服务热线: 0510-88155119
13301510675@163.com
Language
项目案例 Case
Case 激光位移

激光三角-细管道内表面光电检测方法研究

日期: 2022-01-14
浏览次数: 140

摘要:管道是气体和液体传输的重要手段,管道内表面的检测对于工业和国防中管道泄漏事故的预防,减少环境污染和经济损失非常重要。随着电子和半导体技术的发展,光电器件逐步趋于小型化。介绍了基于激光阵列、PSD光电检测、光环截面以及结构光检测等光电检测方法的测量原理和系统构成,并在此基础上对不同光电检测方法的优缺点进行了分析和比较。分析结果表明:光电检测技术适用于管道内表面检测;并朝着快速识别缺陷、管道内表面瑕疵的精确三维测量以及三维图像直观显示管壁缺陷的方向发展。

关键词:管道内表面检测;光学三角法;光电检测;激光光源

0 引言

管道作为常用气体和液体的传输手段,已被广泛应用于石油、化工、国防及排污等领域。由于工业管道长期使用后容易发生腐蚀,而且管道内部的潜在缺陷也会发展成破损而引起泄漏事故,因此必须定期对管道内部进行检测。

用于排污和输油的管道直径通常较大,其内表面检测空间较大,对传感器的体积要求不很苛刻,且传感器的驱动相对简单。而管径范围在20mm100mm的细管道在石油化工、能源和航空航天等领域有着广泛的应用,石油化工行业中占工艺设备总量50%以上的换热器和裂解反应器中管道直径通常小于50mm,由于细管道检测空间狭窄,目前仍然是管道内表面检测的难点。石油化工工艺设备中的细管道中流过的气体和液体长期处于高温、高压状态,且具有毒性和腐蚀性强等理化特性,长期使用后管道因腐蚀等作用可能出现裂纹等缺陷,易发生泄漏事故而引起重大的经济损失。此外国防工业中枪炮管的内径都小于几十毫米,对枪炮管进行定期检测也是保证武器装备安全运行的重要前提。因此细管道内表面的定期检测,可以预防管道事故并为合理维护提供科学依据,同时可以减少管道维修费用和环境污染,避免不必要的经济损失,因此管道检测在工业生产和国防工业中具有重要的意义。

针对排污、输油等大管径管道的内表面,其检测方法主要有超声波检测、漏磁检测以及射线法等。超声波及漏磁等检测技术通过向管道内表面发射并接收相应的反射信号,利用检测到的信号变化实现管道壁厚与瑕疵的检测[2],这些检测技术需要在管道某个截面附近多次发射和接收信号才能完成管道截面的检测,检测效率低,且对内表面的检测是间接的,不具有可见性,同时由于对噪声较敏感容易发生误检。由于管道具有封闭性,细管道内表面的检测空间狭窄,对于传感器的体积要求较为严格,因此管道内表面检测传感器的小型化一直是细管道内表面检测技术研究的一个重点。随着计算机技术和光电子技术发展而逐渐成熟的光电检测技术由于具有非接触、信息量大、自动化程度高等特点已经被国内外学者应用到管道内表面检测领域。同时伴随电子和半导体技术的发展,光电器件也逐步向小型化发展,使得光电检测技术越来越多地被用于细管道内表面检测。目前,用于管道检测的光电检测方法主要有摄像法、激光扫描法、视觉检测法和基于光电敏感器件的检测方法等。光电检测方法不仅可以直接检测到管道内表面的裂纹和瑕疵,而且可以对裂纹和瑕疵进行精确三维测量和定位。其中视觉检测技术由于具有可见性和信息量大等优点越来越受到国内外学者的重视,被广泛应用到管道内表面检测中。

1     管道内表面光电检测方法

1.1基于内窥镜的视频法

视频法管道内表面检测系统主要由1台或多台CCTV摄像机、管道爬行器以及用于增大视场的内窥镜等组成。检测时,爬行器带动摄像机在管道内行进,安装在摄像机上的内窥镜可以增大拍摄角度,拍摄到管道整个截面的内部场景。检测人员根据摄像机拍摄的管道内表面录像来判断管道内壁是否有缺陷。由于管道内部比较黑暗,视频法需要照明光源。随着半导体和电子技术的发展,视频法原来的CCTV摄像机已经被CCD(chargecoupleddevice)数字化摄像机替代,而且随着数字图像处理技术和人工智能技术的发展,开始采用计算机进行图像处理和识别来检测管道内壁的缺陷,克服了CCTV摄像机人工检测费时、人为因素干扰大的缺点。视频检测法只能判断管道内表面是否有瑕疵和裂纹等,不具有测量的功能,不能对管道内表面缺陷进行精确三维测量和定位。

