达国家还存在一定的差距。技术研发中国的工业光电传感器制造业在技术研发方面逐渐...
  • 8
    2023 - 09 - 30
    国产LTP系列激光位移传感器具备一系列突出的特点,如光量自适应算法、高速高灵敏度的测量性能、高精度长距离非接触测量、高可靠性一体化传感器结构等。然而,在面对进口品牌如松下、基恩士、欧姆龙、米铱和奥泰斯等的竞争时,国产激光位移传感器仍面临着挑战。主体:国产LTP系列激光位移传感器的突出特点:1. 光量自适应算法:通过动态调整激光功率、曝光时间等参数,实现1000000:1的光量动态调整范围,适应不同被测表面的测量,包括胶水、PCB、碟片、陶瓷和金属等多种材料。2. 高速高灵敏度测量性能:借助像素宽度和数量提升的CMOS及高速驱动与低噪声信号读取技术,国产LTP系列激光位移传感器能够实现最高160kHz的测量速度和亚微米级的测量精度,满足压电陶瓷等物体的极端测量需求。3. 高精度长距离非接触测量:专门设计开发的高分辨物镜可最小化被测物体表面光斑变化对测量结果的影响,并降低光学畸变。可根据需要选择测量工作距离在30-2250mm之间,满足了高温、窗口限制等远距离测量的场景需求。4. 高可靠性一体化传感器结构:国产LTP系列激光位移传感器经过高低温、振动、冲击等测试,能够适应大多数工业应用场景。此外,常用的工业接口(如以太网、485、模拟量输出等)可直接从探头接出,便于集成。国产激光位移传感器面临的挑战:1. 进口品牌把持高端市场:目前国内高端的激光位移传感器几乎都被进口品牌如松下、基恩士...
Message 最新动态
在测量被透明物体覆盖的目标时,环境照明补偿和透视测量是如何帮助提高测量准确性的? 2024 - 03 - 05 在测量被透明物体覆盖的目标时,环境照明补偿和透视测量是提高测量准确性的重要手段。这些技术的应用,在智能手机等电子设备的制造过程中,具有至关重要的作用。首先,让我们来探讨一下环境照明补偿的作用。在生产线环境中,照明条件往往并不稳定,这会对测量精度产生严重影响。环境照明补偿技术通过自动调整传感器参数,以补偿外部光照条件的变化,使得测量系统能在不同的照明条件下都能保持稳定的测量性能。这就使得我们在测量被透明物体(如手机屏幕)覆盖的目标时,能够得到更为准确的结果。其次,透视测量技术则能够解决透明物体对测量造成的干扰。由于透明物体会让部分光线穿过,使得传统的测量技术难以准确捕捉目标的位置和形状。而透视测量技术则能够通过特殊的光学设计和算法处理,使得传感器能够“看透”透明物体,直接对其背后的目标进行测量。这样,我们就可以在不接触目标的情况下,对其进行准确的测量。在智能手机等电子设备的制造过程中,这两种技术都有着广泛的应用。例如,在手机屏幕的生产过程中,环境照明补偿技术可以帮助我们确保屏幕在各种光线条件下都能显示清晰。而透视测量技术则可以用于测量手机屏幕下的各种元器件,如触摸屏、摄像头等,确保它们的位置和尺寸都符合设计要求。此外,这两种技术还可以结合使用,以提高测量的精度和效率。例如,我们可以先使用透视测量技术确定目标的位置,然后使用环境照明补偿技术对其进行精确测量。这样,我们不仅可以得到更准确...
激光三角测量法是如何实现对透明物体测量的?折射率校正在这个过程中起到了什么作用? 2024 - 03 - 05 激光三角测量法:精确测量透明物体的科技新突破在精密测量领域,激光三角测量法已成为一种非常重要的技术手段。这种测量方法尤其适用于透明物体的测量,因为它可以有效地解决透明物体测量中的诸多难题。本文将详细介绍激光三角测量法的原理、步骤,以及折射率校正在此过程中所起到的关键作用。一、激光三角测量法的原理激光三角测量法是一种基于光学三角测量原理的非接触式测量方法。其基本原理是:半导体激光器发出的激光束照射在目标物体上,接收器透镜聚集目标物体反射的光线并聚焦到感光元件上。当目标物体与测量设备之间的距离发生改变时,通过接收器透镜的反射光的位置也会相应改变,光线聚焦在感光元件上的部分也会有所不同。通过精确测量这些变化,就可以得出目标物体的位移、形状等参数。二、激光三角测量法的步骤设定参照距离:首先,需要设定一个参照距离,即在此距离下,激光束与感光元件之间的位置关系已知且稳定。照射激光:然后,通过半导体激光器发出激光束,照射在待测的透明物体上。接收反射光:接收器透镜会聚集从透明物体反射回来的光线,并将其聚焦到感光元件上。分析数据:当透明物体移动或形状发生变化时,反射光在感光元件上的位置也会发生变化。通过精确分析这些变化,就可以得出透明物体的位移、形状等参数。三、折射率校正的作用在测量透明物体时,一个关键的问题是需要考虑光的折射现象。由于透明物体的折射率与空气不同,光线在从空气进入透明物体时会发生折射...
非接触式激光传感器在生产线上的应用有哪些优势? 2024 - 03 - 05 非接触式激光位移传感器在生产线上的应用具有多方面的优势,下面将从精度、速度、可靠性、灵活性和安全性等方面进行逐一分析,并通过具体的应用场景来说明其应用价值。同时,还会与传统的接触式传感器进行比较,以突显非接触式激光位移传感器的独特优势。精度:非接触式激光位移传感器采用激光三角测量法,具有极高的测量精度。例如,在半导体制造过程中,需要精确控制薄膜的厚度,非接触式激光位移传感器可以实现微米级的测量精度,从而确保产品质量。相比之下,传统接触式传感器可能会因为接触力度的不同而影响测量精度。速度:非接触式激光位移传感器具有快速响应的特点,可以在生产线上实现高速测量。例如,在包装机械中,需要实时监测包装材料的位置和速度,非接触式激光位移传感器可以迅速捕捉到这些变化,从而确保包装过程的顺利进行。而传统接触式传感器可能会因为接触摩擦等因素而影响测量速度。可靠性:非接触式激光位移传感器无需与目标物体直接接触,因此可以避免因摩擦、磨损等因素导致的传感器损坏。此外,非接触式传感器还具有较好的抗干扰能力,可以在恶劣的生产环境中稳定工作。相比之下,传统接触式传感器更容易受到环境因素的影响而出现故障。灵活性:非接触式激光位移传感器可以适应不同的测量需求,通过调整激光发射角度、接收透镜焦距等参数,可以实现不同距离、不同角度的测量。此外,非接触式传感器还可以与计算机、PLC等设备进行连接,实现自动化控制和数据处理...
Copyright ©2005 - 2013 无锡泓川科技有限公司

1

犀牛云提供企业云服务
Our Link
X
3

SKYPE 设置

4

阿里旺旺设置

等待加载动态数据...

等待加载动态数据...

5

电话号码管理

  • 0510-88155119
6

二维码管理

等待加载动态数据...

等待加载动态数据...

展开