1.2激光阵列法

该检测方法采用点阵形式的激光光源向管道内壁投射点阵光源,利用光学三角法进行管道内表面的三维测量[3]。激光器发射的激光经过光纤阵列后调制成矩形阵列的平面光源,如图1所示。该光源投射到管道内表面,利用CCD摄像机拍摄阵列图像,用光学三角法来进行三维重构。这种检测方法不是在一个垂直于管道轴线的截面上投射圆形光带,可是以检测管子的三维形貌,用做判断管子的形状是直线形、L形还是T形。这种检测手段传感器结构复杂,且测量精度和阵列分布与系统结构有关。


激光三角-细管道内表面光电检测方法研究

1 激光阵列检测原理

1.3光环截面成像法

光环截面法通过向管道内表面投射激光光环,利用激光光环反射的管道内表面信息来检测裂缝和瑕疵。系统结构如图2所示,检测系统由半导体激光器、光学系统和CCD摄像机组成。激光器发出的激光被光学系统调制成宽光带的圆环,投射到管道内表面,在管内壁形成具有一定宽度的环形光带,CCD摄像机拍摄带有管道内表面信息的圆环光带,具有圆环光带的管道内表面图像被传输到计算机中,利用人工智能算法通过分析圆环图像的灰度来判断环形带内是否有裂纹等疵病。为了提高管道内壁的亮度,使得图像更清晰,检测系统设计要求环形光带越宽越好。根据瑕疵在图像中的位置,利用透视投影原理计算瑕疵在截面上的二维坐标。瑕疵在管道内的轴向位置通过三角法计算可得,2,L为激光器及其所投射的光环之间的距离;A为光环宽度;R为管道内半径;α1为激光器和光环左侧边缘的锥面夹角;α2为光环宽度相对于激光投射器的夹角。

当激光器中心和管道截面中心不在同一轴线上时,需根据激光器偏离轴线的距离校正瑕疵的轴向位置。光环截面法检测要求光环越宽越好,但随着光环宽度增加,瑕疵的轴向定位精度随之降低。

激光三角-细管道内表面光电检测方法研究

2 光环截面法检测管道内表面

1.4圆结构光视觉检测法

圆结构光检测方法是一种主动视觉检测方法,和光环截面法不同,圆环结构光视觉检测利用调制的光条信息通过光学三角法来恢复三维信息,因此光条越窄测量精度越高。结构光视觉检测原理如图3所示,结构光源发射出的光平面投射到三维物体上,交线为含有三维物体形状信息的明亮的光条,对应在摄像机拍摄的图像上有相应的光条。假设C为投射在三维物体上光条的任一点,结构光源坐标系原点为A,摄像机坐标系原点为B,结构光与摄像机之间的距离为b,测量时被测物、结构光源和摄像机三者的相互位置关系固定,W,h,b为已知参量,则在ΔABC,利用三角关系可以唯一确定C点的三维位置。


激光三角-细管道内表面光电检测方法研究

3 结构光视觉测量原理

圆结构光测量系统结构如图4所示,和通常采用横向排列方式的结构光视觉测量系统不同,CCD摄像机和圆结构光投射器采用径向排列方式,径向结构可以有效减小传感器的体积,适于小管径管道内表面的测量。圆结构光投射器由半导体激光器和一个锥面反射镜组成,激光器发射的光到达锥面反射镜上,经锥面镜反射形成均匀的圆光条反射到管道内壁。测量时半导体激光器和CCD摄像机固定不动,被测物体被固定在一维移动设备上沿管道轴线方向移动。摄像机拍摄带有管道内表面三维信息的圆光条图像,在对圆锥光平面、摄像机及其激光器之间位置关系标定后即可测量管道内表面精确的三维信息。

激光三角-细管道内表面光电检测方法研究

4 圆结构光检测系统

1.5基于位置敏感器(PSD)的检测方法

基于位置敏感器的内表面检测方法利用激光三角法和光学扫描原理实现三维测量。位置敏感器(positionsensitivedevice)是一种侧向效应硅光电器件,当入射光照射到二维PSD光敏面上时,PSD会产生4路电流,利用4路电流和光敏面中心的关系可以确定入射光点在光敏面上的位置,进一步通过光学三角法确定空间点的三维坐标。PSD具有响应速度快、可连续采样、信号处理相对简单等特点。基于PSD的内表面检测系统如图5所示,主要由激光光源、反射镜、透明窗、旋转平面镜、透镜和PSD组成。激光光源发出的光束经反射镜反射后,在管道内壁上形成微小光点D,该光点由透镜接收后在PSD光敏面上得到像点N,D和点N到检测器中轴线的距离分别为Rr,扫描反射镜的偏转角为U,透镜主面间距为d,B为激光束和扫描反射镜面的交点,B′B关于带孔发射镜面的对称点,L表示点B′PSD光敏面的距离,f为透镜组左主面到PSD光敏面的距离。根据光学三角关系,可以求得管道内壁点D到检测器中轴线的距离R。扫描反射镜绕管道中轴线旋转360°,即可实现管道内壁截面的三维检测。由于透明窗引起的光线折射会产生偏差,在计算时需要修正由于折射引起的偏差。如果管道内表面没有缺陷,则该截面对应的R值相等;如果有缺陷,R值会发生变化。

激光三角-细管道内表面光电检测方法研究

5 基于PSD的检测系统及原理

2     管道内表面光电检测方法的比较和分析

视频法、光环截面法、基于PSD的检测方法以及圆结构光视觉检测法都能实现细管道内表面的检测,和其他管道检测方法相比,具有可见性且检测效率高的特点。视频法检测获取的信息量大,但是早期视频法采用人工方法判断瑕疵,非常耗时且容易受到人为因素的干扰。随着数字图像处理技术和计算机技术的发展,视频法检测技术向如何获取清晰的管道内表面二维图像以及如何根据二维图像信息提高对瑕疵、裂纹等缺陷判断的速度和准确率的方向发展。但视频检测法没有量化测量的能力,不能实现管道内壁三维形貌的精确测量,对于需要进行预测估计的管道瑕疵,它无法提供高精度的三维数据。

光环截面法利用拍摄图像中圆光环灰度的异常来判断瑕疵,光环可以为封闭管道提供较好的照明,增加了图像的清晰度。光环截面法利用人工智能技术分析,根据获取的图像灰度信息来判断管道内表面是否有裂纹等疵病。管道内表面的测量精度和投射的圆环宽度有关,且相邻位置的圆环光带容易发生信息重叠。和视频法相比光环截面法可以对瑕疵进行较为准确的定位,但该方法要求视觉传感器的轴线和管道轴线同轴,对测量系统的装配和测量环境要求高,其对瑕疵和缺陷的定位精度与激光投射器和管道轴线同轴度有关。

激光阵列法和基于位置敏感器的检测方法利用光学三角法和扫描原理实现管内壁任意点的精确三维测量,但对于管道某个内壁截面的测量需要机械或者光学扫描装置进行多次采集数据才能实现。因此这两种方法系统结构较为复杂,一次数据采集量小且基于位置敏感器的检测方法由于传感器自身遮挡对于管道内表面存在测量盲区。

基于圆结构光的检测方法是随着计算机技术和电子技术的发展而发展起来的新型光电检测方法,该方法由摄像机拍摄管道内表面结构信息的圆结构光条,利用精确标定的三维数学模型实现管道内表面高精度的三维测量。和其他光电检测方法相比,圆结构光检测方法可以实现精确的三维测量,系统结构简单,且对系统安装要求不高,适用性较强。

3     结论和展望

由于光电检测技术具有非接触和测量速度快的特点,目前已被广泛用于管道内表面检测。基于摄像机的视频法只能实现管道内表面的二维检测,而光环截面法不仅能判断内表面的瑕疵和缺陷,并能对瑕疵进行定位。基于位置敏感器的检测方法只能实现管道内任意一点精确的三维测量,需要多次扫描才能实现一个截面的测量。圆环结构光视觉检测方法可以利用三维重构数学模型对管道内表面进行精确的三维测量,测量效率和精度都比较高。目前管道检测技术正朝着快速诊断、分析、识别缺陷,对管道内表面瑕疵进行精确三维测量以及三维图像直观显示管壁缺陷的方向发展。因此,针对管道内表面的光电检测技术也必然向着精确三维测量和快速恢复三维形貌的方向发展。结构光视觉检测技术作为高精度三维测量的新兴检测技术适应管道内表面检测的发展方向。

论文题目:细管道内表面光电检测方法研究

作者:王颖,王建林(北京化工大学,信息科学与技术学院)


Case / 相关推荐
2025 - 06 - 23
点击次数: 5
LTP450W 激光位移传感器在自动打磨设备中的应用方案一、方案背景与需求痛点在铸造工件的自动化打磨场景中,粗糙的表面形貌(如毛边、凹凸不平的铸造纹理)对检测传感器提出了特殊要求:传统点光斑传感器易受表面缺陷干扰导致测量偏差,而大距离检测需求又需兼顾精度与实时性。LTP450W 激光位移传感器凭借宽光斑设计、大测量范围及高精度特性,成为适配自动打磨设备的核心检测元件,可实现从表面位置检测到打磨程度...
2025 - 05 - 28
点击次数: 15
一、行业背景:智能手机摄影技术升级催生精密检测需求随着智能手机摄影技术向高像素、超广角、长焦等多元化方向发展,摄像头模组的微型化与精密化程度显著提升。作为摄像头光学元件的核心承载结构,摄像头支架的平面度精度直接影响镜头光轴对准、感光元件贴合等关键工艺,进而决定成像质量的稳定性。传统人工目视检测或接触式测量方法因主观性强、效率低、易损伤工件等缺陷,已难以满足微米级精度检测需求。如何实现非接触式、高精...
2025 - 05 - 14
点击次数: 10
一、引言在锂电池生产中,电极厚度是影响电池性能的关键参数。基片涂覆活性物质后形成的粗糙表面,使用传统点光斑传感器测量时易受表面微观形貌影响,导致数据波动大、测量精度不足。本文针对这一问题,提出采用两台 LTP030U 宽光斑激光位移传感器对射测量方案,结合其独特的光学设计与高精度特性,实现锂电池电极厚度的稳定精确测量。二、应用挑战与传感器选型依据(一)测量难点分析锂电池电极基片涂粉后,表面粗糙度可...
2025 - 05 - 06
点击次数: 18
一、PCB 生产痛点:超薄板叠片检测难在电子制造中,PCB 板厚度仅 0.1-1.6mm,高速传输时极易出现多层重叠,传统检测手段却力不从心:接触式测量:机械探针易压弯薄板,且每秒仅测百次,跟不上产线速度;视觉检测:依赖稳定光源,机台振动(±50μm 级)让图像模糊,漏检率高达 5%。这些问题导致 3%-5% 的废料率,更可能让不良品流入下工序,引发焊接短路等连锁故障,成为产线效率和质量...
2025 - 03 - 22
点击次数: 27
一、传感器选型与技术优势对比颠覆性成本结构传统激光多普勒测振仪价格区间:¥150,000~¥500,000LTP080系列成本:¥11,000~¥15,000(视配置),降低设备投入90%以上维护成本对比:无光学镜片损耗,寿命>50,000小时,年维护费用低于¥500性能参数解析指标LTP080参数传统测振仪典型值采样频率50kHz(全量程)/160kHz(20%量程)1MHz~10MHz线性度&...
2025 - 03 - 19
点击次数: 28
一、项目背景与需求随着智慧交通和道路养护数字化的发展,对路面病害(如裂缝、车辙、坑槽)的高效检测需求日益迫切。传统人工巡检效率低、主观性强,而车载激光雷达方案成本高昂(单套设备超百万元)。因此,某省级公路养护中心采用泓川科技LTP系列传感器,构建低成本、高精度的路面扫描系统,目标如下:全幅覆盖:单次扫描覆盖3.5m标准车道,横向分辨率≤5mm,纵向分辨率≤2mm(车速60km/h时)。抗干扰能力:...
About Us
关于泓川科技
专业从事激光位移传感器,激光焊缝跟踪系统研发及销售的科技公司
中国 · 无锡 · 总部地址:无锡新吴区天山路6号
销售热线:0510-88155119 
图文传真:0510-88152650
Working Time
我们的工作时间
周一至周五:8:00-18:00
周六至周日:9:00-15:00
Shown 企业秀 More
  • 1
    2023 - 03 - 09
    激光位移传感器被广泛应用于各种领域中。其中一个很有用的应用是测量薄膜厚度。这种传感器可以在离表面很近的距离下进行高精度测量,因此非常适合这种应用。本文将介绍激光位移传感器如何用于测量薄膜厚度,包括测量方法、测量原理和市场应用。一、测量方法测量薄膜厚度的基本思路是利用激光位移传感器测量薄膜前后表面的距离差,然后通过几何公式计算出薄膜厚度。在实际操作中,测量方法大致可分为以下几种:1. 手持式测量手持式测量通常用于快速的现场检测。用户只需要将激光位移传感器靠近待测表面,然后通过读取显示屏上的数值判断薄膜厚度是否符合要求。这种方法不需要复杂的设备和步骤,非常易于使用。但是由于人手的震动和误差等因素,手持式测量的精度相对较低,只适用于需求不是特别高的场合。2. 自动化在线测量自动化在线测量一般用于工业生产线上的质量控制。这种方法需要将激光位移传感器与自动化设备相连接,将测量数据传递给计算机进行分析。在这种情况下,测量过程可以完全自动化,精度也可以得到保证。但是相对于手持式测量来说,这种方法需要的设备和技术要求更高,成本也更高。3. 显微镜下测量显微镜下测量常用于对细小薄膜厚度的测量。在这种情况下,用户需要将激光位移传感器与显微镜相结合进行测量。由于显微镜的存在,可以大大增强测量精度。但是相对于其他两种方法,这种方法需要的设备更多,并且技巧要求也更高。二、测量原理激光位移传感器利用的是激光三...
  • 2
    2025 - 01 - 14
    四、光学传感器应用对薄膜涂布生产的影响4.1 提升生产效率4.1.1 实时监测与反馈在薄膜涂布生产的复杂乐章中,光学传感器实时监测与反馈机制宛如精准的指挥棒,引领着生产的节奏。凭借其卓越的高速数据采集能力,光学传感器能够如同闪电般迅速捕捉涂布过程中的关键参数变化。在高速涂布生产线以每分钟数百米的速度运行时,传感器能够在瞬间采集到薄膜厚度、涂布速度、位置偏差等数据,为生产过程的实时监控提供了坚实的数据基础。这些采集到的数据如同及时的情报,被迅速传输至控制系统。控制系统则如同智慧的大脑,对这些数据进行深入分析。一旦发现参数偏离预设的理想范围,控制系统会立即发出指令,如同指挥官下达作战命令,对涂布设备的相关参数进行精准调整。当检测到薄膜厚度略微超出标准时,控制系统会迅速调整涂布头的压力,使涂布量精确减少,确保薄膜厚度回归正常范围。这种实时监测与反馈机制的存在,使得生产过程能够始终保持在最佳状态。它避免了因参数失控而导致的生产中断和产品质量问题,如同为生产线安装了一个智能的 “稳定器”。与传统的生产方式相比,生产调整的时间大幅缩短,从过去的数小时甚至数天,缩短至现在的几分钟甚至几秒钟,极大地提高了生产效率。4.1.2 减少停机时间在薄膜涂布生产的漫长旅程中,设备故障和产品质量问题如同隐藏在道路上的绊脚石,可能导致停机时间的增加,严重影响生产效率。而光学传感器的实时监测功能,就像一位警惕的卫...
  • 3
    2023 - 09 - 25
    由于半导体生产工艺的复杂性和精密性,对晶圆切割的技术要求极高,传统的机械切割方式已经无法满足现代电子行业的需求。在这种情况下,光谱共焦位移传感器配合激光隐切技术(激光隐形切割)在晶圆切割中发挥了重要作用。以下将详细介绍这种新型高效切割技术的应用案例及其优势。原理:利用小功率的激光被光谱共焦位移传感器设定的预定路径所导,聚焦在直径只有100多纳米的光斑上,形成巨大的局部能量,然后根据这个能量将晶圆切割开。光谱共焦位移传感器在切割过程中实时检测切口深度和位置,确保切口的深广和位置的精确性。激光隐切与光谱共焦位移传感器结合的应用案例:以某种先进的半导体制程为例,晶圆经过深刻蚀、清洗、扩散等步骤后,需要进行精确切割。在这个过程中,首先,工程师根据需要的切割图案在软件上设定好切割路径,然后切割机通过光谱共焦位移传感器引导激光按照预定的路径且此过程工程师可以实时观察和测量切口深度和位置。优点:这种技术最大的优势就是它能够实现超微细切割,避免了大功率激光对芯片可能会带来的影响。另外,因为切割的深度和位置可以实时调控,这 法也非常具有灵活性。同时,由于使用光谱共焦位移传感器精确控制切割的深度和位置,所以切割出来的晶圆表面平整,质量更好。总的来看,光谱共焦位移传感器配合激光隐切在晶圆切割中的应用,不仅提升了生产效率,减少了废品率,而且大幅度提升了产品质量,对于当前和未来的半导体行业都将是一个革新的技...
  • 4
    2024 - 03 - 05
    非接触式激光位移传感器在生产线上的应用具有多方面的优势,下面将从精度、速度、可靠性、灵活性和安全性等方面进行逐一分析,并通过具体的应用场景来说明其应用价值。同时,还会与传统的接触式传感器进行比较,以突显非接触式激光位移传感器的独特优势。精度:非接触式激光位移传感器采用激光三角测量法,具有极高的测量精度。例如,在半导体制造过程中,需要精确控制薄膜的厚度,非接触式激光位移传感器可以实现微米级的测量精度,从而确保产品质量。相比之下,传统接触式传感器可能会因为接触力度的不同而影响测量精度。速度:非接触式激光位移传感器具有快速响应的特点,可以在生产线上实现高速测量。例如,在包装机械中,需要实时监测包装材料的位置和速度,非接触式激光位移传感器可以迅速捕捉到这些变化,从而确保包装过程的顺利进行。而传统接触式传感器可能会因为接触摩擦等因素而影响测量速度。可靠性:非接触式激光位移传感器无需与目标物体直接接触,因此可以避免因摩擦、磨损等因素导致的传感器损坏。此外,非接触式传感器还具有较好的抗干扰能力,可以在恶劣的生产环境中稳定工作。相比之下,传统接触式传感器更容易受到环境因素的影响而出现故障。灵活性:非接触式激光位移传感器可以适应不同的测量需求,通过调整激光发射角度、接收透镜焦距等参数,可以实现不同距离、不同角度的测量。此外,非接触式传感器还可以与计算机、PLC等设备进行连接,实现自动化控制和数据处理...
  • 5
    2025 - 03 - 27
    1. 引言在工业自动化领域,激光位移传感器是实现高精度非接触测量的核心器件。基恩士 IL-S025 作为市场主流产品,以其 1μm 重复精度和稳定性能著称。然而,随着国产传感器技术的突破,泓川科技 LTM3-030/LTM3-030W 型号凭借更高的性能参数和经济性,为用户提供了新的选择。本文将从技术参数、性能表现、应用场景等方面,深入对比分析两者的替代可行性。 2. 核心技术参数对比参数基恩士 IL-S025泓川科技 LTM3-030/LTM3-030W对比结论重复精度1μm0.25μm(LTM3-030)/ 0.25μm(LTM3-030W)LTM3 系列更优(4 倍精度提升)线性误差±0.075% F.S.(±5mm 范围)LTM3-030W 更优(接近 IL-S025)测量范围±5mm(参考距离 25mm)±5mm(参考距离 30mm)等效采样频率3kHz(采样周期 0.33ms)10kHzLTM3 系列更优(3倍速度提升)光斑尺寸25×1200μm(线性光斑)Φ35μm(M3-030)/ Φ35×400μm(M3-030W)LTM3 系列光斑更小(点光斑更聚焦)光源类型660nm 激光(Class 2)655nm 激光(Class 2)等效接口配置需外接放大器单元(支持 EtherNet/IP 等)...
  • 6
    2025 - 01 - 16
    四、彩色激光同轴位移计应用实例洞察4.1 镜面相关测量4.1.1 镜面的倾斜及运动检测在众多光学设备以及对镜面精度要求极高的工业场景中,准确检测镜面的倾斜及运动状态是确保设备正常运行和产品质量的关键环节。彩色激光同轴位移计 CL 系列在这一领域展现出了卓越的性能。该系列位移计主要基于同轴测量原理,其独特之处在于采用了彩色共焦方式。在工作时,设备发射出特定的光束,这些光束垂直照射到镜面上。由于镜面具有良好的反射特性,光束会被垂直反射回来。CL 系列位移计通过精确分析反射光的波长、强度以及相位等信息,能够精准计算出镜面的倾斜角度以及运动的位移变化。在实际应用场景中,以高端投影仪的镜头镜面检测为例。投影仪镜头镜面的微小倾斜或运动偏差都可能导致投影画面出现变形、模糊等问题,严重影响投影效果。使用 CL 系列彩色激光同轴位移计,在投影仪生产线上,对每一个镜头镜面进行实时检测。当镜面发生倾斜时,位移计能够迅速捕捉到反射光的变化,并通过内置的算法立即计算出倾斜角度。一旦检测到倾斜角度超出预设的标准范围,系统会及时发出警报,提示操作人员进行调整。对于镜头镜面在使用过程中的微小运动,该位移计同样能够敏锐感知,并将运动数据精确反馈给控制系统,以便对投影画面进行实时校正,确保投影质量始终保持在最佳状态。 4.1.2 MEMS 镜倾斜检测在微机电系统(MEMS)领域,MEMS 镜作为核心部件,其...
  • 7
    2025 - 04 - 08
    在高温工业环境中,精密测量设备的稳定性与精度始终是行业难题。传统传感器在高温下易出现信号漂移、材料老化等问题,导致测量数据失真,甚至设备故障。作为工业测量领域的创新者,泓川科技推出的 LTC 光谱共焦传感器系列,突破性实现全型号 200℃耐高温定制,以 “精度不妥协、性能无衰减” 的核心优势,为高温场景测量树立新标杆,成为替代基恩士等进口品牌高温版本的理想之选。一、全系列耐高温定制:200℃环境下精度如初,打破行业局限区别于市场上仅部分型号支持高温的传感器,泓川科技 LTC 系列全系产品均可定制 200℃耐高温版本,涵盖 LTC100B、LTC400、LTC2000、LTCR 系列等数十款型号,满足从微米级精密测量到超大范围检测的多样化需求。通过材料升级与结构优化:核心部件耐高温设计:采用航空级耐高温光学元件及特殊封装工艺,确保光源发射、光谱接收模块在 200℃长期运行下无热漂移,重复精度保持 3nm-850nm(依型号),线性误差≤±0.03μm 起,与常温环境一致。耐高温光纤传输:标配专用耐高温光纤,可承受 200℃持续高温,抗弯曲性能提升 30%,有效避免传统光纤在高温下的信号衰减与断裂风险,保障长距离测量信号稳定。相较基恩士等品牌仅部分型号支持高温(通常最高 150℃且精度下降 10%-20%),泓川 LTC 系列实现温度范围、型号覆盖、精度保持三大突破,成为高温...
  • 8
    2023 - 03 - 20
    介绍工业光电传感器是现代制造业中最常用的检测设备之一,广泛应用于自动化生产线、机械加工、装配、物流搬运等行业。随着国民经济的不断发展,中国的工业光电传感器制造业也不断发展壮大,成为制造业的一支重要力量。本文旨在对中国产的工业光电传感器现状进行描述。发展历史20世纪80年代初期,我国的工业自动化程度比较低,大部分生产线仍采用人力操作,制造业存在高人力成本、低效率、品质难以保证等问题。为了提高制造业的效率和品质,中国开始引入外国的工业自动化设备,其中就包括工业光电传感器。80年代中后期,国内开始试水制造工业光电传感器,并逐步发展壮大。90年代初期,随着国民经济的增长和工业自动化的加速推进,中国的工业光电传感器制造业进入快速发展期。如今,中国的工业光电传感器制造业已经处于全球领先地位,成为世界闻名的光电传感器生产基地之一。产业链分析商业模式中国的工业光电传感器制造业商业模式主要是以生产销售为主,较少采用研发生产销售一体化模式。生产企业主要供应给自动化设备制造商,然后这些自动化设备制造商销售给最终用户,最终用户则使用这些设备来自动化生产线。除此之外,还有一些企业将工业光电传感器产品应用到自己的设备制造中,以提高自己产品的品质和效率,然后再将自己的产品销售给最终用户。在商业模式上,中国的工业光电传感器制造业与欧美等发达国家还存在一定的差距。技术研发中国的工业光电传感器制造业在技术研发方面逐渐...
Message 最新动态
泓川科技 LTP 系列激光位移传感器全国产化制造流程细节全披露 2025 - 06 - 22 一、国产化背景与战略意义在全球供应链竞争加剧的背景下,激光位移传感器作为工业自动化核心测量部件,其国产化生产对打破技术垄断、保障产业链安全具有重要战略意义。泓川科技 LTP 系列依托国内完整的光学、电子、机械产业链体系,实现了从核心零部件到整机制造的全流程国产化,彻底解决了接口卡脖子问题,产品精度与稳定性达到国际先进水平,同时具备更强的成本竞争力与定制化服务能力。二、核心部件全国产化组成体系(一)光学系统组件激光发射单元激光二极管:采用深圳镭尔特光电 655nm 红光 PLD650 系列(功率 0.5-4.9mW)及埃赛力达 905nm 红外三腔脉冲激光二极管,支持准直快轴压缩技术,波长稳定性 ±0.1nm,满足工业级高稳定性需求。准直透镜:选用杭州秋籁科技 KEWLAB CL-UV 系列,表面粗糙度 光学滤光片:深圳激埃特光电定制窄带滤光片,红外截止率 99.9%,有效消除环境光干扰。激光接收单元光电探测器:上海欧光电子代理 OTRON 品牌 PSD 位置敏感探测器,分辨率达 0.03μm(如 LTPD08 型号),北京中教金源量子点探测器正在实现自主替代。聚焦透镜组:福州合创光电高精度分光棱镜,偏振消光比 1000:1,配合广州明毅电子阳极氧化支架,确保光路同轴度≤5μm。(二)电子电路组件信号处理模块微处理器:龙芯中科 3A5000 工业级芯片,支持 - 40℃...
有没有量程1米,测量精度误差1mm的国产激光位移传感器,频率5Khz以上? 2025 - 06 - 19 有!LTM 系列三款国产激光位移传感器满足需求在工业检测领域,量程 1 米、精度误差 1mm、频率 5KHz 以上的激光位移传感器是高端测量的刚需,而国产传感器常因精度或频率不足被进口品牌垄断。无锡泓川科技的 LTM2-800W、LTM3-800W、LTM5-800W 三款产品,不仅全面覆盖上述指标,更以进口品牌一半的成本优势,成为国产替代的优选方案。以下从性能参数、优劣分析、场景适配及成本对比展开详细介绍。一、核心性能参数对比型号LTM2-800WLTM3-800WLTM5-800W参考距离800mm800mm800mm测量范围±500mm(总量程 1000mm)±500mm(总量程 1000mm)±500mm(总量程 1000mm)光斑尺寸450×6000μm450×6000μm450×6000μm重复精度45μm45μm45μm线性误差采样频率5KHz10KHz31.25KHz工业接口485 串口 / 模拟信号(二选一)以太网 / 485 串口 / 模拟信号以太网 / 485 串口 / 模拟信号光源660nm,Max.50mW660nm,Max.50mW660nm,Max.50mW防护等级IP67IP67IP67工作温度0~+50℃0~+50℃0~+50℃功耗约 2.0W约 2.0W约 2.0W二、产品优势分析(一)...
泓川科技HC26激光位移传感器:高性价国产比替代奥泰斯CD33的优选方案 2025 - 06 - 09 在工业精密测量领域,无锡泓川科技的HC26系列激光位移传感器凭借出色的性能参数与显著的成本优势,成为替代奥泰斯CD33系列的高竞争力选择。以下从核心性能、特殊应用适配性及成本三方面进行对比分析:一、核心性能参数对标(HC26 vs CD33)参数泓川HC26系列奥泰斯CD33 (行业标准)HC26优势重复精度2μm (30mm款) → 50μm (195mm款)通常1~3μm (高端款)接近主流精度线性度±0.1%F.S.±0.05%~0.1%F.S.达到同级水平响应时间最快333μs (多档可调)通常500μs~1ms速度更快输出接口RS485(Modbus RTU)+模拟量(4-20mA/0-10V)类似接口组合同等兼容性防护等级IP67 (防尘防水)IP67/IP65同等工业防护温度特性0.05%F.S/℃0.03~0.05%F.S/℃稳定性接近注:HC26提供4种基准距离型号(30/50/85/195mm),覆盖小量程高精度(±4mm@30mm)至大量程(±99.98mm@195mm)场景,满足CD33主流应用范围。二、核心替代优势:全系支持正反射安装HC26系列所有型号均内置正反射光路设计,解决CD33在特殊材质检测中的痛点:镜面材料:通过正反射接收强光信号,避免漫反射信号微弱导致的测量失效。透明材质(如玻璃、薄...
Copyright ©2005 - 2013 无锡泓川科技有限公司

1

犀牛云提供企业云服务
Our Link
X
3

SKYPE 设置

4

阿里旺旺设置

等待加载动态数据...

等待加载动态数据...

5

电话号码管理

  • 0510-88155119
6

二维码管理

等待加载动态数据...

等待加载动态数据...

展开